On the importance of idempotence

TitleOn the importance of idempotence
Publication TypeConference Papers
Year of Publication2006
AuthorsArya S, Malamatos T, Mount D
Conference NameProceedings of the thirty-eighth annual ACM symposium on Theory of computing
Date Published2006///
Conference LocationNew York, NY, USA
ISBN Number1-59593-134-1
KeywordsApproximation algorithms, Idempotence, Range searching

Range searching is among the most fundamental problems in computational geometry. An n-element point set in Rd is given along with an assignment of weights to these points from some commutative semigroup. Subject to a fixed space of possible range shapes, the problem is to preprocess the points so that the total semigroup sum of the points lying within a given query range η can be determined quickly. In the approximate version of the problem we assume that η is bounded, and we are given an approximation parameter ε > 0. We are to determine the semigroup sum of all the points contained within η and may additionally include any of the points lying within distance ε • diam(η) of η's boundar.In this paper we contrast the complexity of range searching based on semigroup properties. A semigroup (S,+) is idempotent if x + x = x for all x ∈ S, and it is integral if for all k ≥ 2, the k-fold sum x + ... + x is not equal to x. For example, (R, min) and (0,1, ∨) are both idempotent, and (N, +) is integral. To date, all upper and lower bounds hold irrespective of the semigroup. We show that semigroup properties do indeed make a difference for both exact and approximate range searching, and in the case of approximate range searching the differences are dramatic.First, we consider exact halfspace range searching. The assumption that the semigroup is integral allows us to improve the best lower bounds in the semigroup arithmetic model. For example, assuming O(n) storage in the plane and ignoring polylog factors, we provide an Ω*(n2/5) lower bound for integral semigroups, improving upon the best lower bound of Ω*(n1/3), thus closing the gap with the O(n1/2) upper bound.We also consider approximate range searching for Euclidean ball ranges. We present lower bounds and nearly matching upper bounds for idempotent semigroups. We also present lower bounds for range searching for integral semigroups, which nearly match existing upper bounds. These bounds show that the advantages afforded by idempotency can result in major improvements. In particular, assuming roughly linear space, the exponent in the ε-dependencies is smaller by a factor of nearly 1/2. All our results are presented in terms of space-time tradeoffs, and our lower and upper bounds match closely throughout the entire spectrum.To our knowledge, our results provide the first proof that semigroup properties affect the computational complexity of range searching in the semigroup arithmetic model. These are the first lower bound results for any approximate geometric retrieval problems. The existence of nearly matching upper bounds, throughout the range of space-time tradeoffs, suggests that we are close to resolving the computational complexity of both idempotent and integral approximate spherical range searching in the semigroup arithmetic model.