Lecture 4
Example

$$\Phi(y, x_i) = e^{y \cdot x_i} = \sum_{m=0}^{\infty} \frac{1}{m!} [(y - x_*) \cdot \nabla_{x_*}]^m \Phi(x_*, x_i),$$

Fix ($y - x_*$):

$$\Phi(x_*, x_i) = e^{x_* \cdot x_i},$$

$$\nabla_{x_*} \Phi(x_*, x_i) = x_i e^{x_* \cdot x_i} = x_i \Phi(x_*, x_i),$$

$$[(y - x_*) \cdot \nabla_{x_*}] \Phi(x_*, x_i) = [(y - x_*) \cdot x_i] \Phi(x_*, x_i),$$

$$[(y - x_*) \cdot \nabla_{x_*}]^m \Phi(x_*, x_i) = [(y - x_*) \cdot x_i]^m \Phi(x_*, x_i),$$

$$\Phi(y, x_i) = \sum_{m=0}^{\infty} \frac{1}{m!} [(y - x_*) \cdot x_i]^m \Phi(x_*, x_i) = e^{x_* \cdot x_i} \sum_{m=0}^{\infty} \frac{1}{m!} [(y - x_*) \cdot x_i]^m.$$

Check: $$e^{y \cdot x_i} = e^{x_* \cdot x_i} e^{(y-x_*) \cdot x_i} = e^{x_* \cdot x_i} \sum_{m=0}^{\infty} \frac{1}{m!} [(y - x_*) \cdot x_i]^m.$$
Is That a Factorization?

\[e^{y \cdot x_i} = e^{x_\star \cdot x_i} \sum_{m=0}^{\infty} \frac{1}{m!} [(y - x_\star) \cdot x_i]^m \]
Scalar Product in d-Dimensional Space

Definition of scalar product:

\[\mathbf{a} = (a_1, \ldots, a_d), \quad \mathbf{b} = (b_1, \ldots, b_d), \]

\[\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + \ldots + a_d b_d = \sum_{k=1}^{d} a_k b_k. \]

\[\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta, \]

\[|\mathbf{a}| = \sqrt{\mathbf{a} \cdot \mathbf{a}}. \]

What if \(a_1, \ldots, a_d, b_1, \ldots, b_d \in \mathbb{C} \) ?

Definition:

\[\mathbf{a} \cdot \mathbf{b} = \overline{a_1} b_1 + \ldots + \overline{a_d} b_d = \sum_{k=1}^{d} \overline{a_k} b_k. \]
Properties of Scalar Product

Commutativity:

\[a \cdot b = b \cdot a \]

Scaling:

\[(\lambda a) \cdot b = a \cdot (\lambda b) = \lambda (a \cdot b), \quad \lambda \in \mathbb{R} \]

Distributivity:

\[(a + b) \cdot c = a \cdot c + b \cdot c \]
Factorization of Scalar Product Powers

\[(a \cdot b)^n = \left(\sum_{k=1}^{d} a_k b_k \right)^n = \sum_{k_1=1}^{d} a_{k_1} b_{k_1} \sum_{k_2=1}^{d} a_{k_2} b_{k_2} \cdots \sum_{k_n=1}^{d} a_{k_n} b_{k_n} \]

\[= \sum_{k_1=1}^{d} \sum_{k_2=1}^{d} \cdots \sum_{k_n=1}^{d} a_{k_1} a_{k_2} \cdots a_{k_n} b_{k_1} b_{k_2} \cdots b_{k_n} \]

\[= [a \otimes a \otimes \cdots \otimes a] \cdot [b \otimes b \otimes \cdots \otimes b] = a^n \cdot b^n \]

\[a^n \cdot b^n = (a \cdot b)^n = (b \cdot a)^n = b^n \cdot a^n.\]

\[e^{y \cdot x_i} = e^{x_i \cdot x_i} \sum_{m=0}^{\infty} \frac{1}{m!} [(y - x_\ast) \cdot x_i]^m = e^{x_i \cdot x_i} \sum_{m=0}^{\infty} \frac{1}{m!} x_i^m \cdot (y - x_\ast)^m.\]
Is That Factorization?

1) Truncation:

\[
\Phi(y, x_i) = e^{y^*x_i} = e^{x_i^*x_i} \left[\sum_{m=0}^{p-1} \frac{1}{m!} x_i^m \cdot (y - x_*)^m + \text{Residual}_p \right]
\]

2) Fast summation:

\[
v_j = \sum_{i=1}^{N} u_i \Phi(y_j, x_i) = \sum_{i=1}^{N} u_i e^{x_i^*x_i} \left[\sum_{m=0}^{p-1} \frac{1}{m!} x_i^m \cdot (y_j - x_*)^m + \text{Residual}_p \right]
\]

\[
= \sum_{i=1}^{N} u_i e^{x_i^*x_i} \sum_{m=0}^{p-1} \frac{1}{m!} x_i^m \cdot (y_j - x_*)^m + N \max_i (u_i e^{x_i^*x_i}) \text{Residual}_p
\]

\[
= \sum_{m=0}^{p-1} \frac{1}{m!} \left(\sum_{i=1}^{N} u_i e^{x_i^*x_i} x_i^m \right) \cdot (y_j - x_*)^m + \text{Residual}
\]

\[
= \sum_{m=0}^{p-1} c_m \cdot (y_j - x_*)^m + \text{Residual}, \quad c_m = \frac{1}{m!} \sum_{i=1}^{N} u_i e^{x_i^*x_i} x_i^m.
\]

Yes! It is!
Complexity of Product

\[a = (a_1, a_2), \]
\[a^2 = (a_1(a_1, a_2), a_2(a_1, a_2)) = (a_2, a_1a_2, a_2a_1, a_2^2), \]
\[a^3 = (a_3^2(a_1, a_2), a_1a_2(a_1, a_2), a_2a_1(a_1, a_2), a_2^3(a_1, a_2)) \]
\[= (a_1^3, a_2^2a_1, a_1a_2^2a_1, a_1^2a_2a_1, a_2a_1a_2, a_2^2a_1a_2, a_2^3a_1, a_2^3), ... \]

The length of \(a^n \) is \(2^n! \)

This is not factorial!

In \(d \) dimensions the length of \(a^n \) is even \(d^n \)

What to do in practical problems?
Use Compression!

Compression operator:

\[A^n = \text{Compress}(a^n) \]

Required Property:

\[a^n \cdot b^n = \text{Compress}(a^n) \cdot \text{Compress}(b^n). \]

Consider \(R^2 \):

\[a^n \cdot b^n = (a \cdot b)^n = (a_1 b_1 + a_2 b_2)^n \]

\[= a^n b^n + \binom{n}{1} a_1^{n-1} b_1^{n-1} a_2 b_2 + \binom{n}{2} a_1^{n-2} b_1^{n-2} a_2^2 b_2^2 + \ldots + a_2^n b_2^n \]

The length is only \((n + 1)\), not \(2^n\)

Let us define:

\[A^n = \text{Compress}(a^n) = \left(a_1^n, \sqrt[n]{\binom{n}{1} a_1^{n-1} a_2}, \sqrt[n]{\binom{n}{2} a_1^{n-2} a_2^2}, \ldots, a_2^n \right) \]

\[B^n = \text{Compress}(b^n) = \left(b_1^n, \sqrt[n]{\binom{n}{1} b_1^{n-1} b_2}, \sqrt[n]{\binom{n}{2} b_1^{n-2} b_2^2}, \ldots, b_2^n \right) \]
Example of Fast Computation

\[v_j = \sum_{i=1}^{N} u_i \Phi\left(y_j, x_i \right) = \sum_{m=0}^{p-1} c_m \cdot \left(y_j - x_* \right)^m + \text{Residual}, \quad c_m = \frac{1}{m!} \sum_{i=1}^{N} u_i e^{x_* \cdot x_i} x_i^m. \]

Equivalent to:

\[v_j = \sum_{m=0}^{p-1} C_m \cdot \text{Compress}\left(\left(y_j - x_* \right)^m \right) + \text{Residual}, \quad C_m = \frac{1}{m!} \sum_{i=1}^{N} u_i e^{x_* \cdot x_i} \text{Compress}(x_i^m). \]

Number of multiplications (complexity) to obtain \(v_j \):

\[\text{Complexity} = 1 + 2 + \ldots + p = \frac{p(p + 1)}{2}. \]
Compression Can be Performed for any Dimensionality (Example for 3D):

\[
a^n \cdot b^n = (a \cdot b)^n = (a_1 b_1 + a_2 b_2 + a_3 b_3)^n
\]

\[
= \left[(a_1 b_1 + a_2 b_2) + a_3 b_3 \right]^n = \sum_{m=0}^{n} \binom{n}{m} (a_1 b_1 + a_2 b_2)^{n-m} a_3^m b_3^m
\]

\[
= \sum_{m=0}^{n} \sum_{l=0}^{n-m} \binom{n}{m} \binom{n-m}{l} a_1^{n-m-l} b_1^{n-m-l} a_2^l b_2^l a_3^m b_3^m
\]

\[
= a_1^n b_1^n + \binom{n}{1} a_1^{n-1} b_1^{n-1} a_2 b_2 + \binom{n}{2} a_1^{n-2} b_1^{n-2} a_2^2 b_2^2 + \ldots + a_2^n b_2^n
\]

\[
+ \binom{n}{1} a_1^{n-1} b_1^{n-1} a_3 b_3 + \binom{n}{1} \binom{n-1}{1} a_1^{n-2} b_1^{n-2} a_2 b_2 a_3 b_3 + \ldots + a_2^n b_2^n,
\]

\[
\text{Compress}(a^n) = \begin{pmatrix}
a_1^n, & \binom{n}{1} a_1^{n-1} a_2, & \binom{n}{2} a_1^{n-2} a_2^2, & \ldots, & a_2^n, & \binom{n}{1} a_1^{n-1} a_3, & \ldots, & a_3^n
\end{pmatrix}
\]

The length of \(a^n\) is \((n+1)+n+\ldots+1= (n+1)(n+2)/2\)
Compression Can be Performed for any Dimensionality (General Case):

\[
(a_1 + a_2 + \ldots + a_d)^n = \sum_{n_1 + \ldots + n_d = n} (n, n_1, n_2, \ldots, n_d) a_1^{n_1} a_2^{n_2} \ldots a_d^{n_d}.
\]

\[
(n, n_1, n_2, \ldots, n_d) = \frac{n!}{n_1!n_2!\ldots n_d!}.
\]

\[
\text{Compress}(a^n) = \left(a_1^n, \sqrt{(n, n-1, 1, 0, \ldots, 0)} a_1^{n-1} a_2, \ldots, \sqrt{(n, n_1, n_2, \ldots, n_d)} a_1^{n_1} a_2^{n_2} \ldots a_d^{n_d}, \ldots, a_d^n \right)
\]

So we have

\[
a^n \cdot b^n = \text{Compress}(a^n) \cdot \text{Compress}(b^n)
\]

\[
= \sum_{n_1 + \ldots + n_d = n} (n, n_1, n_2, \ldots, n_d) a_1^{n_1} a_2^{n_2} \ldots a_d^{n_d} b_1^{n_1} b_2^{n_2} \ldots b_d^{n_d}
\]

\[
= (a_1 b_1 + a_2 b_2 + \ldots + a_d b_d)^n = (a \cdot b)^n.
\]
What are multinomial coefficients?

(n ; n₁,n₂,…,n_d) is the number of ways of putting n different objects into d different boxes with n_k in the k-th box

\[n_1 + n_2 + \ldots + n_d = n \]
The length of the compressed vector

\[d = 1 : \quad 1, \]
\[d = 2 : \quad n + 1, \]
\[d = 3 : \quad \frac{1}{2}(n + 1)(n + 2), \]
\[... \]

Theorem: If \(a \in \mathbb{R}^d \), then the length of compressed vector \(\text{Compress}(a^n) \), is

\[
\begin{pmatrix} n + d - 1 \\ n \end{pmatrix} = \frac{(n + 1)\ldots(n + d - 1)}{(d - 1)!}.
\]

Proof: We have a basis for induction (see above). Let this holds for \(d \) dimensions. Consider \(d + 1 \) dimensions:

\[
((a_1 + \ldots + a_d) + a_{d+1})^n = \sum_{m=0}^{n} \binom{n}{m} (a_1 + \ldots + a_d)^m a_{d+1}^{n-m}
\]

The number of terms is then

\[
\sum_{m=0}^{n} \binom{m + d - 1}{m} = \binom{d - 1}{0} + \binom{d}{1} + \ldots + \binom{n + d - 1}{n} = \binom{n + d}{n}
\]

This proves the theorem.
Example of Fast Computation

\[v_j = \sum_{i=1}^{N} u_i \Phi(y_j, x_i) = \sum_{m=0}^{p-1} c_m \cdot (y_j - x)_m + \text{Residual,} \quad c_m = \frac{1}{m!} \sum_{i=1}^{N} u_i e^{x \cdot x_i} x_i^m. \]

Equivalent to:

\[v_j = \sum_{m=0}^{p-1} C_m \cdot \text{Compress}((y_j - x)_m) + \text{Residual,} \quad C_m = \frac{1}{m!} \sum_{i=1}^{N} u_i e^{x \cdot x_i} \text{Compress}(x_i^m). \]

Number of multiplications (complexity) to obtain \(v_j \): (in 2D case!)

\[\text{Complexity} = 1 + 2 + \ldots + p = \frac{p(p+1)}{2}. \]

\[C_0 = \sum_{i=1}^{N} u_i e^{x \cdot x_i}, \]

\[C_1 = (C_{11}, C_{12}) = \sum_{i=1}^{N} u_i e^{x \cdot x_i} (x_{i1}, x_{i2}), \]

\[C_2 = (C_{21}, C_{22}, C_{23}) = \sum_{i=1}^{N} u_i e^{x \cdot x_i} \left(x_{i1}^2, \sqrt{2} x_{i1} x_{i2}, x_{i2}^2 \right), \]
• \(C(p+d-1,d) \) is asymptotically \(d^p \) for large \(d \) and fixed \(p \)

\[
\frac{(p+d-1)!}{(p-1!)d!}
\]

Recall Stirling’s formula

\[
n! \sim \sqrt{2\pi} \ n^{(n + 1/2)} \ e^{-n}
\]
Complexity of Fast Summation

Let \(\circ \) be a scalar product of vectors \(A_i \) and \(F_j \) of length \(P(p) \) (\(p \) is the truncation number). Complexity of summation over \(i \) is then \(O(PN) \).

Complexity of scalar product operation is \(P \).

Complexity of \(M \) scalar product operations is \(O(PM) \) (for \(j = 1, ..., M \)).

Total complexity is \(O(PM + PN) \).

Fast Method is more efficient than direct only if \(O(PM + PN) < O(MN) \), so we should have

\[
P(p) \ll \min(M, N)
\]
General Forms of Factorization for Fast Summation (1)

\[v_j = \sum_{i=1}^{N} u_i \Phi(y_j, x_i), \quad j = 1, ..., M. \]

\[\Phi(y_j, x_i) = \sum_{m=0}^{p} a_m(x_i, x_*) f_m(y_j - x_*) + \text{Error}(p, x_i, x_*, y_j) \]

\[= a(x_i, x_*) \cdot f(y_j - x_*) + \text{Error}. \]

How about vectors of length \(p \)

\[v_j = \sum_{i=1}^{N} u_i e^{-\lambda_i |x_i - y_j|^2} \]

Some parameter depending on \(i \)

More general to have

\[v_j = \sum_{i=1}^{N} u_i \Phi_i(y_j) \quad \text{or} \quad v(y) = \sum_{i=1}^{N} u_i \Phi_i(y). \]
General Forms of Factorization for Fast Summation (2)

The potential can be factorized as

$$\Phi_i(y) = A_i(x_*) \circ F(y - x_*)$$

Generalized product \circ can be scalar product, contraction, etc. A_i and F can be real or complex vectors, tensors, etc. in p-dimensional space.

Requirements to the product (distributivity with respect to addition)

$$(\alpha A_i + \beta A_j) \circ F = \alpha A_i \circ F + \beta A_j \circ F.$$

In this case

$$v(y) = \sum_{i=1}^{N} u_i \Phi_i(y) = \sum_{i=1}^{N} u_i A_i(x_*) \circ F(y - x_*) = A(x_*) \circ F(y - x_*)$$

$$A(x_*) = \sum_{i=1}^{N} u_i A_i(x_*)$$

We do not need commutativity of \circ (i.e. we do not request $A_i \circ F = F \circ A_i)(!)$.
Actually, we even do need continuous variable y.
The problem is to represent all matrix elements in the form

$$\Phi_{ji} = A_i \circ F_j$$

then

$$v_j = \sum_{i=1}^{N} u_i \Phi_{ji} = \sum_{i=1}^{N} u_i (A_i \circ F_j) = \left(\sum_{i=1}^{N} u_i A_i \right) \circ F_j.$$
Complexity of Fast Summation

Let \circ be a scalar product of vectors A_i and F_j of length $P(p)$ (p is the truncation number). Complexity of summation over i is then $O(PN)$. Complexity of scalar product operation is P. Complexity of M scalar product operations is $O(PM)$ (for $j = 1, \ldots, M$). Total complexity is $O(PM + PN)$. Fast Method is more efficient than direct only if $O(PM + PN) < O(MN)$, so we should have

$$P(p) \ll \min(M, N)$$
Outline

• Far Field Expansions (or S-expansions)
 – Regular Potential (Convergent Series);
 – Regular Potential (Asymptotic Series);
 – Singular Potential;

• Asymptotic Series

• Approaches for Selection of the Basis Functions
Far Field Expansions
(S-expansions)

Let \(x_* \in \mathbb{R}^d \).

We call expansion

\[
\Phi(y, x_i) = \sum_{m=0}^{\infty} b_m(x_i, x_*) S_m(y - x_*)
\]

far field expansion (or S-expansion) outside a sphere

\[|y - x_*| > R_*, \]

if the series converges for \(\forall y, |y - x_*| > R_* \).
Far Field Expansion of a Regular Potential

...sometimes like this:

\[|y - x_*| > R_* > |x_i - x_*| \]

Can be like this:

\[|x_i - x_*| > |y - x_*| > R_* \]

\[|y - x_*| > R_* > |x_i - x_*| \]
Local Expansion of a Regular Potential
Can be Far Field Expansion Also
(Repeat Example from Lecture 3)

Valid for any \(r_* < \infty \), and \(x_i \).

\[
\Phi(y, x_i) = e^{-(y-x_i)^2} = \sum_{m=0}^{\infty} a_{m2}(x_i, x_*) S_{m2}(y-x_*).
\]

We have

\[
e^{-(y-x_i)^2} = e^{-(y-x_*-(x_i-x_*)^2)} = e^{-(y-x_*)^2} e^{-(x_i-x_*)^2} e^{2(x_i-x_*)(y-x_*)}
\]

\[
= e^{-(y-x_*)^2} e^{-(x_i-x_*)^2} \sum_{m=0}^{\infty} \frac{2^m(x_i-x_*)^m(y-x_*)^m}{m!}.
\]

Choose

\[
a_{m2}(x_i, x_*) = e^{-(x_i-x_*)^2}(x_i-x_*)^m, \quad m = 0, 1, ..., \]

\[
S_{m2}(y-x_*) = e^{-(y-x_*)^2} \frac{2^m}{m!}(y-x_*)^m, \quad m = 0, 1, ...
\]
Asymptotic Series

\[f(x, \epsilon) = f_0(x)\varphi_0(\epsilon) + f_1(x)\varphi_1(\epsilon) + f_2(x)\varphi_2(\epsilon) + \ldots = \sum_{n=0}^{\infty} f_n(x)\varphi_n(\epsilon) \]

\[\lim_{\epsilon \to 0} \frac{\varphi_n(\epsilon)}{\varphi_{n+1}(\epsilon)} = 0. \]

The asymptotic expansion is \textit{uniform} in domain \(x \in \Omega \) if

\[\forall x \in \Omega, \quad \left| f(x, \epsilon) - \sum_{n=0}^{p-1} f_n(x)\varphi_n(\epsilon) \right| = O(\varphi_p(\epsilon)). \]

Otherwise the asymptotic expansion is not uniform.
Examples of Uniform and Non-Uniform Expansions

Example of uniform expansion:

\[f(x, \varepsilon) = \frac{1}{x + \varepsilon}, \quad x > 10 \]

\[f(x, \varepsilon) = \frac{1}{x} (1 + \frac{\varepsilon}{x})^{-1} = \frac{1}{x} \sum_{n=0}^{\infty} \frac{(-1)^n \varepsilon^n}{x^n} \]

Example of non-uniform expansion:

\[f(x, \varepsilon) = e^{\varepsilon x}, \quad x \in \mathbb{R}^1 \]

\[e^{\varepsilon x} = \sum_{n=0}^{\infty} \frac{\varepsilon^n x^n}{n!}. \]

Prove that! (Hint: consider \(x \gg \varepsilon^{-1} \).)
Example of Far Field Expansion of a Regular Function (Using Asymptotic Series)

\[
\Phi(y, x_i) = \frac{1}{1 + (y - x_i)^2} = \frac{1}{1 + [y - x_\ast - (x_i - x_\ast)]^2} = \frac{1}{(y - x_\ast)^2} \frac{(y - x_\ast)^2}{1 + [y - x_\ast - (x_i - x_\ast)]^2}.
\]

Let

\[
\epsilon = \frac{1}{y - x_\ast}
\]

\[
\Phi(\epsilon, x_i - x_\ast) = \epsilon^2 \frac{1}{1 + \left[\frac{1}{\epsilon} - (x_i - x_\ast)\right]^2} = \epsilon^2 \frac{1}{\epsilon^2 + (1 - \epsilon x)^2} = \epsilon^2 f(x, \epsilon), \quad x = x_i - x_\ast
\]

\[
f(x, \epsilon) = \frac{1}{\epsilon^2 + (1 - \epsilon x)^2} = \sum_{n=0}^{\infty} f_n(x) \epsilon^n
\]

\[
f_n(x) = \frac{1}{n!} \left. \frac{\partial^n f(x, \epsilon)}{\partial \epsilon^n} \right|_{\epsilon=0}
\]
Example of Far Field Expansion of a Regular Function (continuation)

\[f_0(x) = 1, \]
\[f_1(x) = \frac{\partial f(x, \varepsilon)}{\partial \varepsilon} \bigg|_{\varepsilon = 0} = 2x, \]
\[f_2(x) = \frac{1}{2!} \frac{\partial^2 f(x, \varepsilon)}{\partial \varepsilon^2} \bigg|_{\varepsilon = 0} = 3x^2 - 1, \]

\[\Phi(y, x_i) = \frac{1}{(y - x_*)^2} \sum_{n=0}^{\infty} f_n(x_i - x_*) \frac{1}{(y - x_*)^n} \]

\[y \geq 100, \quad x_i = 1, \quad x_* = 0, \]
\[\varepsilon = 10^{-2}, \quad x = 1 \]

\[\left| \Phi(y, x_i) - \frac{1}{(y - x_*)^2} \left[1 + \frac{2(x_i - x_*)}{(y - x_*)} \right] \right| \leq \varepsilon^4 (3x^2 - 1) = 2 \cdot 10^{-8}. \]
Far Field Expansion of a Singular Potential

...sometimes like this:

...sometimes like this:

Can be like this:

\[|y - x_*| > R_* > |x_i - x_*| \]

\[|x_i - x_*| > |y - x_*| > R_* \]

\[|y - x_*| > R_* \geq |x_i - x_*| \]

This case only!
Example For S-expansion of Singular Potential

\[
\Phi(y, x_i) = \frac{1}{y - x_i}.
\]

\[
\frac{1}{y - x_i} = \frac{1}{y - x_* - (x_i - x_*)} = \frac{1}{(y - x_*)[1 - \frac{x_i - x_*}{y - x_*}]} = \frac{1}{(y - x_*)} \left[1 - \frac{x_i - x_*}{y - x_*}\right]^{-1}.
\]

\[
\left[1 - \frac{x_i - x_*}{y - x_*}\right]^{-1} = \sum_{m=0}^{\infty} \frac{(x_i - x_*)^m}{(y - x_*)^m}, \quad |y - x_*| > |x_i - x_*|.
\]

\[
\Phi(y, x_i) = \sum_{m=0}^{\infty} b_m(x_i, x_*) S_m(y - x_*),
\]

\[
b_m(x_i, x_*) = (x_i - x_*)^m, \quad m = 0, 1, \ldots,
\]

\[
S_m(y - x_*) = (y - x_*)^{-m-1}, \quad m = 0, 1, \ldots
\]
Let us compare with the R-expansion of the same function

\[\Phi(y, x_i) = \sum_{m=0}^{\infty} a_m(x_i, x_*) R_m(y-x_*), \]

\[a_m(x_i, x_*) = -(x_i - x_*)^{-m-1}, \quad m = 0, 1, \ldots, \]

\[R_m(y-x_*) = (y - x_*)^m, \quad m = 0, 1, \ldots \]

\[\Phi(y, x_i) = \sum_{m=0}^{\infty} b_m(x_i, x_*) S_m(y-x_*), \]

\[b_m(x_i, x_*) = (x_i - x_*)^m, \quad m = 0, 1, \ldots, \]

\[S_m(y-x_*) = (y - x_*)^{-m-1}, \quad m = 0, 1, \ldots \]

Singular Point is located at the Boundary of regions for the R- and S-expansions!
What Do We Need For Real FMM (that provides spatial grouping)

We need S-expansion for $|y - x_\ast| > R_\ast > |x_i - x_\ast|$
We need R-expansion for $|y - x_\ast| < r_\ast < |x_i - x_\ast|$
Basis Functions

• Power series are great, but do they provide the best approximation? (sometimes yes!)

• Other approaches to factorization:
 – Asymptotic Series (Can be divergent!);
 – Orthogonal Bases in L_2;
 – Eigen Functions of Differential Operators;
 – Functions Generated by Differentiation or Other Linear Operators.

• Some of this approaches will be considered in this course.