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Outline of Talk

 Empirical Analysis of 802.11 hand-offs
 Neighbor graphs
 Proactive caching
 Experimental results
 Simulation results

 Proactive key distribution for LANs and 
Interworking
 Experimental results

 Conclusions and Future Work



 
3

One View of the Future

CDMA1x

WLAN

Ad hoc extension
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Mobility Definitions

 Discrete Mobility: A mobile station 
utilizes the network without 
movement. Prior to movement 
operation ceases and begins again 
associated to a new base station.

 Continuous Mobility: A mobile station 
moves and operates simultaneously.
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Properties Required

 Transparency
 Security
 Ubiquity
 Performance
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The Handoff Procedure

 Probe Phase
 STA scans for 

APs
 Reassociation 

Phase
 STA attempts to 

associate to 
preferred AP

STA

Probe requests

Probe responses

APs

New AP

PROBE  PHASE

REASSOCIATION  PHASE Other APs

IAPP

Reassociatiion  request

Reassociatiion  response
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Prism2 (Zoomair)
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Data from an “Empirical Analysis of the IEEE 802.11 MAC Layer 
Handoff Process” to appear in ACM CCR
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Why is this important?

 Hand-off times MUST be efficient to 
support synchronous connnections, 
e.g. VoIP

 ITU guidance on TOTAL hand-off 
latency is that it should be less than 50 
ms. Cellular networks try to keep it less 
than 35 ms.
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Improving the 
Reassociation latency

 Review Previous work
 Introduce Neighbor Graphs
 Introduce Proactive Caching
 Experimental results
 Simulation results

 Introduce Proactive Key Distribution
 Experimental results
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Related Work

 Context Caching
 SEAMOBY (IETF) - Generic context algorithm
 Koodli and Perkins 2001- Layer 3 reactive 

algorithm
 IEEE IAPP draft 4 (January 2003)

 Network Topology
 Pack et. al. weighted matrix for pre-

authentication
 Learning bridge
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The Handoff Procedure- Reassociation 
Phase - Draft version of IAPP

 Four IAPP 
Messages
 IAPP Latency > 4 * 

RTT
 Move Request and 

Move Response 
messages over TCP

 RADIUS interaction 
not shown (further 
delay)

STA New AP Old AP

Reassociation Request

Move Notify

Send Security Block

Ack Security Block

Move Response

IAPP M
essages

Reassociation Response
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Neighbor Definition and Graph

 Two APs i and j are neighbors iff
 There exists a path of motion between i and j such that it is possible for 

a mobile STA to perform a reassociation
 Captures the ‘potential next AP’ relationship
 Distributed data-structure i.e. each AP can maintain a list of neighbors
 Centralized if AAA server holds entire graph
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AP Neighborhood Graph – 
Automated Learning

 Construction
 AP can learn:

 If STA c sends Reassociate Request to AP i, with old-ap = AP j 
:

 Create new neighbors (i,j) (i.e. an entry in AP i, for j and vice 
versa from move-notify message)

 Learning costs only one ‘high latency handoff’ per edge in the 
graph

 Enables mobility of  APs, can be extended to wireless networks 
with an ad-hoc backbone infrastructure

 Dynamic, i.e. stale entries time out
 Easily extended to a AAA server
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Proactive Caching 
Algorithm

 Key Idea :
 Propagate context to potential 
‘next’ APs to eliminate IAPP latency 
during reassociation

1. STA associates to AP A
2. AP A sends context to AP B 

proactively (new IAPP 
message)

3. STA moves to AP B – does 

fast reassociation since B has 

context in cache
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Proactive Caching – The 
Algorithm

 When STA c associates/reassociates to AP i
 If context(c) in cache:

 Send Reassociate Response to client
 Send Move-Notify to Old-AP
 Old-AP invalidates its neighbor caches

 If context(c) not in cache, perform normal IAPP 
operation

 Send security context to all Neighbours(i)
 Cache Replacement : Least Recently Used
 Cache size vendor dependent
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IAPP Messages with 
Proactive Caching

1. STA reassociates 
to AP A

2. AP A has security 
context in cache

3. AP A propagates 
context to AP B 
(all neighbors of 
A)

4. STA reassociates 
to AP B which 
again has security 
context in cache
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 Handoff latencies play a role in 
performance when mobility is high

 With an LRU cache, higher the mobility, 
higher the cache-hit ratio (on average), 
implies larger number of fast-handoffs

Proactive Caching – Expected 
Performance

Mobility 
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Test Bed

 Custom built access 
points using Soekris 
4521 boards, 
OpenBSD, and 
Prism2 chipsets

 Custom IAPP 
implementation
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Experimental Results by AP
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Experimental Results by 
Time
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Simulation Details

 Stations follow a random association 
pattern and can move to a neighbor AP 
with equal probability

 Stations have a mobility index assigned 
uniformly:
 Mobilityindex = (time moving / total time) * 100

 Continuous mobility has a mobility index of 100.
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Simulation Results: Cache 
Size
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Simulation Results: Client 
Mobility
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Simulation: Cache Eviction 
Invariant
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TGi Fast Roaming Goals

 Handoff to next AP SHOULD NOT 
require a complete 802.1x re-
authentication.

 Compromise of one AP MUST NOT 
compromise past or future key 
material.
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Only Two Ways

 Exponentiation support for 
assymmetric cryptographic operations 
at AP, or

 Trusted Third Party, i.e. Roaming or 
AAA Server
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Proactive Key Distribution 
(TGi)

 Extend Neighbor Graphs and Proactive 
Caching to a Roaming Server
 Eliminates problems with sharing key 

material amongst multiple APs
 Easily extended to support WAN roaming
 Extendable to support Interworking

Wireless Communications Magazine, Feb 04

Text
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TGi Pairwise Key Hierarchy
Master Key (MK)

Pairwise Master Key (PMK) = TLS-PRF(MasterKey, “client EAP encryption” 
| clientHello.random | serverHello.random)

Pairwise Transient Key (PTK) = EAPoL-PRF(PMK, AP Nonce | STA Nonce 
| AP MAC Addr | STA MAC Addr)

Key 
Confirmation 

Key (KCK) – PTK 
bits 0–127

Key Encryption 
Key (KEK) – PTK 

bits 128–255

Temporal    Key – PTK bits 256–n – can 
have cipher suite specific structure
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Post Authentication and 4-
handshake

RADIUS (AAA)

A B C D E

MK
PMK
PTK

PMK
PTK

MK
PMK
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Pre-authentication

RADIUS (AAA)

A B C D E

MK
PMK
PTK

PMK
PTK

MK
PMK

Full 802.1X
Authentication

Via
Next AP
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Problems with Pre-Auth

 Expensive in terms of computational 
power for client, and time (Full EAP-
TLS takes ~800ms).

 Limited to the same LAN or VLAN
 Requires well designed and overlapping 

coverage areas
 Edge cases
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Post Authentication and 4-
handshake

RADIUS (AAA)

A B C D E

Accounting Server

Accounting-Request(Start)
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Post Authentication

A B C D E

AAA Server

Notify-Request Notify-Request

Notify-Request is defined in draft-irtf-
aaaarch-handoff-01.txt
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Post Authentication

A B C D E

AAA

Notify-Accept

Access-Accept(key material)

Notify-Accept

Access-Accept(key material)
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AP Actions on Notify 
Request 

 Dynamic Keys, i.e. PMK changes per 
roam.
 AP MAY send an ACCESS-REQUEST to AS

 Static Key, i.e. PMK is unique per AP 
but never changes.
 Nothing unless authorization is required.
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Experimental Results
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Maximum STA Velocity

For the Notify and PMK install to occur in time, we 
need:
2 RTT + handshake < D/v
Where:
D = coverage diameter
v = STA velocity
RTT = round-trip time from AP to AAA server, 
including processing.
Assuming D=100 ft, handshake = 10 ms, and RTT = 
100ms, we get:

v = 100 ft/ (200ms + 10 ms) ~ 500 ft/sec = Mach 0.5!!

Analysis thanks to Bernard Aboba
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Future Work

 Investigate use of eviction invariant
 Use of NG to reduce probe delay
 To appear in Mobisys ‘04

 Use of NG to assist in load balancing
 Pulling keys rather than pushing
 Wireless Communications Magazine, Feb 

04.
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Conclusions

 Neighbor graphs dramatically improve 
handoff speeds by an order of 
magnitude.

 And may have other potential uses 
within wireless networking.



 
40

Impact and Status

 Major Wi-Fi vendor improved firmware as a 
result of measurements.

 NG and Proactive Caching included in IEEE 
802.11 recommended practice document for 
Inter Access Point Protocol (IAPP).

 Proactive Key distribution under 
consideration by IETF:

draft-irtf-aaaarch-handoff-00.txt
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Questions


