Packing disks that touch the boundary of a square

Adrian Dumitrescu* Csaba D. Tóth ${ }^{\dagger}$

Abstract

It is is shown that the total perimeter of n pairwise disjoint disks lying in the unit square $U=[0,1]^{2}$ and touching the boundary of U is $O(\log n)$, and this bound is the best possible.

1 Introduction

Given a collection of geometric objects \mathcal{O}, and a container $U \subseteq \mathbb{R}^{d}$, a packing is a finite set of translates of objects from \mathcal{O} that are pairwise disjoint and lie in the container C. Extremal properties of packings (e.g., the densest packing of unit balls) are classical problems in discrete geometry. We consider a new variant of the problem related to TSP with neighborhoods (TSPN).

In the Euclidean Traveling Salesman Problem (ETSP), given a set S of n points in \mathbb{R}^{d}, we wish to find closed polygonal chain (tour) of minimum Euclidean length whose vertex set is S. The Euclidean TSP is known to be NP-hard, but it admits a PTAS in \mathbb{R}^{2}. In the TSP with Neighborhoods (TSPN), given a set of n sets (neighborhoods) in \mathbb{R}^{d}, we wish to find a closed polygonal chain of minimum Euclidean length that has a vertex in each neighborhood. The neighborhoods are typically simple geometric objects such as disks, polygons, line segments, or lines. TSPN is also NP-hard; it admits a PTAS for certain types of neighborhoods [5], but is hard to approximate for others [1].

For n connected (possibly overlapping) neighborhoods in the plane, TSPN can be approximated with ratio $O(\log n)$ by the algorithm of Mata and Mitchell [4]. At its core, the $O(\log n)$-approximation relies on the following early result by Levcopoulos and Lingas [3]: every (simple) rectilinear polygon P with n vertices, r of which are reflex, can be partitioned into rectangles of total perimeter $\operatorname{per}(P) \log r$ in $O(n \log n)$ time.

One approach to approximate TSPN (in particular, it achieves a constant-ratio approximation for unit disks) is the following. Given a set S of n neighborhoods, compute a maximal subset $I \subseteq S$ of pairwise disjoint neighborhoods (i.e., an independent set), compute a good tour for I, and then augment it by traversing the boundary of each set in I. Since each neighborhood in $S \backslash I$ intersects some neighborhood in I, the augmented tour

[^0]visits all objects in S. This approach is particularly appealing since good approximation algorithms are often available for pairwise disjoint neighborhoods [5]. The bottleneck of this approach is extending a tour of I by the total perimeter of the objects in I. This lead us to the following problem [2] (see Fig. 1):

Figure 1: A packing of disks in a rectangle, with all disks touching the boundary.

Given a simple polygonal domain P in the plane and n disjoint disks lying in P and touching the boundary of P, what is the maximum ratio of the total perimeter of the disks and the perimeter of P ? We address this problem in the simple setting where P is a unit square.

Theorem 1 The total perimeter of n pairwise disjoint disks lying in the unit square $U=[0,1]^{2}$ and touching the boundary of U is $O(\log n)$. Apart from the constant factor, this bound is the best possible.

2 Proof of Theorem 1

It is enough to bound the total diameter of n disks.
Upper bound. Let S be a set n disjoint disks in the unit square $U=[0,1]^{2}$ that touch the bottom side of U. Shrink each disk $D \in S$ by a factor $\rho \in\left(\frac{1}{2}, 1\right]$ from its common point with the x-axis such that its radius becomes $1 / 2^{k}$ for some integer $k \in \mathbb{N}$. The disks remain disjoint, they still touch the bottom side of U, and each radius decreases by a factor of at most 2 . Partition the resulting disks into subsets as follows. For $i=1, \ldots,\left\lfloor\log _{2} n\right\rfloor$, let S_{i} denote the set of disks of radius $1 / 2^{i}$; and let S_{0} be the set of disks of radius less than $1 / n$. The sum of diameters of the disks in S_{i},
$i=1, \ldots,\left\lfloor\log _{2} n\right\rfloor$, is at most 1 , since their horizontal diametrical segments are collinear and disjoint. The sum of diameters of the disks in S_{0} is at most 2 since there are at most n disks altogether. Hence the sum of diameters of all original disks is at most $2\left(2+\left\lfloor\log _{2} n\right\rfloor\right)$, as required.

Lower bound construction. We construct a packing of $O(n)$ disks in the unit square $\left[-\frac{1}{2}, \frac{1}{2}\right] \times[0,1]$ such that every disk touches the x-axis, and the sum of their diameters is $\Omega(\log n)$. To each disk we associate its vertical projection interval (on the x-axis). The algorithm greedily chooses disks of monotonically decreasing radii such that (1) every diameter is $1 / 16^{k}$ for some $k \in \mathbb{N}_{0}$; and (2) if the projection intervals of two disks overlap, then one interval contains the other.

For $k=0,1, \ldots,\left\lfloor\log _{16} n\right\rfloor$, denote by S_{k} the set of disks of diameter $1 / 16^{k}$, constructed by our algorithm. We recursively allocate a set $X_{k} \subset\left[-\frac{1}{2}, \frac{1}{2}\right]$ to S_{k}, and then choose disks in S_{k} such that their projections intervals lie in X_{k}. Initially, $X_{0}=\left[-\frac{1}{2}, \frac{1}{2}\right]$, and S_{0} contains the disk of diameter 1 inscribed in $\left[-\frac{1}{2}, \frac{1}{2}\right] \times[0,1]$. The length of each maximal interval $I \subseteq X_{k}$ will be a multiple of $1 / 16^{k}$, so I can be covered by projection intervals of interior-disjoint disks of diameter $1 / 16^{k}$ touching the x-axis. Every interval $I \subseteq X_{k}$ will have the property that any disk of diameter $1 / 16^{k}$ whose projection interval is in I is disjoint from any (larger) disk in S_{j}, $j<k$.

Figure 2: Disk Q and the exponentially decreasing pairs of intervals $I_{k}(Q), k=1,2, \ldots$

Consider the disk Q of diameter 1 , centered at ($0, \frac{1}{2}$), and tangent to the x-axis (see Fig. 2). It can be easily verified that: (i) the locus of centers of disks tangent to both Q and the x-axis is the parabola $y=\frac{1}{2} x^{2}$; and (ii) any disk of diameter $1 / 16$ and tangent to the x-axis whose projection interval is in $I_{1}(Q)=\left[-\frac{1}{2},-\frac{1}{4}\right] \cup\left[\frac{1}{4}, \frac{1}{2}\right]$ is disjoint from Q. Similarly, for all $k \in \mathbb{N}$, any disk of diameter $1 / 16^{k}$ and tangent to the x-axis whose projection interval is in $I_{k}(Q)=\left[-\frac{1}{2^{k}},-\frac{1}{2^{k+1}}\right] \cup\left[\frac{1}{2^{k+1}}, \frac{1}{2^{k}}\right]$ is disjoint from Q. For an arbitrary disk D tangent to the x-axis, and an integer $k \geq 1$, denote by $I_{k}(D) \subseteq\left[-\frac{1}{2}, \frac{1}{2}\right]$ the pair of intervals corresponding to $I_{k}(Q)$; for $k=0$, $I_{k}(D)$ consists of only one interval.

We can now recursively allocate intervals in X_{k} and choose disks in $S_{k}\left(k=0,1, \ldots,\left\lfloor\log _{16} n\right\rfloor\right)$ as follows. Recall that $X_{0}=\left[-\frac{1}{2}, \frac{1}{2}\right]$, and S_{0} contains a single disk of unit diameter inscribed in the unit square $\left[-\frac{1}{2}, \frac{1}{2}\right] \times$ $[0,1]$. Assume that we have already defined the intervals in X_{k-1}, and selected disks in S_{k-1}. Let X_{k} be the union of the interval pairs $I_{k-j}(D)$ for all $D \in S_{j}$ and $j=0,1, \ldots, k-1$. Place the maximum number of disks of diameter $1 / 16^{k}$ into S_{k} such that their projection intervals are contained in X_{k}. For a disk $D \in S_{j}(j=$ $0,1, \ldots, k-1$) of diameter $1 / 16^{j}$, the two intervals in X_{k-j} each have length $\frac{1}{2} \cdot \frac{1}{2^{k-j}} \cdot \frac{1}{16^{j}}=\frac{8^{k-j}}{2} \cdot \frac{1}{16^{k}}$, so they can each accommodate the projection intervals of $\frac{8^{k-j}}{2}$ disks in S_{k}.

We prove by induction on k that the length of X_{k} is $\frac{1}{2}$, and so the sum of the diameters of the disks in S_{k} is $\frac{1}{2}, k=1,2, \ldots,\left\lfloor\log _{16} n\right\rfloor$. The interval $X_{0}=\left[-\frac{1}{2}, \frac{1}{2}\right]$ has length 1. The pair of intervals $X_{1}=\left[-\frac{1}{2},-\frac{1}{4}\right] \cup$ $\left[\frac{1}{4}, \frac{1}{2}\right]$ has length $\frac{1}{2}$. For $k=2, \ldots,\left\lfloor\log _{16} n\right\rfloor$, the set X_{k} consists of two types of (disjoint) intervals: (a) The pair of intervals $I_{1}(D)$ for every $D \in S_{k-1}$ covers half of the projection interval of D. Over all $D \in S_{k-1}$, they jointly cover half the length of X_{k-1}. (b) Each pair of intervals $I_{k-j}(D)$ for $D \in S_{k-j}, j=0, \ldots, k-2$, has half the length of $I_{k-j-1}(D)$. So the sum of the lengths of these intervals is half the length of X_{k-1}; although they are disjoint from X_{k-1}. Altogether, the sum of lengths of all intervals in X_{k} is the same as the length of X_{k-1}. By induction, the length of X_{k-1} is $\frac{1}{2}$, hence the length of X_{k} is also $\frac{1}{2}$, as claimed. This immediately implies that the sum of diameters of the disks in $\bigcup_{k=0}^{\left\lfloor\log _{16} n\right\rfloor} S_{k}$ is $1+\frac{1}{2}\left\lfloor\log _{16} n\right\rfloor$. Finally, one can verify that the total number of disks used is $O(n)$. Write $a=\left\lfloor\log _{16} n\right\rfloor$. Indeed, $\left|S_{0}\right|=1$, and $\left|S_{k}\right|=\left|X_{k}\right| / 16^{-k}=16^{k} / 2$, for $k=1, \ldots, a$, where $\left|X_{k}\right|$ denotes the total length of the intervals in X_{k}. Consequently, $\left|S_{0}\right|+\sum_{k=1}^{a}\left|S_{k}\right|=$ $O\left(16^{k}\right)=O(n)$, as required.

References

[1] M. de Berg, J. Gudmundsson, M. J. Katz, C. Levcopoulos, M. H. Overmars, and A. F. van der Stappen, TSP with neighborhoods of varying size, J. of Algorithms, 57(1) (2005), 22-36.
[2] A. Dumitrescu and C D. Tóth, The traveling salesman problem for lines, balls and planes, Proc. 24 th $S O D A$, 2013, SIAM, to appear.
[3] C. Levcopoulos and A. Lingas, Bounds on the length of convex partitions of polygons, Proc. 4th FST-TCS, vol. 181 of LNCS, 1984, Springer, pp. 279-295.
[4] C. Mata and J. S. B. Mitchell, Approximation algorithms for geometric tour and network design problems, Proc. 11th SOCG, 1995, ACM, pp. 360-369.
[5] J. S. B. Mitchell, A constant-factor approximation algorithm for TSP with pairwise-disjoint connected neighborhoods in the plane, Proc. 26th SOCG, 2010, ACM, 183-191.

[^0]: *Department of Computer Science, University of WisconsinMilwaukee. Email: dumitres@uwm.edu.
 ${ }^{\dagger}$ Department of Mathematics and Statistics, University of Calgary, and Department of Computer Science, Tufts University. Email: cdtoth@ucalgary.ca.

