Fast Computation of Kernel Estimators

TitleFast Computation of Kernel Estimators
Publication TypeJournal Articles
Year of Publication2010
AuthorsRaykar VC, Duraiswami R, Zhao LH
JournalJournal of Computational and Graphical Statistics
Pagination205 - 220
Date Published2010///
ISBN Number1061-8600

The computational complexity of evaluating the kernel density estimate (or its derivatives) at m evaluation points given n sample points scales quadratically as O(nm)?making it prohibitively expensive for large datasets. While approximate methods like binning could speed up the computation, they lack a precise control over the accuracy of the approximation. There is no straightforward way of choosing the binning parameters a priori in order to achieve a desired approximation error. We propose a novel computationally efficient ε-exact approximation algorithm for the univariate Gaussian kernel-based density derivative estimation that reduces the computational complexity from O(nm) to linear O(n+m). The user can specify a desired accuracy ε. The algorithm guarantees that the actual error between the approximation and the original kernel estimate will always be less than ε. We also apply our proposed fast algorithm to speed up automatic bandwidth selection procedures. We compare our method to the best available binning methods in terms of the speed and the accuracy. Our experimental results show that the proposed method is almost twice as fast as the best binning methods and is around five orders of magnitude more accurate. The software for the proposed method is available online.