Outline

- Cost functions (last class)
- Given a cost function we can calculate
 - The global minimum
 - A local minimum
- Algorithms can be classified according to
 - Derivative information available/not available or expensive
 - Derivatives via finite-differences
 - Linear or nonlinear
 - Local minimum or global minimum
 - Differential or “statistical”
 - Constrained or Unconstrained
- Read Chapter 10-0 of Numerical Recipes.
- Focus will not be on details but educated use of these routines as black-boxes.

Bracketing methods in 1D

- Knowing the function value at 3 points bracket a minimum
- Find a better approximation to the minimum
 - Golden bisection
 - Parabola fitting
 - Methods using derivative information
- 1-D search methods important for multi-dimensional algorithms
- (Read Chapter 10-1 through 10-3 of Numerical Recipes)

Bracketing a minimum in multiple dimensions

- Smallest region bounded by a group of points in
 - 1D is bounded by two points (a line segment)
 - 2D is bounded by three points (a triangle)
 - 3D by four points (a tetrahedron)
 - In ND by N+1 points (a simplex)
- Can find a direction of a decreasing function in
 - 1D by the line from point with higher value to lower
 - 2D by joining point with highest value through point with average value on the opposite side of the triangle
 - And so on for ND
- However cannot guarantee a bracket of a minimum in ND

Downhill Simplex Method (Nelder-Mead)

- Reflection: Project along the direction of decrease with size 1.
- Reflection and expansion: If decrease is large try a step of size 2.
- Contraction: Result of reflection is bad, so try a simple reduction within simplex.
- Multiple contraction: If result of contraction does not give a better result than lowest point.
- Conclude: volume of simplex becomes below tolerance.

Basic calculus

- The direction of maximum increase of a function at a point x is along \(\nabla f(x) \)
- Critical points of a function \(f \) are at \(df/dx = 0 \) or \(\nabla f = 0 \).
 - One way of optimizing is to find \(x \) where \(\nabla f = 0 \)
 - However this can usually be done easily only in one dimension
- Taylor series
 - 1D
 - Multiple dimensions
 - Vector valued function
- Newton’s method for solving \(f(x) = 0 \).
 - Given \(f(x) \neq 0 \) seek a correction, \(h \), to \(x \), so that \(f(x+h) = 0 \)

\[
 f(x+h) = f(x) + h f'(x) + \frac{h^2}{2} f''(x) + O(h^3)
\]
Newton’s Method

- If \(f(x) \) is a scalar valued function of \(n \) variables \(x \)
 \[
 f(x + h) = f(x) + h \frac{d}{dx} f(x) + \frac{h^2}{2} \frac{d^2}{dx^2} f(x) + \cdots
 \]
 - No way to get \(n \) equations from one equation above
 - Use steepest descent methods
- However in optimization problems we are usually solving for the minimum of a scalar valued function of multiple variables \(f(x) \), where \(x \) is an \(n \) dimensional vector
 - We need to solve an equation of the type \(g(x) = \nabla f = 0 \)
 - Same prescription works but now \(\nabla g \) is a matrix called the Jacobian matrix
 - Solve the equation to get corrections and iterate
- However note that we are actually computing Hessian of \(f \)

Gradient Descent

- We have a function \(f \) and an estimate of its gradient \(\nabla f \)
- Decrease \(f \) by a quantity along the direction of \(\nabla f \)
 - Begin initialize \(x, \), tol, \(k = 0 \)
 - do \(k <- k + 1 \)
 - \(x = x - h \cdot \nabla f \)
 - until \(h \cdot \nabla f < \text{tol} \)
 - return \(x \)
- Determining \(h \) is not easy
 - Called “learning rate” in AI
 - Hard to determine \(h \)
 - If \(h \) is too small algorithm will be too slow to converge.
 - If \(h \) is too large the procedure will diverge.
 - Can select it using a line search or using a Newton method.

Selecting step size in Gradient Descent

- Recall \((x + h) = x + h \cdot \nabla f = 0 \)
- We cannot get \(h \) in general
- However we can minimize along a direction
 - Restrict to the direction of \(\nabla f \). Let \(u \) be a vector in this direction
 - Minimize the one dimensional function of \(t, f(x + t \cdot u) \) by using the one dimensional minimization techniques discussed earlier.
 - Recompute gradient at the new point and repeat the search in the new direction
 - Once \(t \) values become small we have converged
 - Each of the initial searches need not be performed with precision

Powell’s method

- Sometimes it is not possible to estimate the derivative \(\nabla f \)
- To obtain the direction in a steepest descent method
- First guess, minimize along one coordinate axis, then along other and so on. Repeat
- Can be very slow to converge
- Conjugate directions: Directions which are independent of each other so that minimizing along each one does not move away from the minimum in the other directions.
- Powell introduced a method to obtain conjugate directions without computing the derivative.

Function Evaluations

- Often evaluating the function is hard
 - Crash a car to measure a data point
- Analytical expressions for the derivatives are harder, and very much prone to programming error.
 - Analytical derivatives should always be compared with finite difference estimates for accuracy
- Often derivatives are evaluated using finite differences.
 - Recall \(f = f(x + h \cdot \nabla f) \rightarrow 2 \) function evaluations
 - For an \(n \) dimensional function we need at least \(n + 1 \) function evaluations to get the derivative
 - However recall that this is the least accurate
- Promising research area: Use chain rule and semantic parsing of functions to perform automatic differentiation

More complex methods

- Function can be approximated locally near a point \(P \) as
 \[
 f(x) = f(P) + \sum \frac{\partial f}{\partial x_i} (x - P) x_i + \cdots
 \]
 - \(e = x - P \)
 - \(\nabla f \) at \(P \)
 - \(\partial f / \partial x_p \)
 - Gradient of above equation \(\nabla f = A \cdot x - b \)
 - Newton method set gradient equal zero and solve \(A \cdot x = b \)
 - Conjugate directions:
 - Minimize along a direction \(u \). In this case the change in \(\nabla f \) as \(x \) changes by \(\delta x \) is \(A \cdot \delta x \)
 - Minimization in a new direction \(v \) should not modify our previous minimization. Then \(v \) should be chosen so that \(v \cdot A \cdot v = 0 \)
 - Any two directions that satisfy \(v \cdot A \cdot v = 0 \) are called conjugate directions.
Conjugate gradient and quasi-newton

- Use the fact that there is a routine available to calculate \(f \) and the Jacobian \(\nabla f \) to calculate iteratively approximations to the minimum.
 - Conjugate gradients performs minimizations in conjugate directions without constructing \(A \).
 - Quasi Newton methods construct approximations to \(A^{-1} \) iteratively.
- Black boxes, as far as this course is concerned.
- Generally only worth it when we are in the vicinity of a minimum.
- For nonlinear problems they often converge to a local minimum away from the true one.

Levenberg Marquardt

- Return to problem of model fitting by minimizing

\[\chi^2 = \sum_{i} \frac{(y_i - f(x_i; \mathbf{a}))^2}{\sigma_i^2} \]

- As before set \(\chi^2(\mathbf{a}) \approx \gamma - \mathbf{d} \cdot \mathbf{a} + \frac{1}{2} \mathbf{a} \cdot \mathbf{D} \cdot \mathbf{a} \)

- Observation: steepest descent methods move faster (per function evaluation) far away from the minimum while Newton methods do well near it.
- Idea combine them so that the method adapts according to the location in parameter space.
- Usually for model fitting it is not too difficult to calculate derivatives

\[\frac{\partial \chi^2}{\partial a_k} = -2 \sum_{i} \frac{y_i - f(x_i; \mathbf{a})}{\sigma_i^2} \frac{\partial f(x_i; \mathbf{a})}{\partial a_k} \quad k = 1, \ldots, M \]

\[\frac{\partial^2 \chi^2}{\partial a_k \partial a_l} = 2 \sum_{i} \frac{1}{\sigma_i^2} \left(\frac{\partial f(x_i; \mathbf{a})}{\partial a_k} \frac{\partial f(x_i; \mathbf{a})}{\partial a_l} - \frac{y_i - f(x_i; \mathbf{a})}{\sigma_i^2} \frac{\partial^2 f(x_i; \mathbf{a})}{\partial a_k \partial a_l} \right) \]

LM Algorithm

- Compute \(\chi^2(\mathbf{a}) \).
- Pick a modest value for \(\lambda \), say \(\lambda = 0.001 \).
- (1) Solve the linear equations (15.5.14) for \(\mathbf{a} + \delta \mathbf{a} \) and evaluate \(\chi^2(\mathbf{a} + \delta \mathbf{a}) \).
- If \(\chi^2(\mathbf{a} + \delta \mathbf{a}) \geq \chi^2(\mathbf{a}) \), increase \(\lambda \) by a factor of 10 (or any other substantial factor) and go back to (1).
- If \(\chi^2(\mathbf{a} + \delta \mathbf{a}) < \chi^2(\mathbf{a}) \), decrease \(\lambda \) by a factor of 10, update the trial solution \(\mathbf{a} \leftarrow \mathbf{a} + \delta \mathbf{a} \), and go back to (1).
- When the algorithm has converged set \(\lambda = 0 \) and compute the final solution.

Constrained optimization

- We have to optimize \(f(x) \) subject to \(g(x) = 0 \).
 - Makes sense if \(g(x) = 0 \) leaves a few degrees of freedom (N-M).
- Approach 1 (Eliminate constraints)
 - Eliminate variables using constraint equations and solve a reduced problem \(f(x') = 0 \).
 - Not practical, except for simple problems.
- Approach 2 (Penalty function)
 - Construct a new minimization function \(f(x) + Pg(x) \) where \(P >> 1 \).
 - If constraint is violated the minimization function increases rapidly, forcing the optimization routine to solutions where it is not violated.
- Approach 3 (Lagrange Multipliers)
 - Solution has to lie on the surface of \(g(x) = 0 \).
 - Can’t have \(Vf = 0 \) anymore.
 - However we require \(Vf \parallel Vg = 0 \).

Lagrange Multipliers

Optimize \(f(x, y) \) subject to \(g(x, y) = k \):

\(\nabla f(\mathbf{x}, \mathbf{y}) \) is parallel to \(\nabla g(\mathbf{x}, \mathbf{y}) \) and \(g(\mathbf{x}, \mathbf{y}) = k \)

\(\nabla f(\mathbf{x}, \mathbf{y}) = \lambda \nabla g(\mathbf{x}, \mathbf{y}) \) and \(g(\mathbf{x}, \mathbf{y}) = k \)

\(\nabla f(\mathbf{x}, \mathbf{y}) - \lambda \nabla g(\mathbf{x}, \mathbf{y}) = 0 \) and \(g(\mathbf{x}, \mathbf{y}) = k \)
Linear programming

- Black box in this course
- Solve problems with systems of linear equality and inequality constraints

The subject of linear programming, sometimes called linear optimization, concerns itself with linear programming. For a linear program with \(x_1, \ldots, x_n \), maximize the function

\[
 z = a_1 x_1 + a_2 x_2 + \cdots + a_n x_n
\]

subject to the primary constraints

\[
 b_1 x_1 + b_2 x_2 + \cdots + b_n x_n \leq b \quad (b \geq 0) \quad i = 1, \ldots, n_1
\]

and simultaneously subject to \(M = n_1 + n_2 + n_3 \) additional constraints, \(n_1 \) of them of the form

\[
 b_{n_1} x_1 + b_{n_1 + 1} x_2 + \cdots + b_n x_n \leq b \quad (b \geq 0) \quad i = 1, \ldots, n_2
\]

and \(n_3 \) of them of the form

\[
 b_{n_1 + n_2} x_1 + b_{n_1 + n_2 + 1} x_2 + \cdots + b_{n_1 + n_2 + n_3} x_n = b \quad (b \geq 0)
\]