Clustering

- Clustering techniques apply when there is no class to be predicted
- Aim: divide instances into “natural” groups
- As we've seen clusters can be:
 - disjoint vs. overlapping
 - deterministic vs. probabilistic
 - flat vs. hierarchical
- We'll look at a classic clustering algorithm called *k*-means
 - *k*-means clusters are disjoint, deterministic, and flat

General Setting

- Given a dataset D and a distance metric $d(\cdot, \cdot)$, partition D into groups of “similar” items:
 - Items in a group are similar to each other;
 - Items in different groups are as dissimilar as possible.
- Similarity is based on the distance metric used.

The *k*-means algorithm

To cluster data into k groups: (k is predefined)

1. Choose k initial cluster centers (for example, k random points)
2. repeat (until centers don't change)
 - Assign instances to clusters based on distance to cluster centers
 - Recompute centers by computing the centroids of clusters
Discussion

- Algorithm minimizes squared distance to cluster centers
- Result can vary significantly
 - based on initial choice of seeds
- Can get trapped in local minimum
 - Example:

 ![Diagram showing initial cluster centers and instances]

- To increase chance of finding global optimum: restart with different random seeds
- Can we applied recursively with \(k = 2 \)

Clustering: how many clusters?

- How to choose \(k \) in \(k \)-means? Possibilities:
 - Choose \(k \) that minimizes cross-validated squared distance to cluster centers
 - Apply \(k \)-means recursively with \(k = 2 \) and use stopping criterion
 - Seeds for subclusters can be chosen by seeding along direction of greatest variance in cluster (one standard deviation away in each direction from cluster center of parent cluster)
 - Implemented in algorithm called \(X \)-means

Hierarchical Clustering

- Repeat (until one cluster)
 1. Put each item in a cluster by itself;
 2. Merge “closest” clusters
- Distance between two clusters: (i) distance between closest points; (ii) average distance between all pairs of points in the two clusters; or (iii) maximum distance between any pair of points in the two clusters
- Another divisive strategy – start with the whole data and split.

Probability-based clustering

- Probabilistic perspective \(\Rightarrow \)
 seek the most likely clusters given the data
- Also: instance belongs to a particular cluster with a certain probability
Finite mixtures

- Model data using a *mixture* of distributions
- One cluster, one distribution
 - governs probabilities of attribute values in that cluster
- *Finite mixtures*: finite number of clusters
- Individual distributions are normal (usually)
- Combine distributions using cluster weights

Two-class mixture model

- Data
 - A 51, B 62
 - A 48, A 39
 - A 51
 - B 64

- Model
 - \[\mu_A = 50, \sigma_A = 5, \rho_A = 0.6 \]
 - \[\mu_B = 65, \sigma_B = 2, \rho_B = 0.4 \]

Using the mixture model

- Probability that instance \(x \) belongs to cluster \(A \):
 \[
 Pr[A|x] = \frac{Pr|x|A \cdot Pr|A|}{Pr|x|} = \frac{f(x; \mu_A, \sigma_A) \rho_A}{Pr|x|}
 \]
 with
 \[
 f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(- \frac{(x - \mu)^2}{2\sigma^2} \right)
 \]
- Probability of an instance given the clusters:
 \[
 Pr[x|\text{the_clusters}] = \sum_i Pr[x|\text{cluster}_i]Pr[\text{cluster}_i]
 \]

Learning the clusters

- Assume:
 - we know there are \(k \) clusters
- Learn the clusters \(\Rightarrow \)
 - determine their parameters
 - i.e. means and standard deviations
- Performance criterion:
 - *probability of training data given the clusters*
- EM algorithm
 - finds a local maximum of the likelihood
EM algorithm

- **EM = Expectation-Maximization**
- Generalize k-means to probabilistic setting
- Iterative procedure:
 - E “expectation” step:
 Calculate cluster probability for each instance
 - M “maximization” step:
 Estimate distribution parameters from cluster probabilities
- Store cluster probabilities as instance weights
- Stop when improvement is negligible

Expectation Step

- Probability w_i that instance x belongs to cluster A:
 $$w_i = Pr[A|x_i] = \frac{Pr[x_i|A]Pr[A]}{Pr[x_i]} = \frac{f(x_i; \mu_A, \sigma_A)p_A}{Pr[x_i]}$$
 with
 $$f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$
- Probability of an instance given the clusters:
 $$Pr[x_i] = \sum_j Pr[x_i|\text{cluster}_j]Pr[\text{cluster}_j]$$

Maximization Step

- Estimate parameters from weighted instances
 $$\mu_A = \frac{w_1x_1 + w_2x_2 + \ldots + w_nx_n}{w_1 + w_2 + \ldots + w_n}$$
 $$\sigma_A = \frac{w_1|x_1-\mu|^2 + w_2|x_2-\mu|^2 + \ldots + w_n|x_n-\mu|^2}{w_1 + w_2 + \ldots + w_n}$$
 $$p_A = \frac{\sum_i w_i}{n}$$
- Stop when log-likelihood saturates
 $$\Sigma_i \log\left(p_A Pr[x_i|A] + p_B Pr[x_i|B]\right)$$