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Derivation

Slides adapted from Emily Fox



Reminder: Logistic Regression

1

P(Y=0X)= 14exp[Bo + 2 BiXi]
- B exp|[ o+ 2, BiXi]
P(Y=11X)= 1+exp[ o+, B;X]

e Discriminative prediction: p(y|x)
e Classification uses: ad placement, spam detection

e What we didn’t talk about is how to learn 8 from data



Logistic Regression: Objective Function

2=np(YIX,5) =D Inp(y1x7, p) 3)

=2 (ﬂo +Zﬂfxl"))—'n 1 exp (ﬂo +2.8 )]
j i 7

(4)




Logistic Regression: Objective Function
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Training data (y, x) are fixed. Objective function is a function of
...what values of 3 give a good value.
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e Gradient!
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Gradient Descent (non-convex)

Goal

Optimize log likelihood with respect to variables

Objective
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country

Luckily, (vanilla) logistic regression is convex



Gradient for Logistic Regression

To ease notation, let’'s define

_ expBx
14expfBTx

Our objective function is

log 7t if y; =1
Z=>1lo | X %= 6
LIRS ITES 2 s



Taking the Derivative

Apply chain rule:

~ o if y, =1 ,
3/3, Z aﬁ, _Z = (-5%) iy=0 )

I 1—m; aﬁ/

If we plug in the derivative,

87'[,'
— 1_7-[ X‘, 8
we can merge these two cases
0%
—o = (i—m)x. (9)



Gradient for Logistic Regression
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Gradient for Logistic Regression

Gradient
Vs (B)= a,;f/gf),wa,;gg) (10)

Update
AB=nVpZ(p) (11)
B/ —Bi na“z;g) (12)

Why are we adding? What would well do if we wanted to do descent?
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Gradient for Logistic Regression

Gradient
V2 (B)= afgf),...,afgnﬁ) (10)

Update
AB =NV (B) (11)
Bl —Bi+ (12)

1: step size, must be greater than zero
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Gradient for Logistic Regression

Gradient
Vs (B)= 6°§/§f),...,a"§$) (10)

Update
AB=nVpZ(p) (11)
B/ <—/5,-+na§;g) (12)

NB: Conjugate gradient is usually better, but harder to implement
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Remaining issues

e When to stop?
e What if B keeps getting bigger?



Regularized Conditional Log Likelihood

Unregularized
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Regularized
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Regularized Conditional Log Likelihood

Unregularized

p* =argmaxin[p(y? 10, p)] (13)

Regularized

ﬁ*:argm/?xln[p(y(j)|x(j),ﬂ)]— Zﬂiz (14)

i

U is “regularization” parameter that trades off between likelihood and
having small parameters
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e QOur datasets are big (to fit into memory)
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Approximating the Gradient

Our datasets are big (to fit into memory)

...or data are changing / streaming

Hard to compute true gradient
L(B)=E.[VL(B,x)]

e Average over all observations

What if we compute an update just from one observation?



Getting to Union Station

Pretend it's a pre-smartphone world and you want to get to Union
Station




Stochastic Gradient for Logistic Regression

Given a single observation x; chosen at random from the dataset,
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Stochastic Gradient for Logistic Regression

Given a single observation x; chosen at random from the dataset,

Bi— B +n(-up +x;lyi—m]) (16)

Examples in class.



Stochastic Gradient for Regularized Regression

£ =logp(y|x:B)—u Y B}
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Stochastic Gradient for Regularized Regression

,,s,ﬂ:|ogl£>(y|)(:/5)—ﬂzﬂf2
J

Taking the derivative (with respect to example x;)

0¥
25 =(yi—mi)x—2up;

(17)



Algorithm

1. Initialize a vector B to be all zeros
2. Fort=1,...,T
> For each example X;, y; and feature j:
> Compute 7, =Pr(y, =1]%))
> Set B[] =Bl +A(yi—m)x,
3. Output the parameters B4, ..., By



Proofs about Stochastic Gradient

e Depends on convexity of objective and how close € you want to get
to actual answer

e Best bounds depend on changing 1) over time and per dimension
(not all features created equal)



In class

e Your questions!
e Working through simple example
e Prepared for logistic regression homework



