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Learn the features and the function
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Objective Function

� For every example x ,y of our supervised training set, we want the label
y to match the prediction hW ,b(x).

J(W ,b;x ,y)≡
1

2
||hW ,b(x)− y ||2 (1)

� We want this value, summed over all of the examples to be as small as
possible

� We also want the weights not to be too large
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Objective Function

Putting it all together:

J(W ,b) =
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� Our goal is to minimize J(W ,b) as a function of W and b

� Initialize W and b to small random value near zero

� Adjust parameters to optimize J

Natural Language Processing: Jordan Boyd-Graber | UMD Multilayer Networks | 4 / 1



Objective Function

Putting it all together:

J(W ,b) =

�

1

m

m
∑

i=1

1

2
||hW ,b(x

(i))− y(i)||2
�

+
λ

2

nl−1
∑

l

sl
∑

i=1

sl+1
∑

j=1

�

W l
ji

�2
(3)

� Our goal is to minimize J(W ,b) as a function of W and b

� Initialize W and b to small random value near zero

� Adjust parameters to optimize J

Natural Language Processing: Jordan Boyd-Graber | UMD Multilayer Networks | 4 / 1



Objective Function

Putting it all together:

J(W ,b) =

�

1

m

m
∑

i=1

1

2
||hW ,b(x

(i))− y(i)||2
�

+
λ

2

nl−1
∑

l

sl
∑

i=1

sl+1
∑

j=1

�

W l
ji

�2
(3)

� Our goal is to minimize J(W ,b) as a function of W and b

� Initialize W and b to small random value near zero

� Adjust parameters to optimize J

Natural Language Processing: Jordan Boyd-Graber | UMD Multilayer Networks | 4 / 1



Objective Function

Putting it all together:

J(W ,b) =

�

1

m

m
∑

i=1

1

2
||hW ,b(x

(i))− y(i)||2
�

+
λ

2

nl−1
∑

l

sl
∑

i=1

sl+1
∑

j=1

�

W l
ji

�2
(3)

� Our goal is to minimize J(W ,b) as a function of W and b

� Initialize W and b to small random value near zero

� Adjust parameters to optimize J

Natural Language Processing: Jordan Boyd-Graber | UMD Multilayer Networks | 4 / 1



Deep Learning from Data

Gradient Descent

Goal

Optimize J with respect to variables W and b

Parameter

Objective
start

stop

undiscovered
country
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Deep Learning from Data

Backpropigation

� For convenience, write the input to sigmoid
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� The gradient is a function of a node’s error δ
(l)
i

� For output nodes, the error is obvious:
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� Other nodes must “backpropagate” downstream error based on
connection strength
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Deep Learning from Data

Partial Derivatives

� For weights, the partial derivatives are

∂

∂W
(l)
ij

J(W ,b;x ,y) = a
(l)
j δ

(l+1)
i (7)

� For the bias terms, the partial derivatives are

∂

∂ b
(l)
i

J(W ,b;x ,y) =δ
(l+1)
i (8)

� But this is just for a single example . . .
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Deep Learning from Data

Full Gradient Descent Algorithm

1. Initialize U(l) and V (l) as zero

2. For each example i = 1 . . .m
2.1 Use backpropagation to compute ∇W J and ∇bJ
2.2 Update weight shifts U(l) =U(l)+∇W (l)J(W ,b;x ,y)
2.3 Update bias shifts V (l) = V (l)+∇b(l)J(W ,b;x ,y)

3. Update the parameters

W (l) =W (l)−α
��

1

m
U(l)
��

(9)

b(l) =b(l)−α
�

1

m
V (l)
�

(10)

4. Repeat until weights stop changing
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