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Abstract
We present a framework for semantic visual scene inter-
pretation in a system with vision and language. In this
framework the system consists of two modules, a lan-
guage module and a vision module that communicate
with each other in a form of a dialogue to actively inter-
pret the scene. The language module is responsible for
obtaining domain knowledge from linguistic resources
and reasoning on the basis of this knowledge and the vi-
sual input. It iteratively creates questions that amount to
an attention mechanism for the vision module which in
turn shifts its focus to selected parts of the scene and ap-
plies selective segmentation and feature extraction. As a
formalism for optimizing this dialogue we use informa-
tion theory. We demonstrate the framework on the prob-
lem of recognizing a static scene from its objects and
show preliminary results for the problem of human ac-
tivity recognition from video. Experiments demonstrate
the effectiveness of the active paradigm in introducing
attention and additional constraints into the sensing pro-
cess.

Introduction
There has been a recent interest in research on scene and
video understanding with a number of efforts devoted to
introducing additional higher-level knowledge about image
relationships into the interpretation process (Lampert and
Harmeling 2009; Marszalek and Schmid 2007; Galleguillos
and Belongie 2010). Current studies usually get this addi-
tional information from captions or accompanying text. It
has been realized, however, that language in principle can be
used to obtain additional high level information. Linguists
and computational linguists have a longstanding interest in
modeling lexical semantics, i.e. conceptual meanings of lex-
ical items and how these lexical items relate to each other
(Cruse 1986) and have created resources where informa-
tion about different concepts, such as cause-effect, performs-
functions, used-for, and motivated-by, can be obtained. For
example, the WordNet database relates words through syn-
onymy (words having the same meaning, like ”argue” and
”contend”) and hypernymy (”is-a” relationships, as between
”car” and ”vehicle”), among many others (Miller and Fell-
baum 2007). Linguistics also has created large text corpuses
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and statistical tools so we can obtain probability distribu-
tions for the co-occurrence of any two words, such as how
likely a certain noun co-occurs with a certain verb.

Using these linguistic tools, how we can aid vision to
build better systems for interpreting images and video? As
is well known computational vision is very challenging, and
especially the tools available for solving recognition tasks
are very limited. One way to use linguistic information is as
a contextual system that provides additional information to
the interpretation. For example, certain objects are likely to
co-occur, such as ”tables” often co-occur with ”silverware”
and ”glasses. We then can apply visual classifiers for indi-
vidual objects to the images and use the output of these clas-
sifiers together with the context information in some mini-
mization functions to produce the interpretation result. We
call this the passive approach. Another way is to use linguis-
tic information in an active reasoning system. Let’s say we
are having a kitchen scene. Because we have prior knowl-
edge about kitchens, their structure and the actions taking
place in them and a large part of this knowledge is expressed
in language, we can utilize this information during visual in-
spection. A knife in the kitchen will most probably be used
for ”cutting” a food item, so vision can look for it. Of course
there are many more relations that language can provide for
prediction. We can search for the ”red big” <noun>, or de-
scribe the characteristics of the <noun> between <noun1>
and <noun2>.

This paper describes a new framework for implementing
this interaction between vision and language that draws its
inspiration from human vision. Central to the approach is
a bio-inspired attention mechanism. Human perception is
active and exploratory. We actively shift our attention and
give semantic significance to visual input on the fly by using
our knowledge of images, actions and objects, along with
the language we use for structuring our knowledge. In some
sense, perception and language are engaged in a dialogue,
as they exchange information that leads to meaning and un-
derstanding. In a similar way, we propose to implement a
computational system that produces a semantic description
of static and dynamic scenes.

The proposed system consists of two modules: (1) the rea-
soning module, which obtains higher level knowledge about
scene and object relations, proposes attentional instructions
to the sensory module and draws conclusions about the con-



tents of the scene; (2) the sensory module, which includes
a set of visual operators responsible for extracting features
from images, detecting and localizing objects and actions.
Figure 1 illustrates the interaction between the two modules,
which is modeled as an iterative process. Within each iter-
ation, the reasoning module decides on what and where to
detect next and expects the sensory module to reply with
some results after applying the visual operators. The reason-
ing module thus provides a focus of attention for the sensory
module, which can be an objects and actions to be detected,
attributes to evaluated, and a place to be examined.

What are the advantages of this active paradigm? First it
gives efficiency and accuracy. By providing prompt feed-
back from the language/reasoning module, the vision mod-
ule can greatly reduce its search space so that it can focus
on a small set of selected visual processes (classifiers, seg-
mentation procedures) over selected regions within an im-
age. Thus the image can be processed faster and more ac-
curate. Second, the reasoning module can obtain organized
higher-level information about object and action attributes
and their relations (from adjectives, adverbs and preposition
in language) and this information can be used to facilitate
the vision processes by guiding the attention and introduc-
ing additional constraints for the segmentation and recogni-
tion. For example, it is easier to segment the long red ob-
ject than to generally perform segmentation of the scene.
Thirdly, since the reasoning module can automatically ob-
tain high-level knowledge from language resources, the pro-
posed approach can recognize scenes that it has never seen
before.

In this paper the framework has been applied to two
problems. First, we implemented the simplest interpretation
problem, static scene recognition. A scene is described by
the objects in it, and the reasoning module has to decide in
every iteration on what object and where to look for in the
scene. Second, we demonstrate preliminary results on the
problem of dynamic scene understanding, where the goal is
to interpret the activity in a video. An activity is described
by a set of quantities, such as the human, the tools, the ob-
jects, the motion, and the scene involved in the activity. Each
of the quantities has many possible instances which can be
described by their attributes (e.g., adjectives of nouns and
adverbs of verbs). Thus the reasoning module at every it-
eration has to decide which quantity and which attribute to
compute next. This procedure can be implemented in a hier-
archical model of the proposed active scheme.

The rest of this paper is organized as follows: In the next
section we review related work. Then we describe the scene
recognition system and evaluate it experimentally. Next we
discuss the generalization of the framework to dynamic
scene interpretation and a first implementation. Finally we
draw conclusions and discuss future work.

Related Works
Recognition by Components: The methodology for ob-
ject, scene and action recognition in this paper follows the
idea of “recognition by components”, which can be traced
back to early work by Biederman (Biederman 1987). In this
methodology, scenes are recognized by detecting the their

Figure 1: Overview of the active approach for scene recog-
nition.

objects (Li et al. 2010), objects are recognized by detect-
ing their parts or attributes (Lampert and Harmeling 2009),
and actions are recognized by detecting the motions, objects
and contexts involved in the actions. However, all previous
works employ passive approaches, while ours is active.

Active Learning and Active Testing: Our work is a type
of active testing and is closely related to the visual “20 ques-
tion” game described in (Branson et al. 2010). While the ap-
proach in (Branson et al. 2010) needs human annotators to
answer the questions posed by the computer, our approach
is fully automated without a human in the loop.

To select the optimal objects/attributes, we use the crite-
rion of Maximum Information Gain, which has been widely
used for active learning of objects and scenes (Siddiquie and
Gupta 2010; Vijayanarasimhan and Grauman. 2010).

Ontological Knowledge in Computer Vision System
for Scene Interpretation: (Torralba 2003) uses knowledge
about image features across the scene in object detection.
Similarly, (Lampert and Harmeling 2009) exploits knowl-
edge about object and attributes. (Marszalek and Schmid
2007) use knowledge about semantic hierarchy for object
recognition. In this paper, we further explore the ontological
knowledge about action and attributes in a pilot study of a
hand action dataset.

The Approach
System Overview
The proposed active scene recognizer classifies a scene by
iteratively detecting the objects inside it. In the k-th itera-
tion, the reasoning module provides an attentional instruc-
tion to the sensory module to search for an object Ok within
a particular region of the image Lk. Then the sensory mod-
ule runs the corresponding object detector and returns a re-
sponse, which is the highest detection score dk and the ob-
ject’s location lk. The reasoning module receives this re-
sponse, analyses it and starts a new iteration. This iteration
continues until some terminating criteria are satisfied. To im-
plement such an active scene recognizer, we need to provide
the following components: (1) a sensory module for object
detection; (2) a reasoning module for predicting the scene
class based on the sensory module’s responses; (3) a strat-
egy for deciding which object and where in the scene the



sensory module should process in the next iteration; and (4)
a strategy for initializing and and terminating the iteration.
We describe these components in the rest of this section.

Scene Recognition by Object Detection
In the proposed framework, the reasoning module decides
on the scene class based on the responses from the sensory
module. The responses are a detection score and a location
given by a detection bounding box. We only consider the
objects’ vertical positions, which are more consistent within
the images of the same scene class (Torralba 2003).

At step k, we have a list of detected score d1:k and corre-
sponding object locations l1:k. Given these information, the
probability of a scene S is :

P (S|X) = p(S|d1:k, l1:k)
∝ p(d1:k, l1:k|S)
= p(d1:k|S)p(l1:k|S) (1)

In the above equation, we assume d1:k and l1:k are inde-
pendent given S. We approximate p(d1:k|S) by the inner
product of d1:k and d̃S1:k, where d̃S1:k is the mean of training
examples of scene class S. Similarly, p(l1:k|S) is approxi-
mated by the inner product of l1:k and l̃S1:k.

The optimal scene class of the given image is to the one
that maximizes the probability:

S∗ = argmax
S∈[1:M ]

p(S|d1:k, l1:k). (2)

The Sensory Module
We applied three object detectors: a Spatial Pyramid Match-
ing object detector (Lazebnik, Schmid, and Ponce 2006), a
latent SVM object detector (Felzenszwalb et al. 2010) and a
texture classifier (Hoiem, Efros, and Hebert 2005). For each
object class, we train all three object detectors and choose
the one with the highest detection accuracy

Attentional Instructions by The Reasoning Module
The task of the reasoning module is to provide an attentional
instruction to the sensory module based on the observation
history, d1:k−1 and l1:k−1. The attentional instruction in it-
eration k includes what to look for, i.e., the object to detect,
denoted as Ok and where to look, i.e., the regions to detect,
denoted as Lk. The criterion to select Ok and Lk is to maxi-
mize the expected information gained about the scene in the
test image due to the response of this object detector:

{O∗k, L∗k} = argmax
Ok∈Ñk−1,Lk∈Lk

I(S; dk, lk|d1:k−1, l1:k−1), (3)

where Ñk−1 denotes the set of indices of objects that have
not been asked at time k. Lk denotes the search space of
Ok’s location. The global optimization procedure is approxi-
mated by two local optimization procedures. In the first step,
we select Ok based on the maximum expected information
gain criterion:

O∗k = argmax
Ok∈Ñk−1

I(S; dk, lk|d1:k−1, l1:k−1). (4)

Then L∗k is selected by thresholding l̃O∗
k
= ES [l̃

S
O∗

k
], the ex-

pected location of object O∗k.
The expected information gain of Ok given the response

of previous detections d1:k−1 and l1:k−1 is defined as:
I(S;dk, lk|d1:k−1, l1:k−1)

=
∑

dk∈D,lk∈Lk

p(dk, lk|d1:k−1, l1:k−1)

× KL[p(S|d1:k, l1:k), p(S|d1:k−1, l1:k−1)]. (5)
Next we describe in detail how to compute (5). The KL di-
vergence can be computed from equation (1). To compute
the first term in the right side of Equation (5), we factorize it
as:

p(dk, lk|d1:k−1, l1:k−1)
= p(dk|d1:k−1, l1:k−1)p(lk|d1:k, l1:k−1). (6)

The two terms at the right hand side can be efficiently com-
puted from their conditional probability with respect to S

p(dk|d1:k−1, l1:k−1)

=

M∑
S=1

p(dk|S, d1:k−1, l1:k−1)p(S|d1:k−1, l1:k−1)

=

M∑
S=1

p(dk|S)p(S|d1:k−1, l1:k−1), (7)

where we assume dk is independent of d1:k−1 and l1:k−1
given S. p(dk|S) can be computed by introducing the event
variable ek, which indicates whether object Ok appears in
the scene or not:

p(dk|S) =
∑

ek∈{0,1}

p(dk|ek, S)p(ek|S) (8)

=
∑

ek∈{0,1}

p(dk|ek)p(ek|S). (9)

p(ek|S) encodes the high-level knowledge about the rela-
tionship between scene S and object Ok. We can obtain us-
ing statistics on textual corpus. p(dk|ek) is computed from
the training set as a posterior of a multinomial distribution
with a Dirichlet prior, and p(lk|d1:k, l1:k−1) can computed
in a similar way.

Finally, we note that the expectation in Equation (5) needs
to be computed at a set of sampling points of dk and a set
of sampling points of lk After drawing samples of dk and
lk, we substitute them into Equation (5) to compute the in-
formation gain for Ok. Then among all possible Ok’s, we
select the object that yields the maximum information gain,
O∗k. Finally, L∗k is selected by thresholding ES [l̃

S
O∗

k
].

Initializing and Terminating the Iteration
The first object chosen is the one that maximizes the mutual
information

O∗1 = argmaxO1∈[1:N ]I(S; d1, l1). (10)

To terminate the dialogue, we can either stop after asking a
fixed number of questions (e.g., the 20 question game), or
stop when the information gain at each iteration is below a
threshold.



(a) (b)

Figure 2: (a) Comparison of classification performance of
different approaches. (b) Classification performance w.r.t
number of object detectors.

Experiments
Image Datasets
We evaluated the proposed approach using a subset of the
SUN images from (Choi et al. 2010). There is a total of 20
scenes and 127 objects in our dataset. For each scene, we
select 30 images for training and 20 images for testing. The
object detectors are trained using a dataset that is separated
from the training/testing scene as described in (Choi et al.
2010).

Performance of the Scene Recognizer
In the first experiment, we evaluated the scene recognizer
(SROD) as described in Equation 1 against the “ideal”
SROD, which uses the objects’ ground truths as the outputs
of the detectors, and the following three methods:

• SVM using GIST features (Oliva and Torralba 2001)

• SVM using Bag-of-Words (BoW) with SIFT (Lowe 2004)
and opponent SIFT (van de Sande, Gevers, and Snoek
2010) as local features.

• Classification and Regression Tree (CART) (Breiman et
al. 1984) using the object detection scores as features. In
addition we evaluated the “ideal” CART, where the object
ground truth is used as features, to illustrate the uppper
limit of CART’s performance.

The performance of the different methods is shown in
Figure 2a. Both object-based approaches, i.e., CART and
SROD, outperform the approaches using holistic features,
i.e, GIST and BoW. This result confirms the effectiveness
of object-based approaches in interpreting high-level visual
tasks such as scene recognition. It is worth emphasizing that
there is still a lot of room to improve the current object-based
scene recognizer, as suggested by the performance of the
ideal SROD.

In a second experiment we compared the object selection
strategy of the proposed active scene recognizer with two
other methods as shown in Figure 2b. Both comparison al-
gorithms use the same SROD formulation but employ dif-
ferent strategies to select the object in each iteration. The
first method (denoted as “DT”) follows a fixed object or-
der, which is provided by the CART algorithm, and the sec-
ond method (denoted as “Rand”) randomly selects an ob-
ject from the remaining object pool. As can be seen from

Figure 4: Hierarchical active scheme for dynamic scene
recognition, where each iteration invokes four steps: (1) at-
tentional instruction from the activity-level reasoning mod-
ule; (2) attentional instruction from the quantity-level rea-
soning module; (3) responses from attribute detectors; (4)
responses from the quantity-level reasoning module.

the graph, object selection obviously has a big impact in the
performance of scene recognition. Both, the proposed active
approach and the “DT” approach significantly outperform
the “Rand” approach, and the active approach is superior to
the passive “DT” approach: the active approach can achieve
competitive performance after selecting 30 objects while the
passive “DT” approach needs 60 objects. Furthermore, the
object’s expected location provided by the reasoning mod-
ule in the active approach not only reduces the spatial search
space to 1/3 to 1/2 of the image, but also reduces the false
positives in the sensory module’s response and yields a 3%
to 4% performance gain compared to the passive approach.

Visualization of the Dialogue between the sensory
module and the reasoning module
Figure 3 illustrates a few iterations of the active scene recog-
nizer performed on a test image. It shows that after detecting
twenty objects, the reasoning module is able to decide the
correct scene class with high confidence.

A Demo of an Active Video Parser
In language we can describe a manipulation activity by a
number of quantities, such as the humans, the tools, the ob-
ject and the action involved. The beauty is that these symbols
(i.e. the quantities) that we have in language space to de-
scribe the action have direct correlates in visual space. That
is, we can extract humans, tools, objects, motion patterns
using vision. In the current implementation we only con-
sider tools and actions. We describe them visually by first
segmenting the corresponding image regions, i.e. the hands
and the tool in the video sequence, and then we characterize
them by attributes.

A big challenge for our formalism on the problem of ac-
tivity recognition is that the components are heterogeneous.
While static scenes only involve a single quantity (the ob-
jects), activities are described by different quantities (here
the tools and actions). To alleviate this problem, we propose
a hierarchical active scheme for dynamic scene recognition.
Figure 4 presents this method. In this scheme, each iteration
invokes four steps: (1) using the maximum information gain
criterion, the activity-level reasoning module sends an at-
tentional instruction to the quantity-level reasoning module
that indicates the desired quantity (e.g., motion or objects);
(2) the quantity-level reasoning module then sends an atten-
tional instruction to the sensory module that indicates the
desired attributes (e.g., object color/texture, motion proper-
ties); (3) the sensory module applies the corresponding de-
tectors and returns the detectors response to the the quantity-



Q1 Q2 Q3 Q4 Q5 . . .
Question: wall person books sink toilet . . .

Answer:
I find it with
belief d

. . .

Reasoning
module’s be-
lief P (S|d1 :
k, l1 : K) and
S∗

. . .

Figure 3: Visualization of the cognitive dialogue between the reasoning module and the sensory module for scene recognition,
which starts from the object with the highest information gain, wall. The detected regions of objects with detection score greater
than 0.5 are highlighted with a red bounding box.

level reasoning module; (4) finally, the quantity-level rea-
soning module returns the likelihood of the desired quantity
to the activity-level reasoning module.

To demonstrate this idea, we used 30 short video se-
quences of 5 hand actions from a dataset collected from the
commercially available PBS Sprouts craft show for kids (the
hand action data set). The actions are coloring, drawing, cut-
ting, painting, and gluing. 20 sequences were used for train-
ing and the rest for testing. Two quantities are considered in
recognizing an activity: the characteristics of tools and the
characteristics of motion. Four attributes are defined for the
characteristics of the tools, including (color, texture, elon-
gation, and convexity), and four attributes are defined for the
characteristics of motion, including (frequency, motion vari-
ation, motion spectrum, and duration).

The sensory module includes detectors for the 8 attributes
of tools/motion. But before we detect the attributes, we need
to segment the hand and tools from the videos. Figure 5 il-
lustrates and explains these procedures.

Figure 6 shows the estimated ellipse enclosing the de-
tected tool over some sample image frames from the dataset.
This ellipse is then used as a mask to detect object-related
attributes. The color and texture attributes were computed
from histograms of color and wavelet-filter outputs, and the
shape attributes were derived from region properties of the
convex hull of the object and the fitted ellipse. The adverbs
of the actions were computed from the spectrum of the av-
erage estimated flow over the sequence and the variation of
the flow.

Table 1 shows the dialogue for one of the testing videos.
Here the reasoning module only required 2 questions be-
fore arriving at the correct conclusion. Overall, 8 out of 10
testing videos were recognized correctly after asking 2 to

Figure 5: Procedures to extract hands and tools from the
hand action video sequence. (1) First hand regions and mov-
ing regions are segmented using a CRF approach (?) based
in the former case on color and in the latter on image flow.
(2) Then applying a threshold to remove regions with flow
that are different from the hand region, a region containing
the tool is obtained (3). (4) Then edge detection is performed
and (5) the best ellipse over the edge fragments is fitted to
locate the tool.

3 questions, while the remaining 2 testing videos could not
be recognized correctly even after asking all the questions.
This is because of errors in the segmentation, the choice of
attributes and the small set of training samples.

Conclusion and Future Work
We proposed a new framework for scene recognition com-
bining language and vision. Current approaches to scene in-
terpretation are passive and use language simply as a con-
textual system. In our active paradigm vision and language
engage in a dialogue. Vision is guided by attention from lan-
guage and sequentially carries out specific processes that are



Figure 6: Sample frames for 10 testing videos in the hand ac-
tion dataset. Frames in the same column belong to the same
action class: (from left to right) coloring, cutting, drawing,
gluing, painting. The detected tool is fit with an ellipse.

Iteration 1 2 3 4
Expected quan-
tity

Tool Tool Motion Motion

Expected
attribute

Elongation Color Texture Duration

Sensory mod-
ules response

0.770 1.000 0.656 0.813

Reasoning
module’s
conclusion

Coloring Painting Painting Painting

Reasoning
module’s
confidence

0.257 0.770 0.865 0.838

Table 1: An example of the interaction between the reason-
ing module and the sensory module for hand action recogni-
tion, where the ground truth of the action class is painting.

initiated by language. The control of the dialogue is realized
using an information theoretic approach, with the idea that
every visual process should maximize the added informa-
tion for scene recognition. We implemented and tested our
framework for static scene recognition, and gave a proof of
concept by implementing it for attribute based action recog-
nition.

In future applications we will extend the proposed ap-
proach to activity recognition to additional quantities, such
as the manipulated objects, the scene and transformations of
the object during action. We will also study how to obtain
attributes from language that we can map to vision space
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