Calculus, finite differences
Interpolation, Splines, NURBS
CMSC 828 D

Least Squares, SVD, Pseudoinverse
- $Ax=b$ where A is $m \times n$, x is $n \times 1$, and b is $m \times 1$.
- $A=USV^T$ where U is $m \times m$, S is $m \times n$, and V is $n \times n$.
- $USV^T x=b$.
- If A has rank r, then r singular values are significant.
- $x = \sum \frac{s_i}{\sigma_i} v_i$, $\sigma_i > \epsilon$, $\sigma_i \leq \epsilon$.
- Pseudoinverse $A^+ = V\text{diag}(\sigma_1^{-1}, \ldots, \sigma_r^{-1}, 0, \ldots, 0) U^T$.

Regularization
- Pseudoinverse provides one means of regularization.
- Another is to solve $(A+\epsilon I)x=b$.
- Solution of the regular problem requires minimizing $\|Ax-b\|^2 + \epsilon \|x\|^2$.
- This corresponds to minimizing $\|Ax-b\|^2 + \epsilon \|x\|^2$.
- Philosophy: pay a “penalty” of $\epsilon \|x\|^2$ to ensure solution does not blow up.
- In practice we may know that the data has an uncertainty of a certain magnitude so it makes sense to optimize with this constraint.

Well Posed problems
- Hadamard postulated that for a problem to be “well posed”:
 1. Solution must exist.
 2. It must be unique.
 3. Small changes to the input data should cause small changes to the solution.
- Many problems in science and computer vision result in “ill-posed” problems.
 - Numerically it is common to have condition 3 violated.
- Recall from the SVD $x = \sum \frac{s_i}{\sigma_i} v_i$, $\sigma_i > \epsilon$, $\sigma_i \leq \epsilon$.
- If s_i are close to zero small changes in the “data” vector b cause big changes in x.
- Converting ill-posed problem to well-posed one is called regularization.

Outline
- Gradients/derivatives
 - needed in detecting features in images
 - Derivatives are large where changes occur
 - essential for optimization
- Interpolation
 - Calculating values of a function at a given point based on known values at other points
 - Determine error of approximation
 - Polynomials, splines
- Multiple dimensions

Derivative
- In 1-D $\frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}$.
- Taylor series: for a continuous function
 - $f(x+h) = f(x) + k_0 h + k_1 h^2 + \cdots$
 - $f(x-h) = f(x) - k_0 h + k_1 h^2 + \cdots$
- Geometric interpretation: Approximate smooth curve by values of tangent, curvature, etc.
Remarks
• Mean value theorem:
 - $f(b)-f(a)=(b-a)\frac{df}{dx}|_c \quad a<c<b$
 - There is at least one point between a and b on the curve where the slope matches that of the straight line joining the two points.
• $\frac{df}{dx}=0$
 - Represents a minimum, maximum or saddle point of the curve $y=f(x)$
 - $\frac{d^2f}{dx^2} > 0$ minimum, $\frac{d^2f}{dx^2} < 0$ maximum
 - $\frac{d^2f}{dx^2} = 0$ saddle point

Finite differences
• Approximate derivatives at points by using values of a function known at certain neighboring points.
• Truncate Taylor series and obtain an expression for the derivatives.
• Forward differences: use value at the point and forward x
 - $\frac{df}{dx} = h^{-1} \left[f(x+h) - f(x) \right] + O\left(h^2\right)$
 - $\frac{d^2f}{dx^2} = -\frac{f(x+h) - 2f(x) + f(x-h)}{2h^2} + O\left(h^2\right)$

Finite Differences
• Central differences
 - Higher order approximation
 - $2 \frac{df}{dx} = \frac{f(x+h)-f(x-h)}{2h} + O\left(h^2\right)$
 - $\frac{df}{dx} = \frac{f(x)+f(x-h)}{2h} + O\left(h^2\right)$
 - However we need data on both sides
 - Not possible for data on the edge of an image
 - Not possible in time dependent problems (we have data at current time and previous one)

Approximation
• Order of the approximation $O(h)$, $O(h^2)$
• Sidedness, one sided, central etc.
• Points around point where derivative is calculated that are involved are called the “stencil” of the approximation.
• Second derivative
 - $\frac{df}{dx} = h^{-1} \left[f(x+h) - f(x-h) \right] + O\left(h^2\right)$
 - $\frac{d^2f}{dx^2} = \frac{f(x+h)-2f(x)+f(x-h)}{2h^2} + O\left(h^2\right)$
 - One sided difference of $O(h^2)$

Polynomial interpolation
• Instead of playing with Taylor series we can obtain fits using polynomial expansions.
 - 3 points fit a quadratic ax^2+bx+c
 - Can calculate the 1st and 2nd derivatives
 - 4 points fit a cubic, etc.
• Given x_0, x_1, x_2, x_3 and values f_0, f_1, f_2, f_3
 - $\begin{bmatrix} 1 & x_0 & x_0^2 \\ 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} f_0 \\ f_1 \\ f_2 \\ f_3 \end{bmatrix}$
 - Vandermonde system – fast algorithms for solution.
• If more data than degree .. Can get a least squares solution.
• Matlab functions polyfit, polyval

Remarks
• Can use the fitted polynomial to calculate derivatives.
• If equation is solved analytically this provides expressions for the derivatives.
• Equation can become quite ill conditioned
 - especially if equations are not normalized.
 - ax^2+bx+c can also be written as $a(x-h)^2+b(x-h)+c$.
 - Find the polynomial through x_0, h, x_0^2+h
 - $\begin{bmatrix} 1 & h & h^2 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} f_0 \\ f_1 \\ f_2 \end{bmatrix}$
 - $a_0=f_0, a_1=\frac{f_2-f_0}{2h}, a_2=\frac{f_1-f_2-f_0}{2h}$
 - Gives the expected values of the derivatives.
Polynomial interpolation
- Results from Algebra
 - Polynomial of degree n through $n+1$ points is unique
 - Polynomials of degree less than x^* is an n dimensional space.
 - $1, x, x^2, \ldots, x^n$ form a basis.
 - Any other polynomial can be represented as a combination of these basis elements.
 - Other sets of independent polynomials can also form bases.
- To fit a polynomial through x_0, \ldots, x_n with values f_0, \ldots, f_n
 - Use Lagrangian basis l_k
 \[l_k = \prod_{i=0, i \neq k}^{n} \frac{x-x_i}{x_k-x_i}, \quad k=0, \ldots, n \]
 - Formula
 \[p(x) = a_0l_0 + a_1l_1 + \ldots + a_nl_n \]
 - Then a_i is f_i
 - Many polynomial bases: Chebyshev, Legendre, Laguerre ...
 - Bernstein, Bookstein ...

Spline interpolation
- Piecewise polynomial approximation
 - E.g. interpolation in a table
 - Given x_0, x_1, \ldots, x_i, evaluate f at a point x such that
 \[\frac{x-x_0}{x_i-x_0} \begin{cases} \frac{x-x}{x_i-x} & s_i \leq x \leq x_i \\ 0 & \text{otherwise} \end{cases} \]
 - Construct approximations of this type on each subinterval
 - This method uses Lagrangian interpolants
- Endpoints are called breakpoints
- For higher polynomial degree we need more conditions
 - E.g. specify values at points inside the interval $[x_k < x < x_{k+1}]$
 - Specifying function and derivative values at the end points x_0, x_n leads to cubic Hermite interpolation

Increasing n
- As n increases we can increase the polynomial degree.
- However the function in between is very poorly interpolated.
- Becomes ill-posed.
- For large n interpolant blows up.
 - Idea: Taylor series provides good local approximations
 - Use local approximations
 - Splines

Cubic Spline
- Splines – name given to a flexible piece of wood used by draftsmen to draw curves through points.
 - Bend wood piece so that it passes through known points and draw a line through x.
 - Most commonly used interpolant used is the cubic spline
 - Provides continuity of the function, 1s and 2s derivatives at the breakpoints.
 - Given $n+1$ points we have n intervals $[x_i, f_i]$, $i=1, \ldots, n+1$
 - Each polynomial has four unknown coefficients
 - Specifying function values provides 2 equations
 - Two derivative continuity equations provides two more
 - Left with two free conditions. Usually chosen so that second derivatives are zero at ends

Interpolating along a curve
- Curve can be given as $x(s)$ and $y(s)$
- Given x,y,z
- Can fit splines for x and y
- Can compute tangents, curvature and normal based on this fit
- Things like intensity vary along the curve. Can also fit $l(s)$

Two and more dimensions
- Gradient $\nabla f = \frac{df}{dx} \hat{i} + \frac{df}{dy} \hat{j}$
- Directional derivative in the direction of a vector n
 \[\nabla f \cdot n = \frac{df}{dx} e_x \cdot n + \frac{df}{dy} e_y \cdot n = \frac{df}{dn} \]
- Geometric interpretation
 - ∇f is normal to the surface $f(x)=c$
 - $n = \nabla f / |\nabla f|$
- Taylor series
 \[f(x+h) = f(x) + h \frac{df}{dx} + \frac{h^2}{2} \frac{df}{dx^2} + O(h^2) \]
 \[f(x+h) = f(x) + h \frac{dy}{dx} + \frac{h^2}{2} \frac{dy}{dx^2} + O(h^2) \]
Finite differences
• Follows a similar pattern. One dimensional partial derivatives are calculated the same way.
• Multiple dimensional operators are computed using multidimensional stencils.

\[
\nabla f = \nabla_x f \cdot \nabla_y f = \frac{f_{i+1,j} - f_{i-1,j}}{2h_x} - \frac{f_{i,j+1} - f_{i,j-1}}{2h_y}
\]

Interpolation
• Polynomial interpolation in multiple dimensions
• Pascals triangle
• Least squares
• Move to a local coordinate system

Tensor product splines
• Splines form a local basis.
• Take products of one dimensional basis functions to make a basis in the higher dimension.

Interpolation
• Polynomial interpolation in multiple dimensions
• Pascals triangle
• Least squares
• Move to a local coordinate system

NURBS
• Used for precisely specifying n-d data.
• October 3 Tapas Kanungo, NURBS: Non-Uniform Rational B-Splines

Derivative of a matrix
Suppose \(f(x) \) is a scalar-valued function of \(n \) variables \(x_j, j = 1,2...,n \), which we represent as the vector \(x \). Then the derivative or gradient of \(f \) with respect to this vector is computed component by component, i.e.,

\[
\nabla f(x) = \frac{\partial f(x)}{\partial x} = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}
\]

If we have an \(n \times n \) vector-valued function \(f \) (note the use of bolds), of a \(d \)-dimensional vector \(x \), we calculate the derivatives and represent them as the Jacobian matrix

\[
J(x) = \frac{\partial f(x)}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_d} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_d} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_d} \end{bmatrix}. \quad (13)
\]

If this matrix is square, its determinant (Sect. 2.2.5) is called simply the Jacobian or sometimes the Jacobian determinant.

Jacobian and Hessian
We first recall the use of second derivatives of a scalar function of a scalar \(x \) in writing a Taylor series (or Taylor expansion) about a point:

\[
f(x) = f(x_0) + \frac{df}{dx} \Big|_{x=x_0} (x-x_0) + \frac{1}{2} \frac{d^2f}{dx^2} \Big|_{x=x_0} (x-x_0)^2 + O((x-x_0)^3). \tag{20}
\]

Analogously, if our scalar-valued \(f \) is a function of a vector \(x \), we can expand \(f(x) \) in a Taylor series around a point \(x_0 \):

\[
f(x) = f(x_0) + \sum_{i=1}^n \frac{\partial f}{\partial x_i} \Big|_{x=x_0} (x_i-x_0) + \frac{1}{2} \sum_{i,j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j} \Big|_{x=x_0} (x_i-x_0)(x_j-x_0) + O((x-x_0)^3). \tag{21}
\]

where \(H \) is the Hessian matrix, the matrix of second-order derivatives of \(f(x) \), here