Multilayer Networks

Natural Language Processing: Jordan
Boyd-Graber
University of Maryland
SLIDES ADAPTED FROM ANDREW NG

Logistic Regression by Another Name: Map inputs to output

Logistic Regression by Another Name: Map inputs to output

Input

Vector $x_{1} \ldots x_{d}$
inputs encoded as
real numbers

Logistic Regression by Another Name: Map inputs to output

Input

Vector $x_{1} \ldots x_{d}$

$$
f\left(\sum_{i} W_{i} x_{i}+b\right)
$$

multiply inputs by

Logistic Regression by Another Name: Map inputs to output

Output

Input

Vector $x_{1} \ldots x_{d}$

$$
\text { (}\left(\sum^{m_{x+}+6}\right)
$$

add bias

Logistic Regression by Another Name: Map inputs to output

Activation

Output

Why is it called activation?

In the shallow end

- This is still logistic regression
- Engineering features x is difficult (and requires expertise)
- Can we learn how to represent inputs into final decision?

Better name: non-linearity

- Logistic / Sigmoid

$$
\begin{equation*}
f(x)=\frac{1}{1+e^{-x}} \tag{1}
\end{equation*}
$$

- tanh

$$
\begin{equation*}
f(x)=\tanh (x)=\frac{2}{1+e^{-2 x}}-1 \tag{2}
\end{equation*}
$$

- ReLU

$$
f(x)=\left\{\begin{array}{lll}
0 & \text { for } & x<0 \tag{3}\\
x & \text { for } & x \geq 0
\end{array}\right.
$$

- SoftPlus: $f(x)=\ln \left(1+e^{x}\right)$

Learn the features and the function

Objective Function

- For every example x, y of our supervised training set, we want the label y to match the prediction $h_{W, b}(x)$.

$$
\begin{equation*}
J(W, b ; x, y) \equiv \frac{1}{2}\left\|h_{W, b}(x)-y\right\|^{2} \tag{4}
\end{equation*}
$$

Objective Function

- For every example x, y of our supervised training set, we want the label y to match the prediction $h_{W, b}(x)$.

$$
\begin{equation*}
J(W, b ; x, y) \equiv \frac{1}{2}\left\|h_{W, b}(x)-y\right\|^{2} \tag{4}
\end{equation*}
$$

- We want this value, summed over all of the examples to be as small as possible

Objective Function

- For every example x, y of our supervised training set, we want the label y to match the prediction $h_{W, b}(x)$.

$$
\begin{equation*}
J(W, b ; x, y) \equiv \frac{1}{2}\left\|h_{W, b}(x)-y\right\|^{2} \tag{4}
\end{equation*}
$$

- We want this value, summed over all of the examples to be as small as possible
- We also want the weights not to be too large

$$
\begin{equation*}
\frac{\lambda}{2} \sum_{l}^{n_{l}-1} \sum_{i=1}^{s_{l}} \sum_{j=1}^{s_{l+1}}\left(W_{j i}^{\prime}\right)^{2} \tag{5}
\end{equation*}
$$

Objective Function

- For every example x, y of our supervised training set, we want the label y to match the prediction $h_{W, b}(x)$.

$$
\begin{equation*}
J(W, b ; x, y) \equiv \frac{1}{2}\left\|h_{W, b}(x)-y\right\|^{2} \tag{4}
\end{equation*}
$$

- We want this value, summed over all of the examples to be as small as possible
- We also want the weights not to be too large

$$
\begin{equation*}
\frac{\lambda}{2} \sum_{l}^{n_{l}-1} \sum_{i=1}^{s_{l}} \sum_{j=1}^{s_{l+1}}\left(W_{j i}^{\prime}\right)^{2} \tag{5}
\end{equation*}
$$

Objective Function

- For every example x, y of our supervised training set, we want the label y to match the prediction $h_{W, b}(x)$.

$$
\begin{equation*}
J(W, b ; x, y) \equiv \frac{1}{2}\left\|h_{W, b}(x)-y\right\|^{2} \tag{4}
\end{equation*}
$$

- We want this value, summed over all of the examples to be as small as possible
- We also want the weights not to be too large

$$
\begin{equation*}
\frac{\lambda}{2} \sum_{l}^{n_{l}-1} \sum_{i=1}^{s_{l}} \sum_{j=1}^{s_{l+1}}\left(w_{j i}^{\prime}\right)^{2} \tag{5}
\end{equation*}
$$

Sum over all layers

Objective Function

- For every example x, y of our supervised training set, we want the label y to match the prediction $h_{W, b}(x)$.

$$
\begin{equation*}
J(W, b ; x, y) \equiv \frac{1}{2}\left\|h_{W, b}(x)-y\right\|^{2} \tag{4}
\end{equation*}
$$

- We want this value, summed over all of the examples to be as small as possible
- We also want the weights not to be too large

$$
\begin{equation*}
\frac{\lambda}{2} \sum_{l}^{n_{l}-1} \sum_{i=1}^{s_{l}} \sum_{j=1}^{s_{l+1}}\left(w_{j i}^{\prime}\right)^{2} \tag{5}
\end{equation*}
$$

Sum over all sources

Objective Function

- For every example x, y of our supervised training set, we want the label y to match the prediction $h_{W, b}(x)$.

$$
\begin{equation*}
J(W, b ; x, y) \equiv \frac{1}{2}\left\|h_{W, b}(x)-y\right\|^{2} \tag{4}
\end{equation*}
$$

- We want this value, summed over all of the examples to be as small as possible
- We also want the weights not to be too large

$$
\begin{equation*}
\frac{\lambda}{2} \sum_{l}^{n_{l}-1} \sum_{i=1}^{s_{l}} \sum_{j=1}^{s_{l+1}}\left(w_{j i}^{\prime}\right)^{2} \tag{5}
\end{equation*}
$$

Sum over all destinations

Objective Function

Putting it all together:

$$
\begin{equation*}
J(W, b)=\left[\frac{1}{m} \sum_{i=1}^{m} \frac{1}{2}\left\|h_{W, b}\left(x^{(i)}\right)-y^{(i)}\right\|^{2}\right]+\frac{\lambda}{2} \sum_{l}^{n_{l}-1} \sum_{i=1}^{s_{l}} \sum_{j=1}^{s_{l+1}}\left(W_{j i}^{\prime}\right)^{2} \tag{6}
\end{equation*}
$$

Objective Function

Putting it all together:

$$
\begin{equation*}
J(W, b)=\left[\frac{1}{m} \sum_{i=1}^{m} \frac{1}{2}\left\|h_{W, b}\left(x^{(i)}\right)-y^{(i)}\right\|^{2}\right]+\frac{\lambda}{2} \sum_{l}^{n_{l}-1} \sum_{i=1}^{s_{l}} \sum_{j=1}^{s_{l+1}}\left(W_{j i}^{\prime}\right)^{2} \tag{6}
\end{equation*}
$$

- Our goal is to minimize $J(W, b)$ as a function of W and b

Objective Function

Putting it all together:

$$
\begin{equation*}
J(W, b)=\left[\frac{1}{m} \sum_{i=1}^{m} \frac{1}{2}\left\|h_{W, b}\left(x^{(i)}\right)-y^{(i)}\right\|^{2}\right]+\frac{\lambda}{2} \sum_{l}^{n_{l}-1} \sum_{i=1}^{s_{l}} \sum_{j=1}^{s_{l+1}}\left(W_{j i}^{\prime}\right)^{2} \tag{6}
\end{equation*}
$$

- Our goal is to minimize $J(W, b)$ as a function of W and b
- Initialize W and b to small random value near zero

Objective Function

Putting it all together:

$$
\begin{equation*}
J(W, b)=\left[\frac{1}{m} \sum_{i=1}^{m} \frac{1}{2}\left\|h_{W, b}\left(x^{(i)}\right)-y^{(i)}\right\|^{2}\right]+\frac{\lambda}{2} \sum_{l}^{n_{l}-1} \sum_{i=1}^{s_{l}} \sum_{j=1}^{s_{l+1}}\left(W_{j i}^{\prime}\right)^{2} \tag{6}
\end{equation*}
$$

- Our goal is to minimize $J(W, b)$ as a function of W and b
- Initialize W and b to small random value near zero
- Adjust parameters to optimize J

Gradient Descent

Goal

Optimize J with respect to variables W and b

Backpropigation

- For convenience, write the input to sigmoid

$$
\begin{equation*}
z_{i}^{(I)}=\sum_{j=1}^{n} w_{i j}^{(I-1)} x_{j}+b_{i}^{(I-1)} \tag{7}
\end{equation*}
$$

Backpropigation

- For convenience, write the input to sigmoid

$$
\begin{equation*}
z_{i}^{(I)}=\sum_{j=1}^{n} W_{i j}^{(I-1)} x_{j}+b_{i}^{(I-1)} \tag{7}
\end{equation*}
$$

- The gradient is a function of a node's error $\delta_{i}^{(/)}$

Backpropigation

- For convenience, write the input to sigmoid

$$
\begin{equation*}
z_{i}^{(I)}=\sum_{j=1}^{n} W_{i j}^{(I-1)} x_{j}+b_{i}^{(I-1)} \tag{7}
\end{equation*}
$$

- The gradient is a function of a node's error $\delta_{i}^{(/)}$
- For output nodes, the error is obvious:

$$
\begin{equation*}
\delta_{i}^{\left(n_{i}\right)}=\frac{\partial}{\partial z_{i}^{\left(n_{l}\right)}}\left\|y-h_{w, b}(x)\right\|^{2}=-\left(y_{i}-a_{i}^{\left(n_{i}\right)}\right) \cdot f^{\prime}\left(z_{i}^{\left(n_{i}\right)}\right) \frac{2}{2} \tag{8}
\end{equation*}
$$

Backpropigation

- For convenience, write the input to sigmoid

$$
\begin{equation*}
z_{i}^{(I)}=\sum_{j=1}^{n} W_{i j}^{(I-1)} x_{j}+b_{i}^{(I-1)} \tag{7}
\end{equation*}
$$

- The gradient is a function of a node's error $\delta_{i}^{(/)}$
- For output nodes, the error is obvious:

$$
\begin{equation*}
\delta_{i}^{\left(n_{l}\right)}=\frac{\partial}{\partial z_{i}^{\left(n_{l}\right)}}\left\|y-h_{w, b}(x)\right\|^{2}=-\left(y_{i}-a_{i}^{\left(n_{l}\right)}\right) \cdot f^{\prime}\left(z_{i}^{\left(n_{l}\right)}\right) \frac{2}{2} \tag{8}
\end{equation*}
$$

- Other nodes must "backpropagate" downstream error based on connection strength

$$
\begin{equation*}
\delta_{i}^{(I)}=\left(\sum_{j=1}^{s_{t+1}} W_{j i}^{(I+1)} \delta_{j}^{(I+1)}\right) f^{\prime}\left(z_{i}^{(I)}\right) \tag{9}
\end{equation*}
$$

Backpropigation

- For convenience, write the input to sigmoid

$$
\begin{equation*}
z_{i}^{(I)}=\sum_{j=1}^{n} W_{i j}^{(I-1)} x_{j}+b_{i}^{(I-1)} \tag{7}
\end{equation*}
$$

- The gradient is a function of a node's error $\delta_{i}^{(/)}$
- For output nodes, the error is obvious:

$$
\begin{equation*}
\delta_{i}^{\left(n_{l}\right)}=\frac{\partial}{\partial z_{i}^{\left(n_{l}\right)}}\left\|y-h_{w, b}(x)\right\|^{2}=-\left(y_{i}-a_{i}^{\left(n_{l}\right)}\right) \cdot f^{\prime}\left(z_{i}^{\left(n_{l}\right)}\right) \frac{2}{2} \tag{8}
\end{equation*}
$$

- Other nodes must "backpropagate" downstream error based on connection strength

$$
\begin{equation*}
\delta_{i}^{(I)}=\left(\sum_{j=1}^{s_{t+1}} W_{j i}^{(I+1)} \delta_{j}^{(I+1)}\right) f^{\prime}\left(z_{i}^{(I)}\right) \tag{9}
\end{equation*}
$$

Backpropigation

- For convenience, write the input to sigmoid

$$
\begin{equation*}
z_{i}^{(I)}=\sum_{j=1}^{n} W_{i j}^{(I-1)} x_{j}+b_{i}^{(I-1)} \tag{7}
\end{equation*}
$$

- The gradient is a function of a node's error $\delta_{i}^{(/)}$
- For output nodes, the error is obvious:

$$
\begin{equation*}
\delta_{i}^{\left(n_{l}\right)}=\frac{\partial}{\partial z_{i}^{\left(n_{i}\right)}}\left\|y-h_{w, b}(x)\right\|^{2}=-\left(y_{i}-a_{i}^{\left(n_{i}\right)}\right) \cdot f^{\prime}\left(z_{i}^{\left(n_{i}\right)}\right) \frac{2}{2} \tag{8}
\end{equation*}
$$

- Other nodes must "backpropagate" downstream error based on connection strength

$$
\begin{equation*}
\delta_{i}^{(I)}=\left(\sum_{j=1}^{s_{t+1}} W_{j i}^{(I+1)} \delta_{j}^{(I+1)}\right) f^{\prime}\left(z_{i}^{(I)}\right) \tag{9}
\end{equation*}
$$

(chain rule)

Partial Derivatives

- For weights, the partial derivatives are

$$
\begin{equation*}
\frac{\partial}{\partial W_{i j}^{(I)}} J(W, b ; x, y)=a_{j}^{(I)} \delta_{i}^{(I+1)} \tag{10}
\end{equation*}
$$

- For the bias terms, the partial derivatives are

$$
\begin{equation*}
\frac{\partial}{\partial b_{i}^{(I)}} J(W, b ; x, y)=\delta_{i}^{(l+1)} \tag{11}
\end{equation*}
$$

- But this is just for a single example ...

Full Gradient Descent Algorithm

1. Initialize $U^{(I)}$ and $V^{(I)}$ as zero
2. For each example $i=1 \ldots m$
2.1 Use backpropagation to compute $\nabla_{W} J$ and $\nabla_{b} J$
2.2 Update weight shifts $U^{(I)}=U^{(I)}+\nabla_{W^{(I)}} J(W, b ; x, y)$
2.3 Update bias shifts $V^{(I)}=V^{(I)}+\nabla_{b^{(1)}} J(W, b ; x, y)$
3. Update the parameters

$$
\begin{align*}
w^{(I)} & =W^{(I)}-\alpha\left[\left(\frac{1}{m} U^{(I)}\right)\right] \tag{12}\\
b^{(I)} & =b^{(I)}-\alpha\left[\frac{1}{m} V^{(I)}\right] \tag{13}
\end{align*}
$$

4. Repeat until weights stop changing

But it is not perfect

- Compare against baselines: randomized features, nearest-neighbors, linear models
- Optimization is hard (alchemy)
- Models are often not interpretable
- Requires specialized hardware and tons of data to scale

