
Using a Minimal Action Grammar for Activity Understanding in the

Real World

Douglas Summers-Stay, Ching L. Teo, Yezhou Yang, Cornelia Fermüller and Yiannis Aloimonos

Abstract— There is good reason to believe that humans
use some kind of recursive grammatical structure when they
recognize and perform complex manipulation activities. We
have built a system to automatically build a tree structure
from observations of an actor performing such activities.
The activity trees that result form a framework for search
and understanding, tying action to language. We explore and
evaluate the system by performing experiments over a novel
complex activity dataset taken using synchronized Kinect and
SR4000 Time of Flight cameras. Processing of the combined
3D and 2D image data provides the necessary terminals and
events to build the tree from the bottom-up. Experimental
results highlight the contribution of the action grammar in: 1)
providing a robust structure for complex activity recognition
over real data and 2) disambiguating interleaved activities from
within the same sequence.

I. INTRODUCTION

How do humans come to understand, recognize, and repli-

cate actions? Even if we have witnessed several occurrences

of the same activity, each will be unique in terms of the

order actions are performed, the explicit motion of the

limbs involved, and the appearance of the objects involved.

Somehow, the sensory data must be stored in a greatly

compressed representation that captures relevant information

while discarding what is irrelevant. This representation must

be capable of handling actions of any complexity, where

activities are composed of previously known actions and sub-

actions.

This suggests that the brain uses a similar method for

understanding both language and actions. This idea has

support on neuroscientific, anthropological, and behavioral

grounds. In the early 1950’s, psychologist Karl Lashey

suggested that syntax may apply to goal-directed actions

as well as to language [28]. Archaeologist Leroi-Gourhan

argued that tool making and use reflects a capability for

compositionality of structures, linking language and action

[5]. Two-year old children have been shown to have the

ability to recognize and reproduce hierarchically organized

actions [2], [37]. Additionally, the same parts of the brain that

have long been understood to be used in language production

(such as Broca’s Area) have been found to be crucial to the

process of action planning [8], [9].

If such a representation is taken to be an innate, central

aspect of both language and activity understanding, it must be

simpler and more fundamental than the grammars we learn

for each individual language. It also must be a generative

The authors are from Department of Computer Science,
University of Maryland, College Park, MD 20742, USA
{dss,cteo,yzyang,fer,yiannis}@umiacs.umd.edu

grammar (rather than one used purely for recognition) in

order to allow an individual to learn to perform actions by

example. Chomsky’s minimalist program is an attempt to

discover such a universal generative grammar for language,

with the expectation that it plays a more general cognitive

role. A generative grammar consists of a set of elements

and a set of production rules that allow the formation of

grammatical sentences. Context-free grammars are gener-

ative grammars which have recursive rules which allow

nesting of elements in the same type of elements. Although

context-free grammars are sufficiently expressive to handle

the complexity of language, they cannot account for what we

actually see in natural languages, such as agreement (in case,

number, or gender) and reference (such as relative clauses.)

These long-distance dependencies cannot be captured by

context-free grammars. The Chomskyan Minimalist Program

deals with this through a number of transformations on the

output of context-free grammars [6].

In [25], Pastra and Aloimonos introduce a minimalist

grammar of action which defines the set of terminals, fea-

tures, non-terminals and production rules for such a grammar

in the sensorimotor domain. However, this was a purely

theoretical description. The action grammars used in our

experiments are an implementation of such a grammar in a

system that is capable of sensing and interpreting real-world

situations under a wide range of natural conditions. Such a

representation is a natural summary of the important aspects

of an activity, which abstracts away such details as who is

performing the action, where it is being performed, how the

objects involved are spatially located, and the appearance of

the objects and body parts. What is left is a tree structure

that captures the order in which tools, objects and hands are

brought together and separated, a structure which is easy to

store, search, and compare to other such trees.

In order to make the use of the grammar practical for

real robots and surveillance, we have not merely created a

demonstration, but designed the system so that it will be

able to handle and abstract away a wide range of realistic

conditions, such as varying viewpoint, lighting, surrounding

environment, object and actor appearance.

The activities we are attempting to recognize and under-

stand are complex, concrete human activities. Actions like

“stirring” or “tightening a bolt,” the traditional purview of

action recognition techniques, are represented by a single

node in the action tree. (For this reason, we refer to what

we are doing as “activity recognition” rather than “action

recognition.”) Abstract actions, like “doing research,” or

“playing soccer” contain important steps which take place



in terms of mental or data structures, which we have no

way to detect or estimate with the current setup. Instead

we are looking at multi-step activities which involve the

manipulation of physical objects towards some goal state.

This is basically any form of manual labor: the physical

work of craftsmen, home builders, factory workers, chefs,

janitors, and so forth. These are also largely the kinds of

activities which we would hope for a general purpose robot

to be able to perform.

“Action recognition” interacts with activity recognition in

two important ways, both assisting with and being assisted

by activity recognition. First, activity recognition provides

important context for action recognition. One of the main

difficulties in action recognition is finding when the action

begins and ends. Forming an action tree provides natural

endpoints for individual actions: these actions occur between

the time a tool (including the hands) comes into contact with

an object and the time when it breaks such contact. Knowing

what the tool and object are provides significant constraints

on what the action might be, reducing it to a handful of

possibilities with any significant probability of occurring.

Second, when action recognition is performed, the action

can be used as a label on part of the activity tree, which

improves our ability to match with similar activities.

II. RECENT WORKS

The problem of action recognition and human activity has

been an active research area in Computer Vision, motivated

by several promising applications, such as human-computer

interface, video indexing and retrieval and video surveillance,

etc. Several excellent surveys on the topic of visual recog-

nition are available [22], [34]. But non-visual descriptions,

using motion capture systems, have also been of interest

in Computer Vision and Graphics. Many of those studies

are concerned with dimensionality reduction techniques, that

provide a good characterization for classification [3], [36],

[20]. Most of the focus in visual action analysis was on the

study of human actions that were characterized by movement

and change of posture, such as walking, running, jumping

etc. The dominant approaches to the recognition of single

actions compute statistics of spatio-temporal interest points

[18], [38], [7] and flow in video volumes as descriptors,

or represent short actions by stacks of silhouettes [11],

[39]. Approaches to more complex, longer actions employ

parametric approaches, such as Hidden Markov Models [15],

Linear Dynamical Systems [30] or Non-linear Dynamical

Systems [4], which are defined on tracked features or optic

flow presentations.

To capture the semantics of complex activities, higher level

reasoning methods are required. A number of approaches

use stochastic context free grammars with the primitives

beings body parts [29] or trajectories [14], and some also

include the interaction with objects [23]. To model the

temporal constraints, several approaches have used Hidden

Markov Models, which allow to exploit the relation between

specific objects and actions [13], [24]. A related class of

approaches use dynamic Bayesian networks to divide the

temporal sequence into sub-sequence and define relative

temporal relations [27], [10], [19].

Most closely related to our work are a few recent studies

on hand manipulation actions. In [35] manipulation actions

are represented as a sequences of motion primitives. The

process is modeled using a combination of discriminative

support vector machines and generative hidden Markov mod-

els. In [16] hands and objects segmented from the video and

shape-based hand/object features and manipulation features

are defined to provide a sequence of interrelated manipu-

lations and object features. Semantic manipulation object

dependencies are extracted using conditional random fields.

In [33] manipulations in a breakfast scenario are analyzed.

The image sequence is represented by an activity graph that

codes spatiotemporal object interactions. Event classes are

extracted from the activity graphs, where each event class

encodes a similar pattern of spatiotemporal relations between

corresponding objects, but the objects are known beforehand.

While all these approaches use task-dependent primitives,

our approach is general; its basics are simply the merging and

parting of objects. A similar idea was pursued by [1] for the

analysis of short stereo video sequences of of hand motions

manipulating a number of objects. Relations between object

at decisive time points during manipulation, such as when

two objects touch or overlap, are stored in a transition matrix.

Using simple sub-string search algorithms different matrices

are compared for recognition. The objects in these sequences

are however easily visually recognized, and the approach was

only applied to short activities, such as putting two objects

on a plate.

III. APPROACH

We describe the overall approach of using the action

grammar for activity understanding (see Fig. 1) by first

introducing the experimental dataset in sec. III-A. Next, we

define the action grammar and how it is created in sec. III-

B. We then detail how the important subcomponents: hand

state determination and object recognition are achieved in

secs. III-C and III-D respectively. With these detections,

we illustrate how an activity tree can be built (sec. III-E)

and be used for comparing the similarity between different

trees (sec. III-F) and how the action grammar is useful for

separating complex interleaved activities in sec. III-G.

A. Kinect+SR4000 Complex Activity Dataset

We introduce a novel dataset that contains 5 complex

hand manipulation activities performed by 4 different human

actors. Each activity is defined by the completion of a

complex object or entity: for example, making a sandwich.

The task of creating this entity is further comprised of

9 specific actions which may involve the use of different

kinds of hand-tools and objects. Different actions could be

concatenated to form novel activities: Cooking vegetables

+ making a sandwich. Other well known datasets such as

the KTH, Weizmann or Human-EVA datasets [31], [11],

[32] do not involve hand-tools. The human-object interaction

dataset by Gupta et al. [12] has only 4 objects with extremely



Fig. 1. Overview of the approach: (1) Pointcloud data and RGB-Depth
data are extracted and processed from the SR4000 and Kinect cameras
respectively. (2) Hands and objects are detected from pointclouds and the
human pose is extracted from Kinect. (3) The detected objects are then
combined using an action grammar treebank to produce an activity tree.

simple actions. The dataset by Messing et al. [21] has only 4

simple actions with tool use. The CMU Kitchen Dataset [17]

has several actions performed by 18 subjects for 5 recipes,

but many of the actions are blocked from view due to the

placements of the 4 static cameras.

The Complex Activity Dataset extends beyond these

datasets by considering the compositional aspect of the ac-

tivity in terms of the entities created by the actions involved

in each step. The activities are classified into two general

categories: Kitchen and Crafts, each with 8 separate video se-

quences captured from two externally synced and calibrated

active sensors: 1) the Kinect which provides RGB-Depth

and 2) a Swissranger SR4000 Time of Flight camera which

provides Intensity(Grayscale)-Depth. The Kinect camera is

positioned frontal-parallel at a distance of ≈ 6m from the

actor so that we can track the entire body motion, while the

SR4000 is positioned ≈ 1.5m from the actor on the side so

that hand-actions and objects can be clearly seen (see Fig. 2).

In total, there are 16 video sequences made from different

combinations of activities and objects. The sequences are

fully annotated with of the names of relevant objects and

manipulative actions for evaluation and training purposes.

The list of activities, actions and objects considered are

summarized in Table I. Sample sequences from the dataset

are available in the supplementary material1.

1More information on the dataset and how the data is collected can
be found at: http://www.umiacs.umd.edu/research/POETICON/umd_
complex_activities/

Fig. 2. Data collection setup. The Kinect is mounted on an Erratic mobile
robot base, the SR4000 is mounted on the side nearer to the table where
the actions are performed.

B. The Action Grammar

The grammar has one simple rule, which is applied

repeatedly:

An activity consists of

1) Using a tool to bring two objects together, resulting in

a new object or a tool or

2) Using a tool together with a single object, resulting in

a transformed object or tool

These tools or objects can themselves be the result of an

activity, which gives rise to the tree structure of activities.

Hands can be thought of as tools which are not made of other

objects or tools. The new ”object” can be something like ”a

piece of bread on a plate” formed by bringing together a slice

of bread and a plate. The point is that after they have been

brought together, they are treated as one combined object,

temporarily, as the bread moves together with the plate.

There are two ways to use the grammar. In this paper we

parse the actions that take place, starting with recognizing

simple actions (of type 1 or 2, above) and building them up

into an activity tree, an example is shown in Fig. 5 (right).

Every non-terminal node of this tree is an action. The other

way to use the grammar would be in a generative way:

starting with an activity one wanted to perform, and working

out how to do it. One would simply look for an activity one

has observed resulting in the final object one wanted to have,

find out what the input objects and actions to attain that are

needed, and what activities result in those objects, and so

on, breaking it down to the point that the objects and tools

needed are the ones available.

C. Extracting Hand Locations from 3D Pointclouds

Since we are concerned with manipulative actions, the

terminals in the action grammar trees are the objects/tools

that are currently manipulated by the hands. An approach

that passively searches for objects and tools in the video

will not be sufficient as many objects are visible on the table

but are not participating in the activity. Instead, we actively



Activity Class Name Actions Objects/tools

Kitchen
Cooking Vegetables {slice, cut} {cucumbers, carrots, toma-

toes, apple, chopper}
Making Sandwich {spread, slice} {bagel, ham, cheese, knife}

Crafts

Sewing a Toy {cut, pin, thread, sew} {cloth, paper, needle, thread,

scissors}
Card Making {cut, paste, write,

fold}
{paper, glue, scissors,

marker}
Assemble a Machine {screw, push, twist} {wrench, nut, bolt, frames}

TABLE I

LIST OF MANIPULATION ACTIVITIES CONSIDERED.

search for hands in each frame, and determine if the hand is

currently occupied with an object or free directly from 3D

pointclouds – a binary hand state Hs = {occ, free}. Once

we know the approximate location of each hand and its state,

a trained object classifier can then be used only on these

regions, which reduces processing time and false positives.

Note that we process pointclouds from the SR4000 since it

is nearer to the actor than the Kinect and provides a clearer

view for object recognition.

Fig. 3. Detecting hand locations from SR4000 pointclouds. (1) Outliers
are first removed, (2) Table surface is then estimated, (3) Objects and hands
are extruded and clustered from reprojected convex hull, and (4) Predicted
hand pointcloud locations.

The procedure is summarized on Fig. 3. The inputs are

the pointclouds obtained from the SR4000 and the tracked

skeleton from the Kinect2. Since both cameras are calibrated,

the approximate 3D locations of the tracked hands are known

in the SR4000 camera coordinates. However, relying solely

on the Kinect for hand tracking is unreliable since it may

fail, especially when half the body is blocked by a table

2PrimeSense OpenNI implementation was used to obtain the skeleton.

(see Fig. 2). Our proposed approach is to 1) robustly extract

potential hand regions from SR4000 pointclouds, and 2)

combine it with the predicted locations from Kinect, so as

to determine the final locations of the hands in SR4000 and

its hand state: occupied or free. We use PCL 1.43 as the

main pointcloud processing library to first remove obvious

outliers by filtering out points that have low confidence

values or those does not belong to any obvious cluster. A

plane estimation procedure using RANSAC is then applied

to estimate a planar model that represents the table surface.

The estimated coefficients are then used to reproject the

remaining points so that a convex hull is created from

which points in the original cloud that are within the convex

hull (table points) are removed. A 3D Euclidean clustering

is then applied to obtain reasonable pointcloud clusters.

The predicted hand locations from Kinect are then used

to extract the hand pointclouds if the location is within a

fixed distance threshold of the cluster’s centroid. Finally, the

extrema of each hand pointcloud is computed from which we

use a region growing segmentation algorithm using nearest

neighbors to extract the hand and any associated objects/tools

that are in contact with the hand (Fig. 3(d)). The current hand

state Hs is obtained from the difference in the pointcloud

sizes against a running average of previous pointcloud sizes.

A significant deviation beyond a ratio threshold will indicate

that the hand is occupied (ratio > 1) or empty (ratio < 1). In

addition, if only a single hand pointcloud is detected, and its

current size is approximately equal to the combine sizes of

the the left and right hand in previous frames, a merge event

is raised. This will be important for building the activity tree

(sec. III-E).

D. Object Recognition

The activity tree is built when there are changes Hs for

each hand (left and right), and the terminals are the objects

(if any) on each hand when Hs changes. Using the results

of the predicted hand locations and states described in the

previous section, we crop out a rectangular region slightly

larger than the hand point cloud size to obtain an intensity

image of the potential objects/tools should Hs = occ (Fig. 4).

We also extract the cropped region whenever a merge event

starts or ends.

3http://www.pointclouds.org



Fig. 4. Merging occupied hand pointclouds with intensity image for object
recognition.

We extract Histogram of Gradient (HoG) features from the

cropped image from which an object classifier is then used to

predict the object label. Classifiers for each object/tool class

are trained over a separate training set of labeled data using

a degree three polynomial SVM. We select the object labels

from the classifier that gives the highest response for the case

when Hs = occ. Due to the large amounts of occlusions

when a merge event occurs, we select from the top N =
4 detection responses the most consistent object label from

the previous frames (since it is unlikely that an object label

changes when a merge occurs).

E. Building the Activity Tree

Fig. 5. Creating an Activity Tree: (Left) Events and objects detected from
SR4000 intensity images. (Right) Formation of an activity tree that parallels
the events and objects occurrence, based on the defined action grammar.

The previous steps tell us what objects or tools are

grasped by each hand at each frame of the recording, and

when objects are brought together and begin to be treated

as a single object (a merge event). This provides enough

information to build the activity tree, as shown in Fig. 5. The

parser creates a new leaf node whenever one of the actor’s

hands (or tools held in the hands) come into contact with a

new object. These nodes keep track of the time the object

was first and last seen, and what the object was recognized as

(using the HoG object recognition described in sec. III-D.) If

these objects are brought together, a new node is created with

each of the original object nodes as children. This process

gradually builds up tree structures.

Detecting when objects are brought together is not a

foolproof method of recognizing when the objects begin to

be treated as one combined object. One may, for instance,

pick up two unrelated objects in one hand just to clear away

a working space. In videos where this kind of event happens

frequently, a better means of recognizing a significant, mean-

ingful contact would be needed, or a better way of tracking

where the objects ended up during a merge event.

To build a robust system, it would be useful to have several

examples of each activity one wanted to recognize, and

measure whether the activity tree from an unknown activity

fell into this cluster. There are many ways to perform any

object manipulation activity. Certain aspects proved to be

highly variable. Objects were frequently handled, set down,

and picked up again, or passed from one hand to another,

in an irregular way. A cutting action might be followed by

a second cutting action if the results of the first cut were

deemed unacceptable. The order of some of the actions

differed from one trial to another. Certain aspects of the

activities however, were much more consistent. In order

to correctly perform the tasks, certain objects needed to

come together and not be separated again before the end

of the activity. In the Sewing a Toy activity, for example,

the pieces of felt needed to be joined together with the

thread. Recognizing these critical merge events is crucial for

understanding the activities.

F. Comparing Activity Trees

In order to compare the trees, we use a measure of

tree edit distance. The edit distance between two trees is

the minimal-cost sequence of edit operations on labeled

nodes that transforms one tree into the other. The following

operations are possible, each with its own cost:

• inserting a node (between a node and a subset of its

children)

• deleting a node (and connecting its children to its

parent)

• renaming a node (changing the label)

Efficient algorithms exist to find the minimal edit distance.

The most recent advancement was made by Pawlik et. al

[26] which has O(n3) time with n > m and O(mn) space

complexity for the worst case. For the small sizes of trees

we encounter, solving this takes negligible time and memory.

Using the tree edit distance is critical for discriminating

situations where the same objects are used in different ways.

For example, if one were to put drafting instruments into

a case to bring to school, the tree would consist of each

instrument being merged with the case one by one. However,



if one were to use the instruments for drafting, a more

complex tree would be created, where the triangle is used

with the pencil and paper, then moved out of the way, and so

forth. Forming activity trees allows us to capture the structure

of this interaction.

G. Separating Interleaved Activities

In many cases, an activity is an uninterrupted sequence

of related events. In this case, segmenting the activity in

a recording means simply finding the beginning and end

point of the activity. However, there may be interruptions,

in which the actor is trying to deal with more than one

goal simultaneously. This results in actions that are mixed

together. By parsing these actions, we are able to get a fine

grained segmentation of the recording, identifying which ac-

tions belong to each activity, even when they are thoroughly

mixed. To demonstrate this, several activities in the Complex

Activity Dataset contain interleaved actions of different ac-

tivities combined together. For example, the actor was asked

to perform a cutting and pasting task (Making Card) and the

Assemble a Machine task, interleaving the actions for each

activity. Because the activities involved separate objects, we

were able to use the grammar to successfully separate out the

actions for each task. This is shown in Fig. 6. As we will see

in the experiments (sec. IV-C), the strength of this approach

is highlighted when we are able to recognize such complex

interleaved activities much better than a simpler approach

when no action grammar is imposed.

IV. EXPERIMENTS

We report the results of two experiments that evaluate the

performance of the action grammar in recognizing complex

manipulation activities. We first derive theoretical bounds

of the expected performance by inducing artificial noise

in the terminals (sec. IV-B) and then evaluate the perfor-

mance of recognizing activity trees over real data from the

Kinect+SR4000 Complex Activity Dataset (sec. IV-C).

A. Experimental Procedure

For the experiment that explores the theoretical perfor-

mance of the action grammar, we manually induced corrup-

tion in the input terminals of each activity tree from the

Complex Activity Dataset in 2 ways: 1) by sampling from a

uniform distribution of all possible object labels considered

(except the ground truth) and 2) by consistently selecting

the object labels from only one but a different activity tree

for each associated object: e.g, if the activity was Card

Marking, we will replace object labels consistently from

another activity such as Cooking Vegetables. We considered

corruption of the input ranging from 10% (almost correct)

to 90% (almost all wrong) and report the accuracy scores

in interpreting the activity using the corrupted activity tree

using the following procedure: for each level of corruption,

we compute the edit distances for each tree, and take the

ground truth identity of the smallest edit distance. We then

count how many trees are correctly matched and report the

accuracy score per level.

The next experiment evaluates the action grammar over

12 activities from the Complex Activity Dataset. In this

part, we used a leave-one-out training procedure to train

the object classifiers – for each test sequence, the remaining

11 sequences were used for training. Note that 4 sequences

involving Sewing and Assembling a Machine are left out

of the evaluation due to the fact that the object recognition

simply failed as the objects of interests: pins, bolts, etc. are

too small4. We then report the normalized tree edit distances

of the resulting activity trees when they are compared with

the ground truth, together with the amount of terminal

corruption per sequence. As a comparison to highlight the

contribution of the action grammar in building the activity

tree, we also report the activity recognition performance

when only the terminals are used to build a degenerate tree

of depth 1 only (a flattened tree).

B. Results over Artificial Noisy Data

The accuracy scores over increasing degree of terminal

corruption are summarized in Fig. 7.

Fig. 7. Accuracy scores with varying degrees of terminal corruption: 1)
Randomly replaced object labels (red solid line) and 2) Replaced object
labels consistently from another (incorrect) tree (blue dotted line).

The activity trees are robust enough to handle the fact

that no object detection method is completely accurate. In

an attempt to characterize the behavior of tree matching in

the presence of noise, we considered two possible causes

of terminal corruption as described in the previous section.

In the first case where the missed detections are completely

random (the red solid line), the trees perform fairly well,

accurately matching the true tree to the partially mislabeled

tree in all cases until 40% of the labels have been replaced. In

the second case (the blue dotted line), all the incorrect labels

come from a single incorrect tree and so are consistent with

each other. In this worst case scenario, the performance does

worse, and errors in recognition show up when 20% of the

labels are incorrect.

C. Results over Complex Activity Dataset

We summarize the matching performance for the 12 test

activity trees in Fig. 8 and compare it against the baseline

method of using terminals alone (Fig. 9).

4the specific sequences used and left out can be found at http://www.
umiacs.umd.edu/research/POETICON/umd_complex_activities/



Fig. 6. A complex interleaved sequence Making Card + Assemble a Machine can be cleanly separated into its component activity trees using the action
grammar.

Activity Label Corruption Label Corruption

Card Making Card(1) 0.48 Card(2) 0.49

Card Making+Assemble

Machine

Card+Assbly(1) 0.55 Card+Assbly(2) 0.48

Making Sandwich SandW(1) 0.55 SandW(2) 0.36

Cooking Vegetables
Veg(1) 0.42 Veg(2) 0.62

Veg(3) 0.54 Veg(4) 0.47

Cutting Applesa Apple(1) 0.55 Apple(2) 0.42

aA subset of the Cooking Vegetables activities

Fig. 8. (Above) Confusion matrix of normalized tree edit distances for
each of the 12 test sequences. Lower values along the diagonals are better.
Boxes indicate the diagonal blocks of interest for each set. (Below) Amount
of corrupted terminals [0, 1] per testing sequence. A value closer to 1 means
more corruption.

In order to measure how well the activity trees could

be used for activity recognition in real data, we computed

the tree edit distance distance between each test tree and

the ground truth for each of the activities. Each activity

comes as a set containing at least 2 similar sequences.

For example, Card Making has two sequences: Card(1) and

Card(2), performed by 2 different actors which introduces a

small amount of variation within each activity set itself. In

the confusion matrix above, the blocks of low edit distances

along the diagonal for each activity set and higher distances

elsewhere indicate that the activity trees are finding fairly

good matches among the correct set of activities (Fig. 8

(above)). This performance is achieved in spite of the high

Fig. 9. Confusion matrix of normalized tree edit distances when terminals
are used alone. Lower values along the diagonals are better. Boxes indicate
the diagonal blocks of interest for each set.

levels of corruption in the terminals (Fig. 8 (below)) of be-

tween 36% to 62% that are sufficient to degrade performance

(shown in the first experiments), which is indicative of the

robustness of the approach in noisy real data.

By way of comparison, we flattened the trees so that all

the nodes were at the same level (depth 1) and repeated

the same experiment (Fig. 9). This effectively eliminates

the effect of using the action grammar. In this case, the

diagonal structure is much less evident, highlighting that

the absence of the tree structure derived from the action

grammar greatly reduces the ability of the system to find

the right matches. This is especially true for activity sets

that contains complex interleaved activities such as Card

Making + Assemble a Machine and Cooking Vegetables. As

was explained in sec. III-G and illustrated in Fig. 6, the

ability of the action grammar in disambiguating complex

interleaved activities is shown by the fact that the block

diagonals for such activities display lowered performance

when flattened trees are used (the tree edit distances are much

higher within each block) compared to the ones when the full

action grammar is used in the previous experiment (Fig. 8).



V. CONCLUSION AND FUTURE WORK

Using a grammar of action to build activity trees appears

to be a practical way to begin to parse complex activities.

We are considering many possibilities for how to build

on the current work. The grammar described here could

easily be extended to include more specific patterns to be

matched, creating a richer grammar that provides immediate

information about actions and subactions. More traditional

action recognition techniques could also be incorporated. For

example, when a tool touches an object, we could determine

whether the tool is actually performing its function on the

object and transforming it, or just coming into contact with

it. Object recognition could be improved by feedback from

the tree structure, increasing the probability of detection for

an object consistent with the rest of the tree. The activity

trees could also be used by a robot to emulate activities it

has seen performed previously by humans, or even generated

based on goals the robot is trying to attain.

REFERENCES

[1] E. E. Aksoy, A. Abramov, J. Dörr, K. Ning, B. Dellen, and
F. Wörgötter. Learning the semantics of object-action relations by
observation. International Journal of Robotics Research, 30(10):1229–
1249, 2011.

[2] P. Bauer. Recalling past events: from infancy to early childhood.
Annals of Child Development, 11:25–71, 1995.

[3] R. Chalodhorn, D. Grimes, R. R. Gabriel, and M. Asada. Learning hu-
manoid motion dynamics through sensory-motor mapping in reduced
dimensional spaces. In ICRA, 2006.

[4] R. Chaudhry, A. Ravichandran, G. Hager, and R. Vidal. Histograms
of oriented optical flow and binet-cauchy kernels on nonlinear dy-
namical systems for the recognition of human actions. In Proc. IEEE

Conference on Computer Vision and Pattern Recognition, 2009.
[5] J. Chavaillon. Andr leroi-gourhan, le geste et la parole. L’Homme,

7(3):122–124, 1967.
[6] N. Chomsky. Lectures on Government and Binding: The Pisa Lectures.

Mouton de Gruyter, 1993.
[7] P. Dollár, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recogni-

tion via sparse spatio-temporal features. In VS-PETS, October 2005.
[8] L. Fadiga, L. Fogassi, V. Gallese, and G. Rizzolatti. Visuomotor

neurons: ambiguity of the discharge or motor perception? International

Journal of Psychophysiology, 35:165–177, 2000.
[9] L. Fogassi, P. F. Ferrari, B. Gesierich, S. Rozzi, F. Chersi, and

G. Rizzolatti. Parietal lobe: From action organization to intention
understanding. Science, 308:662 – 667, 2005.

[10] S. Gong and T. Xiang. Recognition of group activities using dynamic
probabilistic networks. In Proc. International Conference on Computer

Vision, 2003.
[11] L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri. Actions

as space-time shapes. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 29(12):2247–2253, 2007.
[12] A. Gupta and L. S. Davis. Objects in action: An approach for

combining action understanding and object perception. In CVPR. IEEE
Computer Society, 2007.

[13] S. Hongeng and R. Nevatia. Large-scale event detection using
semi-hidden markov models. In Proc. International Conference on

Computer Vision, 2003.
[14] Y. Ivanov and A. Bobick. Recognition of visual activities and

interactions by stochastic parsing. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2000.
[15] A. Kale, A. Sundaresan, A. N. Rajagopalan, N. P. Cuntoor, A. K. Roy-

Chowdhury, V. Kruger, and R. Chellappa. Identification of humans
using gait. IEEE Transactions on Image Processing, 13(9):1163–1173,
2004.

[16] H. Kjellstrom, J. Romero, and D. Kragic. Simultaneous visual
recognition of manipulation actions and manipulated objects. In Proc.

European Conference on Computer Vision, 2008.
[17] F. D. la Torre, J. Hodgins, J. Montano, S. Valcarcel, R. Forcada, and

J. Macey. Guide to the carnegie mellon university multimodal activity
(cmu-mmac) database. Technical report, CMU-RI-TR-08-22, Robotics
Institute, Carnegie Mellon University, July 2009.

[18] I. Laptev. On space-time interest points. International Journal of

Computer Vision, 64(2–3):107–123, 2005.
[19] B. Laxton, J. Lim, and D. Kriegman. Leveraging temporal, contextual

and ordering constraints for recognizing complex activities in video. In
Proc. IEEE Conference on Computer Vision and Pattern Recognition,
2007.

[20] Y. Li, C. Fermuller, Y. Aloimonos, and H. Ji. Learning shift-
invariant sparse representation of actions. In Proc. IEEE Conference

on Computer Vision and Pattern Recognition, 2010.
[21] R. Messing, C. Pal, and H. Kautz. Activity recognition using the

velocity histories of tracked keypoints. In ICCV ’09: Proceedings

of the Twelfth IEEE International Conference on Computer Vision,
Washington, DC, USA, 2009. IEEE Computer Society.

[22] T. B. Moeslund, A. Hilton, and V. Krüger. A survey of advances in
vision-based human motion capture and analysis. Computer Vision

and Image Understanding, 104:90–126, 2006.
[23] D. Moore and I. Essa. Recognizing multitasked activities using

stochastic context-free grammar from video. In Proceedings of AAAI

Conference,, 2002.
[24] N. Oliver, E. Horvitz, and A. Garg. Layered representations for human

activity recognition. In ICMI, 2003.
[25] K. Pastra and Y. Aloimonos. The minimalist grammar of action. Phil.

Trans. R Soc. B, 367(1585):103–117, 2012.
[26] M. Pawlik and N. Augsten. Rted: a robust algorithm for the tree edit

distance. Proc. VLDB Endow., 5(4):334–345, 2011.
[27] C. Pinhanez and A. Bobick. Human action detection using pnf

propagation of temporal constraints. In Proc. IEEE Conference on

Computer Vision and Pattern Recognition, 1998.
[28] D. A. Rosenbaum, R. G. Cohen, S. A. Jax, D. J. Weiss, and R. Van

Der Wel. The problem of serial order in behavior: Lashleys legacy.
Human Movement Science, 26(4):525–554, 2007.

[29] M. Ryoo and J. Aggarwal. Recognition of composite human activities
through context-free grammar based representation. In Proc. IEEE

Conference on Computer Vision and Pattern Recognition, 2006.
[30] P. Saisan, G. Doretto, Y. N. Wu, and S. Soatto. Dynamic texture

recognition. In Proc. IEEE Conference on Computer Vision and

Pattern Recognition, 2001.
[31] C. Schuldt, I. Laptev, and B. Caputo. Recognizing human actions: A

local svm approach. In ICPR, 2004.
[32] L. Sigal, A. O. Balan, and M. J. Black. Humaneva: Synchronized video

and motion capture dataset and baseline algorithm for evaluation of
articulated human motion. International Journal of Computer Vision,
87(1-2):4–27, 2010.

[33] M. Sridhar, A. G. Cohn, and D. C. Hogg. Learning functional object-
categories from a relational spatio-temporal representation. In Proc.

18th European Conference on Artificial Intelligence,, pages 606–610,
2008.

[34] P. Turaga, R. Chellappa, V. S. Subrahmanian, and O. Udrea. Machine
recognition of human activities: A survey. IEEE Transactions on

Circuits and Systems for Video Technology, 18(11):1473–1488, 2008.
[35] I. Vicente, V. Kyrki, and D. Kragic. Action recognition and under-

standing through motor primitives. Advanced Robotics, 21:1687–1707,
2007.

[36] J. Wang, D. Fleet, and A. Hertzmann. Gaussian process dynamical
models for human motion. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2008.
[37] A. Whiten, E. Flynn, K. Brown, and T. Lee. Imitation of hierarchical

action structure by young children. Developmental Science, 9:574–
582, 2006.

[38] G. Willems, T. Tuytelaars, and L. J. V. Gool. An efficient dense
and scaleinvariantspatio-temporal interest point detector. In Proc.

European Conference on Computer Vision, 2008.
[39] A. Yilmaz and M. Shah. Actions sketch: A novel action represen-

tation. In Proc. IEEE Conference on Computer Vision and Pattern

Recognition, pages 984–989, 2005.


