
Multilayer Networks

Natural Language Processing: Jordan
Boyd-Graber
University of Maryland
MATHEMATICAL DESCRIPTION

Natural Language Processing: Jordan Boyd-Graber | UMD Multilayer Networks | 1 / 1

Learn the features and the function

a
(2)
1 = f
�

W
(1)
11 x1 +W

(1)
12 x2 +W

(1)
13 x3 +b

(1)
1

�

Natural Language Processing: Jordan Boyd-Graber | UMD Multilayer Networks | 2 / 1

Learn the features and the function

a
(2)
2 = f
�

W
(1)
21 x1 +W

(1)
22 x2 +W

(1)
23 x3 +b

(1)
2

�

Natural Language Processing: Jordan Boyd-Graber | UMD Multilayer Networks | 2 / 1

Learn the features and the function

a
(2)
3 = f
�

W
(1)
31 x1 +W

(1)
32 x2 +W

(1)
33 x3 +b

(1)
3

�

Natural Language Processing: Jordan Boyd-Graber | UMD Multilayer Networks | 2 / 1

Learn the features and the function

hW ,b(x) = a
(3)
1 = f
�

W
(2)
11 a

(2)
1 +W

(2)
12 a

(2)
2 +W

(2)
13 a

(2)
3 +b

(2)
1

�

Natural Language Processing: Jordan Boyd-Graber | UMD Multilayer Networks | 2 / 1

Objective Function

� For every example x ,y of our supervised training set, we want the label
y to match the prediction hW ,b(x).

J(W ,b;x ,y)≡
1

2
||hW ,b(x)− y ||2 (1)

� We want this value, summed over all of the examples to be as small as
possible

� We also want the weights not to be too large

λ

2

nl−1
∑

l

sl
∑

i=1

sl+1
∑

j=1

�

W l
ji

�2
(2)

Natural Language Processing: Jordan Boyd-Graber | UMD Multilayer Networks | 3 / 1

Objective Function

� For every example x ,y of our supervised training set, we want the label
y to match the prediction hW ,b(x).

J(W ,b;x ,y)≡
1

2
||hW ,b(x)− y ||2 (1)

� We want this value, summed over all of the examples to be as small as
possible

� We also want the weights not to be too large

λ

2

nl−1
∑

l

sl
∑

i=1

sl+1
∑

j=1

�

W l
ji

�2
(2)

Natural Language Processing: Jordan Boyd-Graber | UMD Multilayer Networks | 3 / 1

Objective Function

� For every example x ,y of our supervised training set, we want the label
y to match the prediction hW ,b(x).

J(W ,b;x ,y)≡
1

2
||hW ,b(x)− y ||2 (1)

� We want this value, summed over all of the examples to be as small as
possible

� We also want the weights not to be too large

λ

2

nl−1
∑

l

sl
∑

i=1

sl+1
∑

j=1

�

W l
ji

�2
(2)

Natural Language Processing: Jordan Boyd-Graber | UMD Multilayer Networks | 3 / 1

Objective Function

� For every example x ,y of our supervised training set, we want the label
y to match the prediction hW ,b(x).

J(W ,b;x ,y)≡
1

2
||hW ,b(x)− y ||2 (1)

� We want this value, summed over all of the examples to be as small as
possible

� We also want the weights not to be too large

λ

2

nl−1
∑

l

sl
∑

i=1

sl+1
∑

j=1

�

W l
ji

�2
(2)

Natural Language Processing: Jordan Boyd-Graber | UMD Multilayer Networks | 3 / 1

Objective Function

� For every example x ,y of our supervised training set, we want the label
y to match the prediction hW ,b(x).

J(W ,b;x ,y)≡
1

2
||hW ,b(x)− y ||2 (1)

� We want this value, summed over all of the examples to be as small as
possible

� We also want the weights not to be too large

λ

2

nl−1
∑

l

sl
∑

i=1

sl+1
∑

j=1

�

W l
ji

�2
(2)

Sum over all layers

Natural Language Processing: Jordan Boyd-Graber | UMD Multilayer Networks | 3 / 1

Objective Function

� For every example x ,y of our supervised training set, we want the label
y to match the prediction hW ,b(x).

J(W ,b;x ,y)≡
1

2
||hW ,b(x)− y ||2 (1)

� We want this value, summed over all of the examples to be as small as
possible

� We also want the weights not to be too large

λ

2

nl−1
∑

l

sl
∑

i=1

sl+1
∑

j=1

�

W l
ji

�2
(2)

Sum over all sources

Natural Language Processing: Jordan Boyd-Graber | UMD Multilayer Networks | 3 / 1

Objective Function

� For every example x ,y of our supervised training set, we want the label
y to match the prediction hW ,b(x).

J(W ,b;x ,y)≡
1

2
||hW ,b(x)− y ||2 (1)

� We want this value, summed over all of the examples to be as small as
possible

� We also want the weights not to be too large

λ

2

nl−1
∑

l

sl
∑

i=1

sl+1
∑

j=1

�

W l
ji

�2
(2)

Sum over all destinations

Natural Language Processing: Jordan Boyd-Graber | UMD Multilayer Networks | 3 / 1

Objective Function

Putting it all together:

J(W ,b) =

�

1

m

m
∑

i=1

1

2
||hW ,b(x

(i))− y(i)||2
�

+
λ

2

nl−1
∑

l

sl
∑

i=1

sl+1
∑

j=1

�

W l
ji

�2
(3)

� Our goal is to minimize J(W ,b) as a function of W and b

� Initialize W and b to small random value near zero

� Adjust parameters to optimize J

Natural Language Processing: Jordan Boyd-Graber | UMD Multilayer Networks | 4 / 1

Objective Function

Putting it all together:

J(W ,b) =

�

1

m

m
∑

i=1

1

2
||hW ,b(x

(i))− y(i)||2
�

+
λ

2

nl−1
∑

l

sl
∑

i=1

sl+1
∑

j=1

�

W l
ji

�2
(3)

� Our goal is to minimize J(W ,b) as a function of W and b

� Initialize W and b to small random value near zero

� Adjust parameters to optimize J

Natural Language Processing: Jordan Boyd-Graber | UMD Multilayer Networks | 4 / 1

Objective Function

Putting it all together:

J(W ,b) =

�

1

m

m
∑

i=1

1

2
||hW ,b(x

(i))− y(i)||2
�

+
λ

2

nl−1
∑

l

sl
∑

i=1

sl+1
∑

j=1

�

W l
ji

�2
(3)

� Our goal is to minimize J(W ,b) as a function of W and b

� Initialize W and b to small random value near zero

� Adjust parameters to optimize J

Natural Language Processing: Jordan Boyd-Graber | UMD Multilayer Networks | 4 / 1

Objective Function

Putting it all together:

J(W ,b) =

�

1

m

m
∑

i=1

1

2
||hW ,b(x

(i))− y(i)||2
�

+
λ

2

nl−1
∑

l

sl
∑

i=1

sl+1
∑

j=1

�

W l
ji

�2
(3)

� Our goal is to minimize J(W ,b) as a function of W and b

� Initialize W and b to small random value near zero

� Adjust parameters to optimize J

Natural Language Processing: Jordan Boyd-Graber | UMD Multilayer Networks | 4 / 1

Deep Learning from Data

Gradient Descent

Goal

Optimize J with respect to variables W and b

Parameter

Objective
start

stop

undiscovered
country

Natural Language Processing: Jordan Boyd-Graber | UMD Multilayer Networks | 5 / 1

Deep Learning from Data

Backpropigation

� For convenience, write the input to sigmoid

z
(l)
i =

n
∑

j=1

W
(l−1)
ij xj +b

(l−1)
i (4)

� The gradient is a function of a node’s error δ
(l)
i

� For output nodes, the error is obvious:

δ
(nl)
i =

∂

∂ z
(nl)
i

||y −hw ,b(x)||2 =−
�

yi −a
(nl)
i

�

· f ′
�

z
(nl)
i

� 1

2
(5)

� Other nodes must “backpropagate” downstream error based on
connection strength

δ
(l)
i =

�st+1
∑

j=1

W
(l+1)
ji δ

(l+1)
j

�

f ′(z
(l)
i) (6)

Natural Language Processing: Jordan Boyd-Graber | UMD Multilayer Networks | 6 / 1

Deep Learning from Data

Backpropigation

� For convenience, write the input to sigmoid

z
(l)
i =

n
∑

j=1

W
(l−1)
ij xj +b

(l−1)
i (4)

� The gradient is a function of a node’s error δ
(l)
i

� For output nodes, the error is obvious:

δ
(nl)
i =

∂

∂ z
(nl)
i

||y −hw ,b(x)||2 =−
�

yi −a
(nl)
i

�

· f ′
�

z
(nl)
i

� 1

2
(5)

� Other nodes must “backpropagate” downstream error based on
connection strength

δ
(l)
i =

�st+1
∑

j=1

W
(l+1)
ji δ

(l+1)
j

�

f ′(z
(l)
i) (6)

Natural Language Processing: Jordan Boyd-Graber | UMD Multilayer Networks | 6 / 1

Deep Learning from Data

Backpropigation

� For convenience, write the input to sigmoid

z
(l)
i =

n
∑

j=1

W
(l−1)
ij xj +b

(l−1)
i (4)

� The gradient is a function of a node’s error δ
(l)
i

� For output nodes, the error is obvious:

δ
(nl)
i =

∂

∂ z
(nl)
i

||y −hw ,b(x)||2 =−
�

yi −a
(nl)
i

�

· f ′
�

z
(nl)
i

� 1

2
(5)

� Other nodes must “backpropagate” downstream error based on
connection strength

δ
(l)
i =

�st+1
∑

j=1

W
(l+1)
ji δ

(l+1)
j

�

f ′(z
(l)
i) (6)

Natural Language Processing: Jordan Boyd-Graber | UMD Multilayer Networks | 6 / 1

Deep Learning from Data

Backpropigation

� For convenience, write the input to sigmoid

z
(l)
i =

n
∑

j=1

W
(l−1)
ij xj +b

(l−1)
i (4)

� The gradient is a function of a node’s error δ
(l)
i

� For output nodes, the error is obvious:

δ
(nl)
i =

∂

∂ z
(nl)
i

||y −hw ,b(x)||2 =−
�

yi −a
(nl)
i

�

· f ′
�

z
(nl)
i

� 1

2
(5)

� Other nodes must “backpropagate” downstream error based on
connection strength

δ
(l)
i =

�st+1
∑

j=1

W
(l+1)
ji δ

(l+1)
j

�

f ′(z
(l)
i) (6)

Natural Language Processing: Jordan Boyd-Graber | UMD Multilayer Networks | 6 / 1

Deep Learning from Data

Backpropigation

� For convenience, write the input to sigmoid

z
(l)
i =

n
∑

j=1

W
(l−1)
ij xj +b

(l−1)
i (4)

� The gradient is a function of a node’s error δ
(l)
i

� For output nodes, the error is obvious:

δ
(nl)
i =

∂

∂ z
(nl)
i

||y −hw ,b(x)||2 =−
�

yi −a
(nl)
i

�

· f ′
�

z
(nl)
i

� 1

2
(5)

� Other nodes must “backpropagate” downstream error based on
connection strength

δ
(l)
i =

�st+1
∑

j=1

W
(l+1)
ji δ

(l+1)
j

�

f ′(z
(l)
i) (6)

Natural Language Processing: Jordan Boyd-Graber | UMD Multilayer Networks | 6 / 1

Deep Learning from Data

Backpropigation

� For convenience, write the input to sigmoid

z
(l)
i =

n
∑

j=1

W
(l−1)
ij xj +b

(l−1)
i (4)

� The gradient is a function of a node’s error δ
(l)
i

� For output nodes, the error is obvious:

δ
(nl)
i =

∂

∂ z
(nl)
i

||y −hw ,b(x)||2 =−
�

yi −a
(nl)
i

�

· f ′
�

z
(nl)
i

� 1

2
(5)

� Other nodes must “backpropagate” downstream error based on
connection strength

δ
(l)
i =

�st+1
∑

j=1

W
(l+1)
ji δ

(l+1)
j

�

f ′(z
(l)
i) (6)

(chain rule)
Natural Language Processing: Jordan Boyd-Graber | UMD Multilayer Networks | 6 / 1

Deep Learning from Data

Partial Derivatives

� For weights, the partial derivatives are

∂

∂W
(l)
ij

J(W ,b;x ,y) = a
(l)
j δ

(l+1)
i (7)

� For the bias terms, the partial derivatives are

∂

∂ b
(l)
i

J(W ,b;x ,y) =δ
(l+1)
i (8)

� But this is just for a single example . . .

Natural Language Processing: Jordan Boyd-Graber | UMD Multilayer Networks | 7 / 1

Deep Learning from Data

Full Gradient Descent Algorithm

1. Initialize U(l) and V (l) as zero

2. For each example i = 1 . . .m
2.1 Use backpropagation to compute ∇W J and ∇bJ
2.2 Update weight shifts U(l) =U(l)+∇W (l)J(W ,b;x ,y)
2.3 Update bias shifts V (l) = V (l)+∇b(l)J(W ,b;x ,y)

3. Update the parameters

W (l) =W (l)−α
��

1

m
U(l)
��

(9)

b(l) =b(l)−α
�

1

m
V (l)
�

(10)

4. Repeat until weights stop changing

Natural Language Processing: Jordan Boyd-Graber | UMD Multilayer Networks | 8 / 1

