Feature Engineering

Natural Language Processing
University of Maryland

Discovery

Feature Engineering

In the dat a directory for n1p—hw repo, there are files called
inclass_feateng_train.csv (and likewise for dev, test).

Load Packages

import pandas as pd
import numpy as np
import sklearn

from
from
from
from

sklearn
sklearn
sklearn
sklearn

.utils.validation import check_is_fitted
.exceptions import NotFittedError
.linear_model import LogisticRegression
.feature_extraction import DictVectorizer

Create function to generate features

def extract_features (sentence_list):
d = {}
d["length"] = len(sentence_list)
return d

Load Data

DictVectorizer ()

£ = {}
or fold in ["train", "dev", "test"]:
df[fold] = pd.read_csv("%$s.csv" % fold)
Y[fold] = df[fold]["label"]
try:
check_is_fitted(vec)
X[fold] = vec.transform(extract_features (x.split())
for x in df([fold]['text'])
except NotFittedError as exc:
X[fold] = vec.fit_transform(extract_features (x.split())
for x in df([fold] ['text'])

v
X
Y =
d
£

Train Classifier

classifier = LogisticRegression ()
classifier.fit (X["train"], Y["train"])

Look at Features, Compute Accuracy

coef = pd.DataFrame (zip (vectorizer.feature_names_,

np.transpose (classifier.coef_)),
columns=["'features', 'coef'])
coef.loc[len(coef.index)] = ['Intercept',

classifier.intercept_]
print (coef.head())

print ("Accuracy: %$f" %
classifier.score(X["dev"], Y["dev"]))

Results

features coef
0 length [0.009380652536927882]
1 1Intercept [-0.11619382668652307]
Accuracy: 0.485398

Results

features coef
0 length [0.009380652536927882]
1 Intercept [-0.11619382668652307]

Accuracy: 0.485398
Not great! (Roughly balanced dataset)

Look at Errors

df ["dev"] ["error"] = (df["dev"]["label"].astype(int) -
classifier.predict_proba(X["dev"])[:,1])
df ["dev"].sort_values (by='error', key=abs,
ascending=False, inplace=True)
print (df ["dev"] .head())
num_rows = 0
for index, row in df["dev"].iterrows():
num_rows += 1
print (row["error"], len(row["text"].split()),
row["text"])
if num_rows > 10:
break

.7005699501953168 103 I'm sending you a couple of custon
.651327096225724 79 Two millions were added to what had
.6384386405287599 73 Like Eliot , in my fantasies , I hz
.6362704602163262 72 So , for happy years , Helva scoote
.6297329173061533 69 When he was bent over behind the wt

Notice anything?

e The examples are long, sure, but is there anyting suspicious about
their exact length?

e Add in new feature and see if it helps...

e Remember that you needtoredo fit_transform

More hints

e Can perfectly reconstruct with four features

e Two features you can figure out by using all words as features and
seeing patterns on the top words

e Pay attention to how words are written
e Pay attention to what words mean

e Pay attention to the order of words

Even more hints

1. Feature based on length has positive weight, but isn’t
monotonic. . . but is monotonic on the length of something related
to the length. Do this feature first.

2. Feature based on how words are written has a positive weight and
is easy to compute.

3. Feature based on what words mean has a negative weight and will
require using a dictionary to get it perfectly right. Consider using
wordnet fromnltk

4. The value of the feature based on the order of words is around 0.5
for most sentences and ranges between 0.0 and 0.1, and the
weight of the feature is negative. I'd recommend looking for this
feature last.

Exam Question

You have a logistic regression classifer that takes in words and then
classifies them. What three features would explain the following inputs
and probabilities?

Word p(y|x)
short 0.11
hot 0.26
saving 0.26
taking 0.5

surely 0.73
bigly 0.88

Solution

Intercept: -1
Starts with “s”; -1
Ends with “ing”: +1
Ends with “ly”: +3

