Outline

• Uniform and Nonuniform Discrete Fourier Transforms
 – DFT, FFT, NUFFT, IDFT, IFFT, INUFFT
 – Statement of the problems

• INUFFT
 – Data Structure
 – Kernel Decomposition
 – “Middleman” part of the algorithm
 – FMM part of the algorithm
 – Error bounds
 – Complexity and Optimization

• Some Numerical Results
 – Error Analysis
 – Performance
Band-limited functions

\[f(x) = \sum_{n=0}^{N-1} c_n e^{i nx} \]

- 2π-periodic function (complex)
- Fourier coefficients (complex)
- real
- bandwidth
Inverse Discrete Fourier Transform

IDFT: \(\{c_n\} \rightarrow \{f_k\} \)

\[
f_k = \sum_{n=0}^{N-1} c_n e^{i\pi n k / N}
\]

Straightforward: \(O(N^2) \)
IFFT: \(O(N \log N) \)
Inverse Nonuniform Discrete Fourier Transform

INUDFT: \(\{c_n\} \rightarrow \{g_j\} \)

\[g_j = \sum_{n=0}^{N-1} c_n e^{i\pi y_j} \]

Straightforward: \(O(N^2) \)
Looking for: \(O(N\log N) \) (INUFFT)

\[g_j = f(y_j), \quad j = 0, \ldots, N-1 \]
Forward Discrete Fourier Transform

\[c_n = \frac{1}{N} \sum_{k=0}^{N-1} f_k e^{-inx_k} \]

Straightforward: \(O(N^2) \)
FFT: \(O(N \log N) \)
Forward Nonuniform Discrete Fourier Transform

$$\text{NUDFT: } \{g_j\} \rightarrow \{c_n\}$$

Straightforward ($O(N^3)$)

Looking for: $O(N\log N)$

(NUFFT)

$$g_j = f(y_j), \quad j = 0, \ldots, N-1$$
Inverse Nonuniform Fast Fourier Transform

INUFFT: $\{c_n\} \rightarrow \{g_j\}$

FFT

$\{f_k\}$

FFIA = “Fast Fourier Interpolation Algorithm”
\[g_j = f(y_j) = \sum_{n=0}^{N-1} c_n e^{i\nu_j} = \sum_{k=0}^{N-1} \left[\frac{1}{N} \sum_{n=0}^{N-1} e^{-i\nu_k} e^{i\nu_j} \right] f_k, \quad j = 0, \ldots, N - 1, \]

\[\{g_j\} = \{K_{jk}\}\{f_k\}, \quad K_{jk} = \frac{1}{N} \sum_{n=0}^{N-1} e^{-i\nu_k} e^{i\nu_j}, \quad j, k = 0, \ldots, N - 1. \]

\[K_{jk} = \frac{1}{N} \sum_{n=0}^{N-1} e^{in(y_j-x_k)} = \frac{1}{N} \frac{e^{iN\nu_j} - 1}{e^{i(y_j-x_k)} - 1} = F_j G(y_j - x_k), \]

where

\[F_j = \frac{e^{iN\nu_j} - 1}{N}, \quad G(t) = \frac{1}{e^{it} - 1} = -\frac{1}{2} - i\frac{1}{2}H(t), \quad H(t) = \cot \frac{t}{2}. \]
The kernel $H(y_j - x_k)$ is a 2π-periodic function. Due to this, we can make transforms of the form $\bar{x}_k = x_k + 2\pi n$, $n = 0, \pm 1, \ldots$, which do not change the function, and keep $y_j - \bar{x}_k$ in $-\pi \leq y_j - \bar{x}_k \leq \pi$, i.e., y_j and x_k can be considered as points on a unit circle, and then x_k and \bar{x}_k can be considered as identical.
Kernel Decomposition

\[h(y_j) = \sum_{x_k \in \Omega_1(P_n)} f_k \cot \frac{y_j - x_k}{2} + \sum_{x_k \in \Omega_2(P_n)} f_k \cot \frac{y_j - x_k}{2}, \]

First sum:

\[\cot \frac{t}{2} = \frac{2}{t} - 2 \sum_{m=1}^{\infty} \frac{|B_{2m}|}{(2m)!} t^{2m-1}, \quad |t| < 2\pi, \]

where \(B_m \) are the Bernoulli numbers. When applied to the computation of the sum, we note that for \(x_k \in \Omega_1(P_n) \) we have \(-\pi \leq y_j - \hat{x}_k \leq \pi\), so for \(t = y_j - \hat{x}_k \) we have \(|t| \leq \pi \). This provides fast convergence.

Second sum:
We introduce \(t = y_j - \hat{x}_k \), where \(\hat{x}_k = x_k \pm \pi \) is a point opposite to \(x_k \) with respect to the circle center. We have \(-\pi/2 \leq y_j - \hat{x}_k \leq \pi/2\), or \(|t| \leq \pi/2 \), while

\[\cot \frac{y_j - x_k}{2} = -\tan \frac{t}{2} = -2 \sum_{m=1}^{\infty} \frac{(2^m - 1)|B_{2m}|}{(2m)!} t^{2m-1}, \quad |t| < \pi. \]
Errors of Truncation

\[|B_{2m}| < \frac{2(2m)!}{(2\pi)^{2m}} \frac{1}{1 - 2^{1-2m}}, \quad m = 1, 2, ... \] \hspace{1cm} (9)

This shows that the truncated part of the series can be majorated by the geometric progression. Using \(|t| \leq \pi\), the error bound is

\[|\epsilon_q^{(1)}| = \left| \sum_{m=q+1}^{\infty} \frac{|B_{2m}| \cdot t^{2m-1}}{(2m)!} \right| < \frac{2^{1-2q}}{3\pi (1 - 2^{-2q-1})} = \epsilon_q. \] \hspace{1cm} (10)

The truncation error, \(\epsilon_q^{(2)}\), in (8) can be bounded similarly, using \(|t| \leq \pi/2\):

\[|\epsilon_q^{(2)}| < 2\epsilon_q. \]
Error Bound for the Regular Part Computation ("Middleman Error")

\[
\left| \varepsilon_{q}^{reg} \right| = \left| \sum_{k=0}^{N-1} \left(K_{jk} - K_{jk}^{(q)} \right) f_k \right| < \frac{2}{N} \left(\frac{3N\varepsilon_q}{4} + \frac{2N\varepsilon_q}{4} \right) = \frac{5\varepsilon_q}{2}.
\]
FMM and Total Error

\[\left| \epsilon_p^{\\text{FMM-P}} \right| < \frac{5}{\pi} \cdot 2^{l_{\max}} 3^{-p}, \quad (11) \]

where \(l_{\max} \) is the maximum level of space subdivision and \(p \) is the truncation number used in the MLFMM. Therefore the total truncation error for the present method can be estimated as

\[\epsilon \lesssim \frac{5}{3\pi} \left(4^{-q} + 2^{l_{\max}} 3^{1-p} \right). \quad (12) \]

By requiring that the error in the singular and regular parts be the same in (12) we relate \(p \) and \(q \), and obtain a combined bound as

\[q \gtrsim \frac{1}{2} \log_2 \frac{3\pi}{10\epsilon}, \quad p \gtrsim \log_3 \frac{3\pi}{10\epsilon} + \frac{l_{\max}}{\log_2 3} + 1. \quad (13) \]
Complexity

\[h(y_j) = 2 \sum_{x_k \in \Omega_1(P_n)} \frac{f_k}{y_j - \tilde{x}_k} - \sum_{l=0}^{2q-1} \frac{d_l}{l!} \left(y_j - x_c^{(n)} \right)^l, \quad (14) \]

\[d_l = \sum_{m=[l/2]+1}^q \frac{|B_{2m}|}{m} \left[\alpha_{2m-l-1}^{(1)} + \left(2^{2m} - 1 \right) \alpha_{2m-l-1}^{(2)} \right], \]

\[\alpha_{l}^{(s)} = \frac{1}{l!} \sum_{x_k \in \Omega_s(P_n)} f_k \left(x_c^{(n)} - \tilde{x}_k \right)^l, \quad s = 1, 2. \]

For \(2q \ll \min(N, M) \) the second sum in Eq. (14) is \(O\left(2q(N + M) \right) \). For the complexity of the MLFMM in the present case we have [4]

\[C_{FM} = O \left(p(N + M) + \frac{3NM}{2^{l_{\max}}} + \frac{6P}{2^{-l_{\max}}} \right), \quad (15) \]
Optimization

The total cost of the fast Fourier interpolation algorithm (FFIA) can be estimated, and minimized by selection of l_{max} for given error (12). A simplified estimate assuming that p and q change slower than $2^{l_{\text{max}}}$, yields

$$l_{\text{max}}^{(opt)} \sim \frac{1}{2} \log_2 \frac{NM}{2p},$$

and the total complexity of the optimized algorithm will be

$$C_{FFIA}^{(opt)} = O \left((N + M)(p + 2q) + 6[2NMP(p)]^{1/2} \right). \quad (17)$$

For $N \sim M$, this yields $C_{FFIA}^{(opt)} = O \left(N (\log N + \log \epsilon^{-1}) \right)$.
Numerical Results: Error

\[M = N, \quad q = q(\varepsilon), \quad p = p(\varepsilon, l_{\text{max}}) \]
Numerical Results: Optimization

\[M = N, \, q = q(\varepsilon), \, p = p(\varepsilon, I_{\text{max}}) \]

Graph showing the relationship between CPU time and the maximum level for different values of \(N \). The graph includes markers for different values of \(N \) and lines indicating optimal \(I_{\text{max}} \) for various error tolerances.
Numerical Results: Performance

![Graph showing performance comparison between Straightforward and FFIA methods.]
Numerical Results: Truncation Numbers

$M = N, q = q(\varepsilon), p = p(\varepsilon, l_{\text{max}})$.