Instance-based learning

- General strategy that can be used for classification or regression.
- Determine “closest” member of training data – distance function needed
- Most instance-based schemes use Euclidean distance:
 \[d(a^{(1)}, a^{(2)}) = \sqrt{(a_1^{(1)} - a_1^{(2)})^2 + (a_2^{(1)} - a_2^{(2)})^2 + \ldots + (a_k^{(1)} - a_k^{(2)})^2} \]

- \(a^{(1)} \) and \(a^{(2)} \): two instances with \(k \) attributes
- Taking the square root is not required when comparing distances

Normalization and other issues

- Different attributes are measured on different scales ⇒ need to be normalized:
 \[a_i = \frac{v_i - \min v_i}{\max v_i - \min v_i} \]
 \(v_i \): the actual value of attribute \(i \)
- Nominal attributes: distance either 0 or 1
- Common policy for missing values: assumed to be maximally distant (given normalized attributes)

Finding nearest neighbors efficiently

- Simplest way of finding nearest neighbour: linear scan of the data
 - Classification takes time proportional to the product of the number of instances in training and test sets
- Nearest-neighbor search can be done more efficiently using appropriate data structures
- More elaborate methods exist:
 - \(kD \)-trees and ball trees
 - \(kD \)-trees and ball trees in book
kD-tree example

![kD-tree example](image)

Using kD-trees: example

![Using kD-trees: example](image)

Discussion of nearest-neighbor learning

- Often very accurate
- Assumes all attributes are equally important
 - Remedy: attribute selection or weights
- Sensitive to noisy instances:
 - Remedy: Take a majority vote over the k nearest neighbors
- Statisticians have used k-NN since early 1950s
 - If \(n \to \infty \) and \(k/n \to 0 \), error approaches minimum

Difficulties

- Practical problems of 1-NN scheme:
 - Slow for large dimensional data
 - Remedy: remove irrelevant data
 - Noise (but: k-NN copes quite well with noise)
 - Remedy: remove noisy instances
 - All attributes deemed equally important
 - Remedy: weight attributes (or simply select)
 - Doesn’t perform explicit generalization
 - Remedy: rule-based NN approach
Speed up, combat noise

- IB3: Instance-Based Learner Version 3
 - Track the performance of each training example and discard instances that don’t perform well
 - Compute confidence intervals for
 - Each instance’s success rate
 - Default accuracy of its class
 - Accept/reject instances
 - Accept if lower limit of 1 exceeds upper limit of 2
 - Reject if upper limit of 1 is below lower limit of 2

Weight attributes

- Some attributes are less important than others – dynamically learn importance and adjust weights.
- IB4: weight each attribute (weights can be class-specific)
- Weighted Euclidean distance:
 \[\sqrt{w_1^2(x_1-y_1)^2 + \ldots + w_n^2(x_n-y_n)^2} \]
 - Update weights based on nearest neighbor
 - Class correct: increase weight
 - Class incorrect: decrease weight
 - Amount of change for \(i\) th attribute depends on \(|x_i - y_i|\)

Rectangular generalizations

Organize instances into hyper-rectangles

- Nearest-neighbor rule is used outside rectangles
- Rectangles are rules! (But they can be more conservative than “normal” rules.)
- Nested rectangles are rules with exceptions

K-Nearest Neighbors

- Determine \(k\)-nearest neighbors.
- Given the \(k\) neighbors, weigh each closest neighbor according to its distance from query. Take weighted average for regression.
- For classification, choose the label that achieves the maximum weight among the \(k\) neighbors.