###
Covalent Bonding: Electron Dot Diagrams

Given descriptions, diagrams, scenarios, or chemical symbols, students will model covalent bonds using electron dot formula (Lewis structures).

###
Generating Different Representations of Relationships

Given problems that include data, the student will generate different representations, such as a table, graph, equation, or verbal description.

###
Predicting, Finding, and Justifying Data from a Graph

Given data in the form of a graph, the student will use the graph to interpret solutions to problems.

###
Determining Slopes from Equations, Graphs, and Tables

Given algebraic, tabular, and graphical representations of linear functions, the student will determine the slope of the relationship from each of the representations.

###
Approximating the Value of Irrational Numbers

Given problem situations that include pictorial representations of irrational numbers, the student will find the approximate value of the irrational numbers.

###
Expressing Numbers in Scientific Notation

Given problem situations, the student will express numbers in scientific notation.

###
Objects in Motion

This resource provides flexible alternate or additional learning activities for students learning about the concepts of distance, speed, and acceleration. IPC TEKS (4)(A)

###
Determining if a Relationship is a Functional Relationship

The student is expected to gather and record data & use data sets to determine functional relationships between quantities.

###
Graphing Dilations, Reflections, and Translations

Given a coordinate plane, the student will graph dilations, reflections, and translations, and use those graphs to solve problems.

###
Graphing and Applying Coordinate Dilations

Given a coordinate plane or coordinate representations of a dilation, the student will graph dilations and use those graphs to solve problems.

###
Developing the Concept of Slope

Given multiple representations of linear functions, the student will develop the concept of slope as a rate of change.

###
Conservation of Momentum

This resource was created to support TEKS IPC(4)(E).

###
Kinetic Molecular Theory

This resources allows students to explore the postulates of the Kinetic Molecular Theory in order to better understand why gas particles behave the way that they do.

###
10.01 Wave Nature of Light

In this video, we will study the wave-like properties of light.

###
10.02 Particle Nature of Light

In this video, we will study the particle-like properties of light.

###
6.01 The Mole

In this video, we will study the mole and its applications in chemical calculations.

###
6.02 Percent Composition

In this video, we will calculate percent composition or mass percent and various applications.

###
6.03 Empirical and Molecular Formulas

In this video, we will learn the difference between an empirical and molecular formula and how to find them.

###
6.04 Balancing Equations

In this video, we will learn how to balance chemical equations using the law of conservation of matter.

###
6.05 Stoichiometry with Balanced Equations

In this video, we will apply stoichiometric concepts to balanced equations in order to determine mass relationships within reactions.