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Abstract. We present a system that makes use of image context to perform pixel-

level segmentation for many object classes simultaneously. The system finds 
approximate nearest neighbors from the training set for a (biologically plausible) 

feature patch surrounding each pixel.  It then uses locally adaptive anisotropic 

Gaussian kernels to find the shape of the class manifolds embedded in the high-
dimensional space of the feature patches, in order to find the most likely label for 

the pixel. An iterative technique allows the system to make use of scene context 
information to refine its classification. Like humans, the system is able to quickly 

make use of new information without going through a lengthy training phase. The 

system provides insight into a possible mechanism for infants to quickly learn to 
recognize all of the classes they are presented with simultaneously, rather than 

having to be trained explicitly on a few classes like standard image classification 

algorithms. 
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Introduction 

When we look at the world, we are able to classify many things within the field of view 

quickly, simultaneously, and effortlessly. Most models of attention assume that when 

we first look at a scene, the brain pulls out only simple features such as contrast, 

information density, saturation, creating what is known as a ―saliency map.‖ These 

features are thought to provide cues for where to fixate in an image, and that objects are 

only recognized when they are the center of attention indicated by the direction of gaze. 

A few recent works have shown a situation more complicated and interesting. The 

earlier experiments in this area simply asked participants to look at a scene and 

describe what they saw.  In this case, the location of fixations was predicted pretty well 

by the low-level features described above. When participants are asked instead to look 

for a particular item in a natural image, however, the first few fixations were better 

predicted by the location of the object to be found [1].  This seems to indicate that from 

the first glance at a scene, before the brain would have time to do anything that requires 

anything as slow as conscious reasoning or fitting of a complex model, it is already 

able to classify many objects in a scene correctly and in parallel. Only after this process 

is completed do we fixate on the object of interest in order to begin these slower and 

more accurate processes which require a focused attention. 

Our system is an attempt to model this aspect of pre-attentive vision. In brief, we  

 collect biologically plausible rich features, called ―prototypes‖ from 

training images with known labels 



 use these to classify all features on these same images 

 learn a multi-layer model that can refine these estimates using 

context 

 apply the multi-layer model to test images 

 

1. Object Recognition in the Brain 

The following is a sketch of the current consensus about the process of object 

recognition in primates. The data from the eyes is streamed along the ventral visual 

pathway beginning in the primary visual cortex (V1) and ending in the inferotemporal 

cortex (IT). This in turn informs the prefrontal cortex, where the information can be 

used for taking action. The entire process from V1 to IT only takes about 30 ms in 

humans. [2] (Information about location in the image also begins in V1 but follows a 

different path.  We do not attempt to imitate this behavior in our model.) 

The first cells along the pathway, the simple (S1) cells, are similar to local Gabor filters 

at a particular orientation and scale. Complex (C1) cells integrate the information from 

a small number of these S1 cells, responding to oriented edges over a wider range of 

locations and scales. The input of multiple C1 cells, in turn, are used to create more and 

more complex filters that respond to particular arrangements of multiple edges over 

larger and larger areas of the image (S2 and C2 cells.) [3] Cells at the end of this 

process act like radial basis functions, responding strongly to image regions that 

contain the pattern of interest, and falling off in Gaussian fashion as the similarity 

between the input patch and the prototype decreases. [4] 

Up to this point the process is largely feed forward.  But within the inferotemporal 

cortex, these prototypes receive feedback from the prefrontal cortex [5], influencing the 

interpretation of inputs so that ambiguous areas are resolved into familiar objects 

through association with the immediate context. For example, a distant brown blob 

might be interpreted as a shoe if it is found at the bottom of a leg, or as hair if found at 

the top of a head. 

For some cells in the IT cortex, the visual similarity between inputs is less important 

than semantic similarity. Cells that respond strongly to frontal views of faces, for 

example, respond partially to profiles of faces, even though their appearance is not 

similar. [6] 

 

2. Object Recognition by Our System 

Our system follows this natural model closely for the first stages of processing, 

approximating the action of S1, C1, S2, and C2 cells. (This part of the system uses a 

variation on the HMAX features described in [7].) Randomly selsected 64 x 64 patches 

of the training images are fed into this software, and the results are 256 dimensional 

vectors which encode much of the shape information in the patches in a compact way. 

These vectors (which we will call ‗prototypes‘) are associated with training labels, 

giving the classification of the object at the center of the patch. 



A sliding window is applied, and the approximate nearest neighbors to each 

windowed region from among these prototypes are returned.  What has been described 

so far is similar to [8]. We extend the model beyond this with multiple layers of 

prototypes that do not merely classify an image as a whole, but create a classification 

map that shows which regions of the image belong to which class. 

For each sampled point in the images, we find the most similar prototypes and 

average them, making use of a rich weighting scheme (discussed later.) Using the 

correct label maps for these training images, the system learns what it ought to produce 

when a particular pattern of label maps is generated.  We do this by creating a new set 

of prototypes in a second layer, which take as input not just a patch of the original 

image, but also the associated patch from the estimated label map created by the first 

layer. This process can be repeated several times. 

When testing images are presented, the exact same process is followed, except that 

new prototypes are not collected. Instead, each layer of prototypes create during 

training is applied in sequence, making use of the estimated label map generated by the 

previous layer. 

2.1. Training 

1. A set of training images are collected. 

2. Corresponding label maps are created. 

3. For each layer, 

4.       Features are collected at many random locations within these training pairs. 

5.       An index is created to enable fast searching among these features. 

6.       For each training image, 

7.  A feature is collected at each pixel in the image. 

8.  A set of similar features are found. 

9.  A weighted average of the labels of these features is found. 

10.  An estimated label map is created from these labels. 

2.2. Testing 

1. For each test image 

2.       For each layer, 

3.   Follow steps 7-10 above. 

 

Though we have used biological language to describe the process in this paper, the 

problem can also be formulated as a straightforward statistical inference, as described 

in [9]. Let a training image be represented by the vector X = (x1, ..., xn). Each of the xi 

represents a single pixel. Each training image comes with a corresponding ground truth 

map Y = (y1, ..., yn) where yi  {1..K} is the label for each pixel i, and an estimated 

probability of detection map W = (w1, ..., wn) where all the wi are initially set to the 

same value. We would like to learn to estimate p(yi |X and W). Since this is too large a 

space to attempt to learn directly (a megapixel image would result in a million 

dimensional space), we instead learn p(yi |V⊂ (X and W)), where V is a subset of X and 

W consisting of a patch of pixels surrounding xi. and a patch surrounding wi. 

Once we have learned p(yi |V), we apply it to the patch surrounding each pixel xi in 

each training image X. In this way, we create an estimated label map W for each of the 

training images. In this map W, some pixels will be correctly labeled while their 



neighbors are incorrectly labeled. Since we have the truth map Y for each image, we 

can learn, for example, that a pixel wi surrounded by pixels belonging to a particular 

class K is more likely to itself belong to that class. Moreover, by using both the 

estimated map W and the original image X together as one half of the training pair, we 

can do a better job of estimating yi than if we only had the original image X. This 

process of iteratively creating new estimated detection maps continues until the maps 

no longer improve. 

The sharing of context information between neighboring pixels introduced in this 

way is comparable to how belief propagation networks or conditional random fields 

(CRFs) have probabilities defined for sharing probabilities between neighbors.  

3. Anisotropic Interpolation  

While the prototypes are a compressed representation of the patches they are 

derived from (a 64 x 64 patch with 4096 pixels is represented by only 256 values) they 

are still too high dimensional for approximate nearest neighbor algorithms to work well. 

The 100 nearest neighbors will contain some correct matches but also many incorrect 

matches. The usual way to weight the neighbors is with a Gaussian function on the 

distance from the point to be estimated.  Unfortunately, in high dimensional spaces, all 

points are approximately the same distance apart. This is one aspect of the ‗curse of 

dimensionality.‘  However, the relevant data lies on a lower dimensional manifold 

embedded in this 256 dimensional space.  Because of this, using adaptive anisotropic 

kernels gives a substantial improvement over the standard isotropic Gaussians. 

  
Figure 1. Isotropic Gaussian kernels (left) and anisotropic Gaussian kernels (right) on the same ten points. 

 

The advantage can be seen in the following illustration. Ten points forming an 

expanding spiral.  The points represent prototypes.  The spiral is 2-dimensional for 

illustrative purposes—the actual prototypes are points in a 256 dimensional space.  In 

the first illustration, the weights of each prototype are given by an isotropic Gaussian 

function. When the prototypes are very similar, the points are close together, and the 

interpolation between them is reasonably accurate.  However, when they are widely 

spaced, each prototype lies in its own island.  Test features which are very similar to 

one particular prototype will be classified correctly, but ones that lie halfway between 

two prototypes will not be. 

In the second illustration, anisotropic kernels are used. These are elongated in the 

direction of neighboring points of the same class. In this case, the points form a nearly 

connected spiral, correctly estimating the shape of the underlying manifold. This effect 



is even more pronounced in higher dimensional spaces where the weight is 

concentrated in one direction among hundreds, rather than one direction out of two in 

the illustration. 

The methods we used to estimate the shape of these kernels is not biologically 

plausible, relying on taking the inverse of a covariance matrix. (See [10] for details and 

formulae for these anisotropic kernels.) The shape of these kernels may be formed by 

interaction among similar prototypes gradually ―reaching out‖ towards their neighbors 

in the same process that allows redundant prototypes to be gradually eliminated in the 

learning process.  This, however, is purely speculative at present. 

4. Results  

We tested the application on the Weizmann horse database [11]. This database has 

large variations in the appearance, lighting, and pose of the horses and variations in 

background appearance.  The system was trained on 300 of the images and tested on 

the remaining 27 (See Figure 2.) 500,000 prototypes were collected at random from the 

training images for each of the five layers. The system used 64 x 64 patches, and 

created 256 dimensional prototype vectors.  

The system was able to not only detect the presence of horses, but correctly segment 

many of the limbs in 24 of the 27 images. Detection is made a little easier by the fact 

that each image contains only one horse, and there are no partial occlusions.  However, 

due to the windowed nature of the detection algorithm, these factors would not be 

expected to be very problematic for this system.  In addition, the horses are all from 

roughly the same angle. This means fewer prototypes are needed to learn the class than 

would otherwise be the case. 

 

 
 

Figure 2. Test set. Images (left) and corresponding detection maps (right). 

5. Conclusion and Future Directions 

This seems to be a promising approach to forming rough segmentations of the 

classes of objects in a scene prior to fixation and segmentation. We have begun 

experiments on including stereo and motion information, to learn to recognize 3D 

objects and motions as well as image classes. 

An advantage of this system is that it requires no more resources to learn many classes 

from a set of training images than it does to learn just two from the same set. Even 



classes not explicitly specified, such as head or limb detectors in the case of the horse 

database, are recognized as being visually and semantically similar implicitly.  

Labeling a single horse leg, for example, could bring up a cluster of similar horse legs 

because all would activate the same prototypes. In this way, the system is learning 

something about everything in the training images, even when it doesn‘t have a name 

for the groups it recognizes as similar. In this way it could combine supervised with 

unsupervised learning. 

One other interesting possibility is to replace the mapping to discrete labels with a 

mapping into some kind of semantic space. Objects recognized as being semantically 

associated would be able to influence the classification of nearby objects in the scene 

(the presence of a spoon and plate might help to resolve an ambiguous detection as a 

cup.) 
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