
The improved fast Gauss transform with

applications to machine learning

Vikas C. Raykar and Ramani Duraiswami

University of Maryland, CollegePark

{vikas,ramani}@cs.umd.edu

NIPS 2005 workshop

on

Large scale kernel machines

Whistler, December 9, 2005



Introduction

• Huge data sets containing

– millions of training examples (tall data)

– with large number of attributes (fat data)

are relatively easy to gather.

• Nonparametric methods in machine leaning scale as either O(N3)

or O(N2).

1



Supervised Learning

The key computational task is to compute a linear combination of

local kernel functions centered on the training data, i.e.,

f(x) =
N∑

i=1

qik(x, xi).

• Kernel machines (e.g. RLS, SVM) f is the regression/classification

function. [Representer theorem]

• Gaussian processes f is the mean prediction.

• Density estimation f is the kernel density estimate.

2



Prediction

The computation complexity to predict at M points given N training

examples scales as O(MN).

f(x) =
N∑

i=1

qik(x, xi).

3



Training

Training these models scales as O(N3) since most involve solving

the linear system of equation

(K + σ2I)ξ = y.

K is the N ×N Gram matrix where [K]ij = k(xi, xj).

• Direct inversion is O(N3).

• Iterative methods like conjugate-gradient can bring it down to

O(kN2).

• The quadratic complexity is due to the matrix-vector product

Kq for some q.

4



Unsupervised Learning

Methods like kernel principal component analysis, spectral clustering,

or Laplacian eigenmaps involve computing the eigen vectors of the

Gram/Laplacian matrix.

• Direct is O(N3).

• Iterative methods can bring it down to O(kN2).

• The quadratic complexity is due to the matrix-vector product

Kq for some q.

5



Gaussian kernel

The most commonly used kernel function is the Gaussian kernel

K(x, y) = e−‖x−y‖2/h2
,

where h is called the bandwidth of the kernel.

Sum of multivariate Gaussian kernels is called the discrete Gauss

transform – O(MN).

G(yj) =
N∑

i=1

qie
−‖yj−xi‖2/h2

.

6



Improved fast Gauss transform

Speed up of these tasks using rigorous ε-exact approximation algo-

rithms to achieve

• O(N) training time.

• O(1) prediction/classification time.

One such algorithm was presented for the Gaussian kernel in NIPS2005∗-
the improved fast Gauss transform (IFGT).

∗C. Yang, R. Duraiswami, and L. Davis. Efficient kernel machines using the
improved fast Gauss transform. In Advances in Neural Information Processing
Systems, pages 15611568, 2005.

7



ε can be arbitrarily small (e.g., machine precision) and speedup is

maintained

Effectively we have an FFT like algorithm that is “drop-in,” with no

accuracy penalty.

Enables large scale kernel machines



Brief idea of the IFGT

• Step 1a Determine parameters of algorithm based on specified
error bound, kernel bandwidth, and data distribution

• Step 1b Subdivide the d-dimensional space using a k-center
clustering based geometric data structure (O(N logK)).

• Step 2 Build a p truncated representation of kernels inside each
cluster using a set of decaying basis functions (O(Ndp)).

• Step 3 Collect the influence of all the the data in a neighborhood
using coefficients at cluster center and evaluate (O(Mdp)).

The code was publicly made available for non-commercial use.

8



IFGT Illustration

y
j

r

r
y
k

r
x
k

c
k

9



Sample results

For example in three dimensions and 1 million training and test

points [h=0.4]

• IFGT – 6 minutes.

• Direct – 34 hours.

with an error of 10−8.

10



IFGT can handle large dimensions [h =
√

d]

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

10
3

d

T
im

e
 (

s
e

c
)

Direct
IFGT
FGT

10
0

10
1

10
2

10
−12

10
−10

10
−8

10
−6

d

M
a

x
. 

a
b

s
. 

e
rr

o
r 

/ 
Q

Target
IFGT
FGT

11



Segmentation using adaptive mean-shift

1.34 hours vs 2.1 minutes

12



Gaussian process regression-Training times

• Abalone [4177 x 7] 7.41 secs

• comp-activ [8192 x 22] 5.92 secs

• pumadyn [8192 x 32] 6.01 secs

• census-house [11784 x 16] 109.81 secs

13



Issues with IFGT presented in Yang et.al. 2005

• The error bounds were tight but very pessimistic.

• Parameter selection was not automatic.

• Users∗† found the selection of parameters hard. Incorrect choice
of algorithm parameters by these authors sometimes lead to poor
reported performance of IFGT.

• Method for IFGT parameter selection presented in Lang et.al.
is not optimal‡.

∗Lee, D., Gray, A., & Moore, A., Dual-tree fast Gauss transforms, NIPS 2006
†de Freitas, N., Wang, Y., Mahdaviani, M., and Lang, D., Fast Kylov Methods
for N-body learning, NIPS 2006.
‡Lang, D., Klaas, M., and Freitas, N. 2005. Empirical testing of fast kernel
density estimation algorithms. Tech. Rep. UBC TR-2005-03.

14



Improvements to IFGT since NIPS 2005∗

• A tighter point-wise error bound.

• Choice of the algorithm parameters completely automatic.

• Truncation number for each source is different.

∗V. C. Raykar, C. Yang, R. Duraiswami, and N. Gumerov, Fast compu-
tation of sums of Gaussians in high dimensions. CS-TR-4767, Depart-
ment of Computer Science, University of Maryland, CollegePark, 2005.
https://drum.umd.edu/dspace/bitstream/1903/3020/1/CS-TR-4767.pdf

15



Choice of parameters is crucial

For 3 dimensions using N = 50,000 and h = 0.76

• Lee et.al.∗ report that IFGT takes greater than two times the

direct time.

• With the parameters automatically chosen by the algorithm we

take only 1.522 secs.

∗Lee, D., Gray, A., & Moore, A.,Dual-tree fast Gauss transforms, NIPS 2006

16



IFGT expansion is both local as well as far-field!!

−5 0 5
10

−15

10
−10

10
−5

10
0

10
5

y

Ab
so

lu
te

 E
rro

r

p=5

x
*

FGT Hermite
FGT Taylor
IFGT Taylor

Hence we avoid the expensive translation operation that was required

in the original FGT, and in some recently proposed algorithms.

17



Effect of bandwidth

• For small kernel bandwidth (h) where each training point only

influences the immediate vicinity speedup is poor.

• Can use dual-tree methods∗.

• In high dimensions the tails of the density contribute significantly

to the total probability mass and is unlikely we have a dense

sampling in tails.

∗A. G. Gray and A. W. Moore. Nonparametric density estimation: Toward com-
putational tractability. In SIAM International conference on Data Mining, 2003.

18



Some recent extensions

19



IFGT with variable source scales

G(yj) =
N∑

i=1

qie
−‖yj−xi‖2/h2

i .

Approach: Build a composite factorization that builds a Taylor series

for hi as well.

Resulting IFGT runs at about the same speed.

For example for N = M = 1,024,000 while the direct evaluation

takes around 2.6 days the fast evaluation requires only 4.65 minutes

with an error of around 10−5.

20



Variable bandwidth density estimation

.
(a) h=0.05 (b) h=0.70 

(c) h=0.36 (d) Variable h

TV=0.239

TV=0.092

TV=0.128

TV=0.062

21



Data-structures imposed in the IFGT algorithm itself provide an easy
way to locally adapt the bandwidth.

−10 −5 0 5 10
−1

0

1

2

3

4

5
x 10

−3 (a) Actual tri−modal density

−10 −5 0 5 10
−1

0

1

2

3

4

5
x 10

−3(b) Pilot estimate k−center clustering (k=20 rx=0.55)

−10 −5 0 5 10
−1

−0.5

0

0.5

1

1.5

2
(c) Initial Local bandwidths alpha=1.80

−10 −5 0 5 10
−1

0

1

2

3

4

5
x 10

−3 (d) Adaptive kernel density estimate

TV=0.062

−10 −5 0 5 10
−0.5

0

0.5

1

1.5

2
(f) Local bandwidths Iteration 5

−10 −5 0 5 10
−1

0

1

2

3

4

5
x 10

−3 (e) Iteration 5

TV=0.047

22



Derivative of kernel sums Many procedures (e.g., those involving
optimal parameter estimation) involve taking the derivative of kernel
sums.

• Automatic bandwidth selection for kernel density estimation.

• Selecting hyperparameters in Gaussian Process regression.

The derivatives of Gaussian sums involve sums of products of poly-
nomials and Gaussians. IFGT algorithms have been developed for
such kernels

Gr(yj) =
N∑

i=1

qiHr

(
yj − xi

h1

)
e−(yj−xi)

2/h2
2

23



Gaussian process regression

• Gaussian processes handle nonparametric regression in a Bayesian

framework.

• The regression function is represented by an ensemble of func-

tions, on which we place a Gaussian prior.

• This prior is updated in the light of the training data.

• As a result we obtain predictions together with valid estimates

of uncertainty.

24



Speedup GP regression via IFGT

Direct Conjugate Conjugate
Inversion gradient gradient

K̃ = K + σ2I +IFGT
Time Space Time Space Time Space

Training phase

ξ = K̃−1y O(N3) O(N2) O(N2) O(N) O(N) O(N)
Mean prediction
y = k(x)T ξ O(N2) O(N) O(N2) O(N) O(N) O(N)
Uncertainty
k(x, x) O(N3) O(N) O(N3) O(N) O(N2) O(N)

−k(x)T K̃−1k(x)

For example for N=25,600 training takes around 3 secs. (compare
to 10 hours[direct] or 17 minutes[CG]).

The hyperparametrs can also be chosen in O(N).

25



How to choose ε

Matrix-vector product may be performed in an increasingly inexact

manner as the iteration progresses and still allow convergence to the

solution.

0 2 4 6 8 10 12 14
10

−7

10
−6

10
−5

Iteration

ε

10
2

10
3

10
4

0

5

10

15

20

25

δ = 10−3

δ = 10−6

N

N
u

m
b

e
r 

o
f 
it
e

ra
ti
o

n
s

CG
CG+IFGT

η = 10−3

26



Conclusions

• The IFGT can reduce the computational complexity of numerous
machine learning algorithms to linear time.

• Unlike methods which rely on choosing a subset of the dataset
we use all the available points and still achieve O(N) complexity.

• The IFGT is now completely tweak free.

• Extensions to variable bandwidth, derivative estimation, and Gaussian
processes.

• Good speedup for large bandwidths. For small bandwidths dual-
tree methods can be used.

27


