Lecture 25, CMSC 878R/AMSC 698R
Lectures 1 – 3 and Homework 1

- Introduction Applications: Physics, Computer Vision, etc. Simple example of factorization for degenerate kernel
- Simple factorization example. Intro to Matlab.
A very simple algorithm

- Not FMM, but has some key ideas
- Consider
 \[S(x_i) = \sum_{j=1}^{N} \alpha_j (x_i - y_j)^2 \quad i=1, \ldots, M \]
- Naïve way to evaluate the sum will require \(MN \) operations
- Instead can write the sum as
 \[S(x_i) = (\sum_{j=1}^{N} \alpha_j) x_i^2 + (\sum_{j=1}^{N} \alpha_j y_j^2) - 2x_i(\sum_{j=1}^{N} \alpha_j y_j) \]

 - Can evaluate each bracketed sum over \(j \) and evaluate an expression of the type
 \[S(x_i) = \beta x_i^2 + \gamma - 2x_i \delta \]

 - Requires \(O(M+N) \) operations
- Key idea – use of analytical manipulation of series to achieve faster summation
Far Field and Near Field

Near Field of the ith source:
$|y - x_i| < r_c$.

Far Field of the ith source:
$|y - x_i| > R_c$.

What are these r_c and R_c?
depends on the potential + some conventions for the terminology.
Local (Regular) Expansion

Do not confuse with the Near Field!

Let

We call expansion

local (regular) inside a sphere

if the series converges for $\forall y$, $|y - x_\ast| < r_\ast$.

We also call this R-expansion, since basis functions R_m should be regular.
Local Expansion of a Regular Potential

Can be like this:

\[|y - x^*| < r_\ast < |x_i - x^*| \]

\[r_\ast > |y - x^*| > |x_i - x^*| \]

...or like this:

\[r_\ast > |x_i - x^*| > |y - x^*| \]

...or like this:
Local Expansion of a Singular Potential

Can be like this:

\[|y - x_*| < r_* \leq |x_i - x_*| \]

Like this only!

...or like this:

\[r_* > |y - x_*| > |x_i - x_*| \]

Never ever!

Because \(x_i \) is a singular point!
Lectures 4-5, Homework 2

- Multidimensional Taylor series.
- Kronecker product. Dot product.
- General form of factorization.
- Properties of Kronecker and dot product.
- Middleman factorization for sums of Gaussians using Taylor series.
- Compression of multidimensional series. Compression operator. Complexity in d-dimensions. Use of compression in multidimensional FMM.
Use Compression!

Compression operator:

\[A^n = \text{Compress}(a^n) \]

Required Property:

\[a^n \cdot b^n = \text{Compress}(a^n) \cdot \text{Compress}(b^n). \]

Consider \(R^2 \):

\[
a^n \cdot b^n = (a \cdot b)^n = (a_1 b_1 + a_2 b_2)^n = a_1^n b_1^n + \binom{n}{1} a_1^{n-1} b_1^{n-1} a_2 b_2 + \binom{n}{2} a_1^{n-2} b_1^{n-2} a_2^2 b_2^2 + \ldots + a_2^n b_2^n
\]

The length is only \((n + 1)\), not \(2^n\).

Let us define:

\[
A^n = \text{Compress}(a^n) = \left(a_1^n, \sqrt{\binom{n}{1} a_1^{n-1} a_2}, \sqrt{\binom{n}{2} a_1^{n-2} a_2^2}, \ldots, a_2^n \right),
\]

\[
B^n = \text{Compress}(b^n) = \left(b_1^n, \sqrt{\binom{n}{1} b_1^{n-1} b_2}, \sqrt{\binom{n}{2} b_1^{n-2} b_2^2}, \ldots, b_2^n \right).
\]
Example of Fast Computation

\[v_j = \sum_{i=1}^{N} u_i \Phi(y_j, x_i) = \sum_{m=0}^{p-1} c_m \cdot (y_j - x_s)^m + \text{Residual}, \quad c_m = \frac{1}{m!} \sum_{i=1}^{N} u_i e^{x_s \cdot x_i} x_i^m. \]

Equivalent to:

\[v_j = \sum_{m=0}^{p-1} C_m \cdot \text{Compress} \left((y_j - x_s)^m \right) + \text{Residual}, \quad C_m = \frac{1}{m!} \sum_{i=1}^{N} u_i e^{x_s \cdot x_i} \text{Compress}(x_i^m). \]

Number of multiplications (complexity) to obtain \(v_j \):

\[\text{Complexity} = 1 + 2 + \ldots + p = \frac{p(p + 1)}{2}. \]
Compression Can be Performed for any Dimensionality (Example for 3D):

\[a^n \cdot b^n = (a \cdot b)^n = (a_1 b_1 + a_2 b_2 + a_3 b_3)^n \]

\[= [(a_1 b_1 + a_2 b_2) + a_3 b_3]^n = \sum_{m=0}^{n} \binom{n}{m} (a_1 b_1 + a_2 b_2)^{n-m} a_3^m b_3^m \]

\[= \sum_{m=0}^{n} \sum_{l=0}^{n-m} \binom{n}{m} \binom{n-m}{l} a_1^{n-m-l} b_1^{n-m-l} a_2^l b_2^l a_3^m b_3^m \]

\[= a_1^n b_1^n + \binom{n}{1} a_1^{n-1} b_1^{n-1} a_2 b_2 + \binom{n}{2} a_1^{n-2} b_1^{n-2} a_2^2 b_2^2 + ... + a_2^n b_2^n \]

\[+ \binom{n}{1} a_1^{n-1} b_1^{n-1} a_3 b_3 + \binom{n}{1} \binom{n-1}{1} a_1^{n-2} b_1^{n-2} a_2 a_3 b_3 + ... + a_3^n b_3^n, \]

\[\text{Compress}(a^n) = \left(\sqrt[n]{a_1^n}, \sqrt[n]{a_1^{n-1} a_2}, \sqrt[n]{a_1^{n-2} a_2^2}, ..., \sqrt[n]{a_2^n}, \sqrt[n]{a_1^{n-1} a_3}, ..., a_3^n \right) \]

The length of \(a^n \) is \((n+1)+n+...+1=(n+1)(n+2)/2\)
Lectures 6 -8, Homework 3

- Far field expansions. Functional analysis review. Basis functions. Far field expansions. Examples of far field expansions (power, asymptotic)
- Multidimensional middleman for FGT and use of the “Compression” operator.
 - $S|S$, $R|R$, $S|R$ operators
- Single level FMM
- Requirements for functions in FMM.
- Formalization of FMM.
Four Key Stones of FMM

- Factorization
- Error
- Translation
- Grouping
Summary of formal requirements for functions that can be used in FMM

- We have two sets of points:
 \[X = \{x_1, x_2, ..., x_N\}, \quad x_i \in \mathbb{R}^d, \quad i = 1, ..., N, \]
 \[Y = \{y_1, y_2, ..., y_M\}, \quad y_j \in \mathbb{R}^d, \quad j = 1, ..., M. \]

- We have functions (potentials):
 \[\Phi(x_i, y) : \mathbb{R}^d \to \mathbb{R}, \quad y \in \mathbb{R}^d, \quad i = 1, ..., N. \]

- These functions can be factorized as (local expansion):
 \[\Phi(x_i, y) = A(x_i, x_*) \circ R(y - x_*), \quad |y - x_*| < r < |x_i - x_*|, \quad i = 1, ..., N \]

- These functions can be factorized as (far field expansion):
 \[\Phi(x_i, y) = B(x_i, x_*) \circ S(x - x_*), \quad |y - x_*| > R > |x_i - x_*|, \quad i = 1, ..., N \]

- The product is distributive operation with respect to addition
 \[(u_1A_1 + u_2A_2) \circ F = u_1A_1 \circ F + u_2A_2 \circ F, \quad F = S, R \]
Summary of formal requirements for functions that can be used in FMM (2)

- **R-expansion coefficients can be R|R-translated:**
 \[|x - x_{*2}| < |x_i - x_{*1}| - |x_{*1} - x_{*2}| : \]
 \[A(x_i, x_{*2}) = (R|R)(x_{*2} - x_{*1})A(x_i, x_{*1}) \]

- **S-expansion coefficients can be S|S-translated:**
 \[|x - x_{*2}| > |x_{*1} - x_{*2}| + |x_i - x_{*1}|, \]
 \[B(x_i, x_{*2}) = (S|S)(x_{*2} - x_{*1})B(x_i, x_{*1}) \]

- **S-expansion coefficients can be S|R-translated (converted to R-expansion coefficients)**
 \[|x - x_{*2}| < |x_{*1} - x_{*2}| + |x_i - x_{*1}|, \]
 \[A(x_i, x_{*2}) = (S|R)(x_{*2} - x_{*1})B(x_i, x_{*1}) \]

- **And we are looking for sums:**
 \[v_j = \sum_{i=1}^{N} u_i \Phi(y_j, x_i), \quad j = 1, \ldots, M. \]

- **Some generalization are possible, say instead of \(\Phi(y_j, x_i) \) we can consider \(\Phi_i(y_j) \), etc.**
Middleman Algorithm

Standard algorithm

Sources

Evaluation Points

Total number of operations: $O(NM)$

Middleman algorithm

Sources

Evaluation Points

Total number of operations: $O(N+M)$
Idea of a Single Level FMM

Standard algorithm

- Sources: N
- Evaluation Points: M

Total number of operations: $O(NM)$

SLFMM

- Sources: N
- Evaluation Points: M
- L groups
- K groups

Total number of operations: $O(N+M+KL)$
Lecture 8-10, Homeworks 4,5

- SLFMM and optimization.
- S|R translation operator for \((x-y)^{-1}\).
- Error bounds. Data Structures. 2\(d\)-trees.
- Need for data structures. 2\(d\) trees.
- Parents, children, etc. Hierarchical space subdivision.
- Threshold level of space subdivision.
- Single Level FMM for \((x-y)^{-1}\). Error bounds
2d-trees

<table>
<thead>
<tr>
<th>Level</th>
<th>2-tree (binary)</th>
<th>22-tree (quad)</th>
<th>2d-tree</th>
<th>Number of Boxes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Parent</td>
<td></td>
<td></td>
<td>2d</td>
</tr>
<tr>
<td>2</td>
<td>Neighbor (Sibling)</td>
<td>Self</td>
<td>Maybe Neighbor</td>
<td>22d</td>
</tr>
<tr>
<td>3</td>
<td>Children</td>
<td></td>
<td></td>
<td>23d</td>
</tr>
</tbody>
</table>
Parent Number

Parent numbering string:

$$Parent(N_1, N_2, ..., N_{l-1}, N_l) = (N_1, N_2, ..., N_{l-1}).$$

Parent number:

$$Parent(Number) = (2^d)^{l-2} \cdot N_1 + (2^d)^{l-3} \cdot N_2 + ... + N_{l-1}.$$

Parent number does not depend on the level of the box! E.g. in the quad-tree at any level

$$Parent(11_{10}) = Parent(23_4) = 2_4 = 2_{10}.$$

Parent’s universal number:

$$Parent((Number, l)) = (Parent(Number), l - 1).$$

Algorithm to find the parent number:

$$Parent(Number) = \left\lfloor \frac{Number}{2^d} \right\rfloor$$

For box #23_4 (gray or black) the parent box number is 2_4.
Children Numbers

Children numbering strings:

\[\text{Children}(N_1, N_2, ..., N_{i-1}, N_i) = \{ (N_1, N_2, ..., N_{i-1}, N_i N_{i+1}) \}, \quad N_{i+1} = 0, ..., 2^d - 1. \]

Children numbers:

\[\text{Children}(\text{Number}) = \left\{ (2^d)^l \cdot N_1 + (2^d)^{l-1} \cdot N_2 + ... + (2^d) \cdot N_i + N_{i+1} \right\}, \quad N_{i+1} = 0, ..., 2^d - 1. \]

Children numbers do not depend on the level of the box! E.g. in the quad-tree at any level:

\[\text{Children}(11_{10}) = \text{Children}(23_4) = \{230_4, 231_4, 232_4, 233_4\} = \{44_{10}, 45_{10}, 46_{10}, 47_{10}\} \]

Children universal numbers:

\[\text{Children}((\text{Number}, l)) = (\text{Children}(\text{Number}), l + 1). \]

Algorithm to find the children numbers:

\[\text{Children}(\text{Number}) = \{2^d \cdot \text{Number} + j\}, \quad j = 0, ..., 2^d - 1, \]
A couple of examples:

Problem: Using the above numbering system and decimal numbers find parent box number for box #5981 in oct-tree.

Solution: Find the integer part of division of this number by 8. \([5981/8] = 747\).

Answer: #747.

Problem: Using the above numbering system and decimal numbers find children box numbers for box #100 in oct-tree.

Solution: Multiply this number by 8 and add numbers from 0 to 7.

Answer: ##800, 801, 802, 803, 804, 805, 806, 807.
Lectures 11-13, Exam 1, Homework 6

• Multilevel FMM. Structure of the algorithm.
• Setting data structure.
• Upward Pass. Hierarchical domains and potentials.
• Multilevel FMM. Downward Pass.
• Asymptotic Complexity of the MLFMM. Downward Pass. Complexity of each step.
• Bookkeeping routines necessary for MLFMM based on bit-interleaving
• Multilevel FMM. Optimization. Results of MLFMM tests. Dependence of FMM performance on parameters.
• Review of concepts.
Prepare Data Structures

- Convert data set into integers given some maximum number of bits allowed/dimensionality of space
- Interleave
- Sort
- Go through the list and check at what bit position two strings differ
 - For a given s determine the number of levels of subdivision needed
Hierarchical Spatial Domains

E_1

E_2

E_3

E_4
UPWARD PASS

- Partition sources into a source hierarchy.
- Stop hierarchy so that boxes at the finest level contain sources.
- Let the number of levels be \(L \).
- Consider the finest level.
- For non-empty boxes we create a S expansion about center of the box \(\Phi(x_i,y) = \sum P u_i B(x_*,x_i) S(x_*,y) \)

\[
\Phi^{(n,L)}_1(y) = C^{(n,L)} \circ S(y - x_{c}^{(n,L)}),
\]

\[
C^{(n,L)} = \sum_{x_i \in E_1(n,L)} u_i B(x_i, x_{c}^{(n,L)}).
\]

- We need to keep these coefficients. \(C^{(n,l)} \) for each level as we will need it in the downward pass.
- Then use S/S translations to go up level by level up to level 2.
- Cannot go to level 1 (Why?)
UPWARD PASS

- At the end of the upward pass we have a set of S expansions (i.e. we have coefficients for them)
- we have a set of coefficients $C^{(n,l)}$ for $n=1,\ldots,2^{ld}$ $l=L,\ldots,2$
- Each of these expansions is about a center, and is valid in some domain
- We would like to use the coarsest expansions in the downward pass (have to deal with fewest numbers of coefficients)
- But may not be able to --- because of domain of validity
- S expansion is valid in the domain E_3 outside domain E_1 (provided $d<9$)
DOWNWARD PASS

- Starting from level 2, build an R expansion in boxes where R expansion is valid

\[\Phi_{4}^{(n,l)}(y) = \tilde{D}^{(n,l)} \circ R(y - x_{c}^{(n,l)}), \]

\[\tilde{D}^{(n,l)} = \sum_{m \in I_{4}(n,l)} \langle S|R \rangle \left(x_{c}^{(n,l)} - x_{c}^{(m,l)} \right) C^{(m,l)}. \]

- Must to do $S|R$ translation

- The S expansion is not valid in boxes immediately surrounding the current box

- So we must exclude boxes in the E_{4} neighborhood
Downward Pass. Step 1.

Level 2:

Level 3:
Downward Pass. Step 1.

THIS MIGHT BE
THE MOST EXPENSIVE
STEP OF THE ALGORITHM
Downward Pass. Step 1.

\[P_4 = \text{PowerOfE}_4\text{Neighborhood} = 3^d 2^d - 3^d = 3^d \left(2^d - 1 \right) \]

- \(d = 1 : \ P_4 = 3 \)
- \(d = 2 : \ P_4 = 27 \)
- \(d = 3 : \ P_4 = 189 \)
- \(d = 4 : \ P_4 = 1215 \)

Exponential Growth

Total number of S|R-translations per 1 box in \(d \)-dimensional space (far from the domain boundaries)
Downward Pass Step 2

- Now consider we already have done the S|R translation at some level at the center of a box.
- So we have a R expansion that includes contribution of most of the points, but not of points in the E₄ neighborhood.
- We can go to a finer level to include these missed points.
- But we will now have to translate the already built R expansion to a box center of a child.
 - (Makes no sense to do S|R again, since many S|R are consolidated in this R expansion)
- Add to this translated one, the S|R of the E₄ of the finer level.
Formally

Step 2. At $l = 2$ we have

$$\Phi_3^{(n,2)}(y) = \Phi_4^{(n,2)}(y), \quad D^{(n,2)} = \tilde{D}^{(n,2)},$$

Form $\Phi_3^{(n,l)}(y)$ (or expansion coefficients of this function) by adding $\Phi_4^{(\text{Parent}(n),l-1)}(y)$ to $(R|R)$-translated coefficients of the parent box to the child center:

$$\Phi_3^{(n,l)}(y) = D^{(n,l)} \circ R(y - x_c^{(n,l)}),$$

$$D^{(n,l)} = \tilde{D}^{(n,l)} + (R|R)(x_c^{(n,l)} - x_c^{(m,l-1)})D^{(m,l-1)}, \quad m = \text{Parent}(n).$$

$$\Phi_4^{(n,l)}(y) = \tilde{D}^{(n,l)} \circ R(y - x_c^{(n,l)}),$$

$$\tilde{D}^{(n,l)} = \sum_{m \in l_4(n,l)} (S|R)(x_c^{(n,l)} - x_c^{(m,l)})C^{(m,l)}. $$
Figure shows that local-to-local translation is applicable in this case (smaller sphere is located completely inside the larger sphere), and junction of structures $E_3(n,l)$ and $E_4(n,l+1)$ produces $E_3(n,l+1)$:

$$E_3(n,l+1) = E_3(n,l) \cup E_4(n,l+1).$$
Final Summation

- At this point we are at the finest level.
- We cannot do any S|R translation for \(x_i \) ‘s that are in the \(E_3 \) neighborhood of our \(y_j \)’s
- Must evaluate these directly
Lectures 14 – 16

- Adaptive multilevel FMM.
- Data structures. D-trees and C-forests.
- Adaptive MLFMM algorithm. Discussion of multilevel FMMs
- Data structures and elements of the algorithms.
- More insight into the MLFMM.
 - Neighborhoods and dimensionality.
- Methods for solution of linear systems
- Iterative methods (Conjugate gradient, Krylov, etc.)
- Use of the FMM in iterative solvers.
Lecture 17-20, Homework 7

- Error bounds for the MLFMM.
- A scheme to obtain the error bounds.
- Error for sequences of translations.
- MLFMM for $(x-y)^{-1}$ in 1-D
- Error bounds for the MLFMM
- Error bounds and optimization.
- $S|S,R|R$, and $S|R$-translation errors.
- 2D, 3D potential fields, particle simulations, RBF. Complex potentials. Example problems.
Lecture 20 - 22

- Boundary element method.
- Reduction of 3D problems to forms for FMM use. Spherical Harmonics.
- (Guest Lecturer: Prof. D. Healy) Fast spherical transform and applications. Spherical harmonics. Properties.
- Algorithm. Introduction, examples, and computational results.
- 3D Laplace and Helmholtz equations. Multipoles.
- Translation theory. Recursive computations.
- Rotation-coaxial translation decomposition.
- Multipoles. Differentiation/recursion.
Lectures 23-25

- Research directions in the FMM.
 - Identification of problems and possible ways of their solution.
 - Scaling, adaptivity, etc.

- Integral transforms and fast translations. Integral transforms.
 - Signature function.

- Sparse matrix decomposition. Examples for the 3D Helmholtz equation.

- Review …