On Beating the Hybrid Argument

Bill Fefferman (Caltech)
Joint with Ronen Shaltiel (Haifa), Chris Umans (Caltech), and Emanuele Viola (Northeastern)
Hybrid Argument

• \(U \) uniform distribution over binary strings
• \(G : \{0,1\}^N \to \{0,1\}^M \)
• \([Yao \ '82]\) Suppose we have a circuit \(C \) that \(\epsilon \)-distinguishes \(U^M \) from \(G(U^N) \), then there is a similar size “predictor circuit” \(P \)

\[
| \Pr[C(U^M) = 1] - \Pr[C(G(U^N)) = 1] | > \epsilon \\
\implies \Pr_{x \sim U}[P(G(x)_{1 \ldots i-1}) = G(x)_i] > \frac{1}{2} + \frac{\epsilon}{M}
\]

• Contrapositive: Unpredictability \(\implies \) Indistinguishability
 • Hybrid loss becomes hurdle when \(M >> 1/\epsilon \)
Our results

We show the following consequences can be achieved if the loss of the hybrid argument can be avoided:

1. Oracle relative to which $\text{BQP} \not\subset \text{PH}$
2. Better pseudorandom generators for small space
 - E.g., prove output of INW generator with seed length $O(\log n \log \log n)$ is unpredictable with advantage $1/\log n$ against polylog width read-once branching programs

Prove that such a beating is possible in restricted cases:
 - Results in improved pseudorandom generators against classes related to AC^0
How (classically) powerful are quantum computers?

• **BQP** – Class of languages that can be decided efficiently by a quantum computer

• Where is **BQP** relative to **NP**?

 – Is there a problem that can be solved with a quantum computer that can’t be verified classically (**BQP** $\not\subset$ **NP**?)

 – Can we give evidence?

 • Oracle separations
Is $\text{BQP} \not\subseteq \text{PH}$?

- History: Towards stronger oracle separations
 - [Bernstein & Vazirani ‘93]
 - Recursive Fourier Sampling?
 - [Aaronson ‘09]
 - Conjecture: “Fourier Checking”
 - not in PH
 - Assuming GLN
 - [Aaronson ‘10] (counterexample!)
 - GLN false (depth 3)
What can’t PH^0 do?

- Essentially equivalent to: what can’t AC^0 do?
 - AC^0 is constant depth, AND-OR-NOT circuits of (polynomial size) and unbounded fanin
 - Idea: In circuit, \exists becomes OR, \forall becomes AND and oracle string an input of exponential length

$$\exists \pi_1 \forall \pi_2, \ldots, Q_k \pi_k \ V_L^O (x, \pi_1, \pi_2, \ldots, \pi_k) = 1$$
Equivalent Setup

• Want a function $f: \{0,1\}^N \rightarrow \{0,1\}$
 – in BQLOGTIME
 • $O(\log N)$ quantum steps
 • random access to N-bit input: $|i\rangle|z\rangle \rightarrow |i\rangle|z \oplus f(i)\rangle$
 • accept with high probability iff $f(\text{input}) = 1$

– but not in AC^0
Equivalent Setup

• More general (and transformable to previous setting):
 – two distributions on N bit strings D_1, D_2
 – BQLOGTIME algorithm that distinguishes them
 – proof that AC^0 cannot distinguish them
 – we will always take D_2 to be uniform
What can’t AC^0 do?

- PARITY and MAJORITY not in AC^0 [FSS ’84]
- AC^0 circuits can’t distinguish:
 1. Bits distributed uniformly
 2. Bits drawn from “Nisan-Wigderson” distribution derived from:
 1. function hard (on average) for AC^0 to compute
 2. Nearly-disjoint “subset system”

Our work: There exists a specific choice of these subsets, for which the resulting distribution generated by the MAJORITY function can be distinguished (from uniform) quantumly!
Formal: Nisan-Wigderson PRG

• \(S_1, S_2, \ldots, S_M \subseteq [N] \) is an \((N', p)\)-design if

 – for all \(i \), \(|S_i| = N'\)
 – for all \(i \neq j \), \(|S_i \cap S_j| \leq p\)
Nisan-Wigderson PRG

- \(f: \{0,1\}^{N'} \rightarrow \{0,1\} \) is a hard function (e.g., \textsc{majority})
- \(S_1, \ldots, S_M \subset [N] \) is an \((N', p)\)-design

\[
G(x) = f(x|_{S_1}) \circ f(x|_{S_2}) \circ \ldots \circ f(x|_{S_M})
\]

truth table of \(f \):

```
010100101111101011001010
```

Seed \(x \in \{0,1\}^N \)
Distributions distinguishable from Uniform with a quantum computer

\[D_A = (x, y) : \text{pick } x \text{ uniformly from } \{1, -1\}^N, \text{ set } y_i = \text{sgn}((Ax)_i) \]

- Goal: Matrix A with rows that
 1. Have large support
 2. Have supports with small pairwise intersection (form some \((N',p)\)-design)
 3. Are pairwise orthogonal
 4. Should be an efficient quantum circuit (product of polylog\((N)\) local unitaries)

\[
\begin{bmatrix}
 +1 \\
 -1 \\
 +1
\end{bmatrix}
= \text{design } S
\]

\[
\begin{bmatrix}
 A \\
 x
\end{bmatrix}
= (Ax)
\]

signs are output of \(NW_{S, \text{MAJORITY}}\)

January 2012

ITCS 2012
Quantum Algorithm

\[D_A = (x, y): \text{pick } x \text{ uniformly from } \{1, -1\}^N, \text{ set } y_i = \text{sgn}((Ax)_i) \]

- We claim there is a quantum algorithm to distinguish \(D_A \) from \(U_{2N} \)
 1. enter uniform superposition over \(\log N \) qubits
 2. query \(x \) and multiply into phases: \(\sum_i x_i |i> \)
 3. apply \(A \): \(\sum_i (Ax)_i |i> \)
 4. query \(y \) and multiply into phases: \(\sum_i y_i(Ax)_i |i> \)
 5. measure in Hadamard basis, accept iff \((0,0,...,0)\)

- Crucially, after step 4 we are back to all positive amplitudes in case oracle is \(D_A \)
- But in case oracle is \(U_{2N} \) with high prob. we have random mix of signs (low weight on \(|0...,0>\) after final Hadamard)
Constructing A using “Paired Lines”

- Goal: construct an $N \times N$ unitary matrix with supports of rows forming (N',p)-design
 - Identify with each row a pair of parallel “lines” in the affine plane $\mathbb{F}_{\sqrt{N}} \times \mathbb{F}_{\sqrt{N}}$
 - Identify points in the plane with columns
- For each row, as we go across columns:
 - +1 if point is on one of the lines
 - -1 if point is on other
 - 0 otherwise
- Use geometry of plane to argue orthogonality (and thus unitarity)
Construction

• Each row will be supported on two parallel “paired-lines”

• Identify columns with affine plane

\[
\mathbb{F}_{\sqrt{N}} \times \mathbb{F}_{\sqrt{N}}
\]

+ + +	- - -	+ + +	- - -
+	+ - +	- - +	- + -
+	+ - +	- - +	- + -

• \(\sqrt{N} \) parallel line classes
• \(\sqrt{N} \) lines in each class
• \(N/2 \) rows
Construction

• Each row will be supported on two parallel “paired-lines”

• Identify columns with affine plane $\mathbb{F}_{\sqrt{N}} \times \mathbb{F}_{\sqrt{N}}$

Note that support of each row has at most 4 intersections with any other, and these contribute 0 to the inner product (and thus orthogonal)
Putting it all together

• “Technical Core”: We construct an efficient quantum circuit realized by unitary whose (un-normalized) rows are vectors from a paired-lines construction
 – N x N
 – Half of the rows will correspond to the paired-lines vectors

• Note that we have a quantum algorithm, as described before, that uses this unitary A to distinguish between D_A and U^{2N}

• But distinguishing should be hard for AC^0 since $(x,\text{sgn}(Ax))$ is instantiation of NW generator!
But why aren’t we finished? (hybrid loss)

• Distribution on $(3/2)N$ bits that is the NW generator w.r.t. MAJORITY on $N^{1/2}$ bits, with output length $N/2$

• Suppose AC^0 can distinguish from uniform with constant gap ε

 – proof: distinguisher to predictor, and then circuit for majority w/ success $\frac{1}{2} + \varepsilon/(N/2)$

 – but already possible w/ success $\frac{1}{2} + \Omega(1/N^{1/4})$

 ... no contradiction

Nonetheless, we conjecture this distribution cannot be distinguished by AC^0 with constant gap ε
Beating the Hybrid Argument?
“Resampling lemma”

• \(S \) is a **resampler** for function \(f(x) \) if
 \[
 S(x) \text{ is uniform on } \{x' : f(x') = f(x)\}
 \]

Lemma (informal): Suppose \(f \) has resampler, then distinguishing:
 \[
 M \text{ repetitions of } (U_n, f(U_n))
 \]
 from
 \[
 \text{uniform}
 \]
 is as hard as computing (on avg.) \(f(x) \).

(Nontrivial for large \(M \)!)

recall: need \(M < 1/\text{adv}(f) \) for hybrid argument

now: \(M \) can be as large as \(\exp(n) \), for suitably hard functions \(f \)
Resampling lemma allows us to beat Hybrid Argument in restricted cases

- Proves the “disjoint case” of Conjecture:
 - Theorem: $M = \exp(n)$ copies of U_n, $\text{MAJ}(U_n)$ indistinguishable from uniform
- Don’t know of resampler for MAJORITY!
- Do for Hamming Weight problem
 - YES: x has weight $= n/2 + t$
 - NO: x has weight $= n/2 - t$
 - Resampler: randomly permute bits!
- PRGs with improved stretch for
 - $\text{AC}^0[p]$ with prime $p > 2$ (via parity)
 - AC^0 with a not-too-large number of majority gates (via parity)
 - $\text{AC}^0[2]$ via the Connectivity Matrix Determinant problem [Ishai + Kushilevitz]
Conclusions

• Showed settings in which “beating the hybrid argument” proves new results in complexity
• Proved that in restricted cases, we can beat the hybrid argument
 – Enough to show improved PRGs against classes related to AC^0
 – Proves “disjoint case” of quantum conjecture!

January 2012

ITCS 2012