1 Homework 5 (Solution)

1. Given

\[
\frac{1}{y - x_i} = \frac{1}{(y - x) - (x_i - x)} = \frac{1}{y - x} \left(1 - \frac{x_i - x}{y - x} \right)^{-1}
\]

Following the hint we can write

\[
\frac{1}{y - x_i} = \frac{1}{y - x} \left(1 + \frac{x_i - x}{y - x} + \ldots + \frac{(x_i - x)^{p-1}}{(y - x)^{(p-1)}} \right) + \frac{1}{y - x} \left(\frac{x_i - x}{y - x}\right)^p \frac{1}{1 - \frac{x_i - x}{y - x}}
\]

The required S expansion is then

\[
\Phi(x_i, y) = \frac{1}{y - x_i} = \sum_{m=0}^{p-1} b_m(x_i, x) S_m(y - x) + \text{Error}(p)
\]

with

\[
b_m(x_i, x) = (x_i - x)^m \quad \text{and} \quad S_m(y - x) = (y - x)^{-m-1},
\]

and the residual term is given by

\[
\text{Error}(p) = \frac{1}{y - x} \left(\frac{x_i - x}{y - x}\right)^p \frac{1}{1 - \frac{x_i - x}{y - x}} = \frac{(x_i - x)^p}{(y - x)^p} \frac{1}{y - x_i}
\]

We are given \(x_i = 0 \). So the terms can be written as

\[
b_m(x_i, x) = x_i^m, \quad S_m(y - x) = y^{-m}, \quad \text{Error}(p) = \frac{x_i^p}{y^p} \frac{1}{\frac{3}{2}l - x_i}
\]

Our goal is now to evaluate a relationship between the maximum magnitude of the residual, and \(p \) and \(l \). We are given \(x_i \in \left[-\frac{l}{2}, \frac{l}{2}\right], \ y \in \left[\frac{3}{2}l, \frac{5}{2}l\right] \). Looking at the error function we see that, given that \(y \) is positive increasing \(y \) should decrease the function monotonically. Because we wish to be conservative in our error estimates we can set \(y = \frac{3}{2}l \) and obtain

\[
\text{Error}(p) \leq \frac{x_i^p}{\left(\frac{3}{2}l\right)^p} \frac{1}{\frac{3}{2}l - x_i}
\]

The situation with \(x \) is a bit more complex as \(x \) has both positive and negative values. We can find the minimum of the function of \(p \) with \(x_i \)

\[
\frac{\partial E}{\partial x_i} = \frac{px_i^{p-1}}{y^p} \frac{1}{y - x_i} + \frac{x_i^p}{y^p} \left(-\frac{1}{(y - x_i)^2}\right) (-1) = \frac{px_i^{p-1}}{y^p} \frac{1}{y - x_i} + \frac{x_i^p}{y^p} \left(\frac{1}{y - x_i}\right)^2
\]

\[
= \frac{x_i^{p-1}}{y^p (y - x_i)} \left(p + \frac{x_i}{y - x_i}\right) = \frac{x_i^{p-1}}{\left(\frac{3}{2}l - x_i\right)} \left(p + \frac{x_i}{\frac{3}{2}l - x_i}\right) \left(p + \frac{x_i}{\frac{3}{2}l - x_i}\right)
\]

This vanishes when

\[
x_i = -p \left(\frac{3}{2}l - x_i\right)
\]

or

\[
(p - 1) x_i = \frac{3p}{2}l, \quad \text{or} \quad x_i = \frac{3p}{2(p - 1)}l
\]
Figure 1:

For large p this is close to $1.5l$ while at $p = 2$ it is at $3l$, and so the extremum is attained outside the range $[-\frac{l}{2}, \frac{l}{2}]$. We can therefore bound the error by choosing the largest value of the numerator and the smallest one of the denominator

$$E_S(p) \leq \left(\frac{1}{2}\right)^p \frac{lp}{l} \frac{1}{2} = \frac{1}{3lp} = \epsilon.$$

So we have

$$\log \epsilon = -p \log 3 - \log l,$$

or

$$p = \left\lceil \frac{-\log \epsilon + \log l}{\log 3} \right\rceil = \left\lceil \log_3 \frac{1}{\epsilon} \right\rceil,$$

and p can be chosen as the nearest integer above this estimate.
Figure 2:

- Theory
- Experiment, $x=0.5l$, $y=1.5l$

$p=10$

Max abs error, ϵ

The length of interval, l
Figure 3:

Experiment, \(x_i \) and \(y \) are random points from \([0.5^*, 0.5^*]\) and \([1.5^*, 2.5^*]\), respectively.
Figure 4:

The length of interval, l

Max abs error, ε

Experiment, x_i and y are random points from $[-0.5^*,0.5^*]$ and $[1.5^*,2.5^*]$, respectively

Theory, $\rho=10$
2. The R expansion is for $(y - x_*) < (x_i - x_*)$, and is given by

\[
\frac{1}{y - x_i} = \frac{1}{(y - x_*) - (x_i - x_*)} = \frac{1}{-(x_i - x_*)} \left(1 - \frac{y - x_*}{x_i - x_*}\right)
\]

\[
= \frac{-1}{(x_i - x_*)} \left(1 + \frac{y - x_*}{x_i - x_*} + \ldots + \left(\frac{y - x_*}{x_i - x_*}\right)^{p-1}\right) - \frac{1}{(x_i - x_*)} \frac{1}{1 - \frac{y - x_*}{x_i - x_*}} \left(\frac{y - x_*}{x_i - x_*}\right)^p
\]

\[
a_m(x, x_*) = -(x_i - x_*)^{-m-1} \quad R_m(y - x_*) = (y - x_*)^m \quad \text{Error}(p) = \frac{1}{y - x_i} \left(\frac{y - x_*}{x_i - x_*}\right)^p
\]

For doing the p-truncated $S|R$-translation of S-expansion coefficients to R-expansion coefficients we use the expression for the matrix given in class

\[
(S|R)_{mn}(t) = 1
\]

\[
\frac{d^m S_n(t)}{dt^m} = \frac{(-1)^m (m+n)!}{m!n!t^{n+m+1}}
\]

\[
(S|R)(t) = \begin{pmatrix}
 t^{-1} & t^{-2} & t^{-3} & \ldots \\
 -t^{-2} & -2t^{-3} & -3t^{-4} & \ldots \\
 t^{-3} & 3t^{-4} & 6t^{-5} & \ldots \\
 \ldots & \ldots & \ldots & \ldots
\end{pmatrix}
\]

A matlab function to calculate this matrix and return the R coefficients after a matrix vector product is attached.

3. For $l = 2$ we show the results of the $p = 20$ truncated S-expansion of $\Phi(y, x_i)$ shifted by the vector $t = 4$. Convolve the output vector of R-expansion coefficients with R-basis functions centered at $x_* = 2l$ to get approximate value of $\Phi(y, x_i)$ at $y \in \left[\frac{2}{2}, \frac{5}{2}\right]$. Compare this result with exact (straightforward) computation of $\Phi(y, x_i)$.

translation is performed exactly we have the following series:

\[
\Phi(y, x_i) = \sum_{m=0}^{\infty} a_m(x_i, x_*) R_m(y-x_*) ,
\]

\[
a_m(x_i, x_*) = -(x_i - x_*)^{-m-1} , \ m = 0, 1, ...
\]

\[
R_m(y-x_*) = (y-x_*)^m , \ m = 0, 1, ...
\]

which should be considered near \(x_* = 2t \). Truncation error of the exact expansion is

\[
\left| \Phi(y, x_i) - \sum_{m=0}^{p-1} a_m(x_i, x_*) R_m(y-x_*) \right| = \left| \sum_{m=p}^{\infty} a_m(x_i, x_*) R_m(y-x_*) \right| = \left| - \frac{1}{x_i - x_*} \sum_{m=p}^{\infty} \frac{(y-x_*)^m}{x_i - x_*} \right| = \left| \frac{1}{y-x_i} \left(\frac{y-x_*}{x_i - x_*} \right)^p \right| \leq \frac{1}{l} \frac{1}{3^p}.
\]

This shows that the error of the \(p \)-truncation operator both for \(S^- \) and \(R^- \) series is the same, so we have

\[
|Pr(p)\Phi(y, x_i) - \Phi(y, x_i)| \leq \epsilon, \ \epsilon = \frac{1}{l} \frac{1}{3^p}.
\]

So the norm of the truncation operation, \(Pr(p) \) does not exceed \(1 + \epsilon \). Also \(\|T(t)\| \leq 1 \), so

\[
\|Pr(p)\| \|T(t)\| \leq 1 + \epsilon.
\]

Consider now the error of the \(p \)-truncated translation:

\[
\left| T^{(p)}(t)\Phi(y, x_i) - T(t)\Phi(y, x_i) \right| = |Pr(p)T(t) Pr(p)\Phi(y, x_i) - T(t)\Phi(y, x_i)| = |Pr(p)T(t) Pr(p)\Phi(y, x_i) - Pr(p)T(t)\Phi(y, x_i) + Pr(p)T(t)\Phi(y, x_i) - T(t)\Phi(y, x_i)| \\
\leq |Pr(p)T(t) Pr(p)\Phi(y, x_i) - Pr(p)T(t)\Phi(y, x_i)| + |Pr(p)T(t)\Phi(y, x_i) - T(t)\Phi(y, x_i)| \\
\leq |Pr(p)T(t)| |Pr(p)\Phi(y, x_i) - \Phi(y, x_i)| + |Pr(p)\Phi(y, x_i) - \Phi(y, x_i)| \\
\leq (1 + \epsilon)\epsilon + \epsilon = 2\epsilon + \epsilon^2 \approx 2\epsilon.
\]

4. **Method 2. Tighter Error Bound. Direct Evaluation.** Consider S-expansion near point \(x_{s1} \) (in our case \(x_{s1} = 0 \)):

\[
\Phi(y, x_i) = \sum_{m=0}^{\infty} b_m(x_i, x_{s1}) S_m(y-x_{s1}) ,
\]

\[
b_m(x_i, x_{s1}) = (x_i - x_{s1})^m , \ m = 0, 1, ...
\]

\[
S_m(y-x_{s1}) = (y-x_{s1})^{-m-1} , \ m = 0, 1, ...
\]

Exact S|R-translation to new expansion center \(x_{s2} \) (in our case \(x_{s2} = 2t = t \)) can be performed using infinite matrix

\[
(S|R)_{mn}(t) = \frac{(-1)^m(m+n)!}{m!n!(m+n+1)} , \ t = x_{s2} - x_{s1}
\]

so

\[
a_m(x_i, x_{s2}) = \sum_{n=0}^{\infty} (S|R)_{mn}(t) b_n(x_i, x_{s1}).
\]
In this case we have
\[\Phi(y, x_i) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} c_{mn}, \]
where
\[c_{mn} = (S|R)_{mn}(t) b_n(x_i, x_{*1}) R_m(y - x_{*2}) \]
\[= \frac{(-1)^m(m + n)!}{m!n!t^{m+n+1}} (x_i - x_{*1})^m (y - x_{*2})^n \]
Translation with p–truncated operator \((S|R)^{(p)}_{mn}(t)\) yields
\[\Phi^{(p)}(y, x_i) = \sum_{m=0}^{p-1} \sum_{n=0}^{p-1} c_{mn}. \]
The error of truncated translation is therefore
\[
\left| \Phi(y, x_i) - \Phi^{(p)}(y, x_i) \right| = \left| \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} c_{mn} - \sum_{m=0}^{p-1} \sum_{n=0}^{p-1} c_{mn} \right|
\]
\[= \left| \sum_{m=0}^{p-1} \sum_{n=0}^{\infty} c_{mn} + \sum_{m=0}^{\infty} \sum_{n=0}^{p-1} c_{mn} - \sum_{m=0}^{p-1} \sum_{n=0}^{p-1} c_{mn} \right|
\]
\[= \left| \sum_{m=0}^{p-1} \sum_{n=0}^{\infty} c_{mn} + \sum_{m=0}^{\infty} \sum_{n=0}^{p-1} c_{mn} \right| \leq \sum_{m=0}^{p-1} \sum_{n=0}^{p-1} |c_{mn}| \leq \sum_{m=0}^{p-1} \sum_{n=0}^{p-1} |c_{mn}|
\]
\[\leq \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} |c_{mn}| = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} |c_{mn}| + \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} |c_{mn}| + \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} |c_{mn}|
\]
\[\leq \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(m + n)!}{m!n!t^{m+n+1}} \left| [x_i - x_{*1}]^m |y - x_{*2}|^n + [x_i - x_{*1}]^m |y - x_{*2}|^n \right|
\]
\[\leq \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(m + n)!}{m!n!t^{m+n+1}} \left[\frac{1}{2^n} \frac{1}{2^m} \frac{1}{2^n} \right]
\]
\[= 2 \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(m + n)!}{m!n!} \left(\frac{1}{4} \right)^{m+n} + 2 \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(m + n)!}{m!n!} \left(\frac{1}{2} \right)^{m+n+1}
\]
\[= \frac{1}{7} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(m + n)!}{m!n!} \left(\frac{1}{4} \right)^{n+m} = \frac{1}{7} \sum_{m=0}^{\infty} \frac{1}{4} \sum_{n=0}^{m} \frac{(m + n)!}{m!n!} \left(\frac{1}{4} \right)^{n+m+n}
\]
\[= \frac{1}{7} \sum_{m=0}^{\infty} \frac{1}{4} \left(\frac{1}{4} \right)^{m+1} \left(\frac{1}{4} \right)^{m+1} = \frac{1}{7} \sum_{m=0}^{\infty} \frac{1}{3^{m+1}} = \frac{4}{7} \sum_{m=0}^{\infty} \frac{1}{3^{m+1}} = \frac{4}{7} \sum_{l=0}^{\infty} \frac{1}{3^l} = \frac{4}{7} \frac{1}{3^l} \frac{1}{3} = \frac{4}{7} \sum_{l=0}^{\infty} \frac{1}{3^{l+1}}
\]
\[= \frac{2}{7} \sum_{m=0}^{\infty} \frac{1}{3^{m+1}} = \frac{2}{7} \sum_{m=0}^{\infty} \frac{1}{3^m} = 2 \epsilon, \quad (\epsilon = \frac{1}{7} \frac{1}{3^p}).
Here we used the fact that

\[
\frac{1}{(1 - \alpha)^{m+1}} = 1 + (m + 1) \alpha + \frac{(m + 1)(m + 2)}{2!} \alpha^2 + \ldots = \sum_{n=0}^{\infty} \frac{(m + n)!}{m!n!} \alpha^n, \quad |\alpha| < 1.
\]
Figure 6:

- Error of using truncated translation operator:
 \(x = 0.5^*l, \ y = 1.5^*l \)

- Single truncation error:
 \(x = 0.5^*l, \ y = 1.5^*l \)

- Theory
- Experiment

The length of the interval, \(l \)

Max abs error, \(\epsilon \)
Figure 7:

- Method 1
- Method 2
- Theory
- Error of truncated translation
- Max abs error, ϵ
- Truncation number, p
- Single truncation error
- x_i and y are random points on intervals $[-0.5^\circ, 0.5^\circ]$ and $[1.5^\circ, 2.5^\circ]$, respectively.
Figure 8: