Linear models: linear regression

- Work most naturally with numeric attributes
- Standard technique for numeric prediction
 - Outcome is linear combination of attributes
 \[x = w_0 + w_1 a_1 + w_2 a_2 + \ldots + w_k a_k \]
- Weights are calculated from the training examples \(a^{(i)} \)
- Predicted value for first training instance \(a^{(1)} \)
 \[w_0 a_0^{(1)} + w_1 a_1^{(1)} + w_2 a_2^{(1)} + \ldots + w_k a_k^{(1)} = \sum_{j=0}^{k} w_j a_j^{(1)} \]
 (assuming each instance is extended with a constant attribute with value 1)

Minimizing the squared error

- Choose \(k + 1 \) coefficients to minimize the squared error on the training data
- Squared error:
 \[\sum_{i=1}^{n} (x^{i} - \sum_{j=0}^{k} w_j a_j^{i})^2 \]
- Derive coefficients using standard matrix operations by setting partial derivatives \(= 0 \)
- Can be done if there are more instances than attributes (roughly speaking) – involves matrix inversion
- Minimizing the absolute error is more difficult

Classification

- Any regression technique can be used for classification
 - Training: perform a regression for each class, setting the output to 1 for training instances that belong to class, and 0 for those that don’t
 - Prediction: predict class corresponding to model with largest output value (membership value)
- For linear regression this is known as multi-response linear regression
- Problem: membership values are not in \([0,1]\) range, so aren't proper probability estimates

Gradient Descent

- Minimize a multivariate function \(f(w) \), where \(w \) is a \(k \)-dimensional vector.
 - Start with random values of \(w \).
 - Apply the gradient descent rule until error is below a certain threshold:
 \[w = w - \lambda \nabla f(w) \]
 - where \(\lambda \) is the learning rate
Perceptron as a neural network

1. Randomly initialize w_1, w_2, \ldots, w_k
2. for each instance $a^{(i)}$, do
 * Compute error $E_i = x_i - \text{out} (a^{(i)})$
3. For $l=1$ to k do
 * Update weight $w_i = w_i + \lambda \sum E_i a^{(i)}$
4. If $\sum (E_i)^2$ is small, stop; otherwise go back to Step 2.

Linear models: the perceptron

- Different approach: learn separating hyperplane
- Assumption: data is linearly separable
- Algorithm for learning separating hyperplane: perceptron learning rule
- Hyperplane: $0 = w_0 a_0 + w_1 a_1 + w_2 a_2 + \ldots + w_k a_k$
 where we again assume that there is a constant attribute with value 1 (bias)
- If sum is greater than zero we predict the first class, otherwise the second class

The algorithm

Set all weights to zero

Until all instances in the training data are classified correctly

For each instance I in the training data

If I is classified incorrectly by the perceptron

If I belongs to the first class add it to the weight vector
else subtract it from the weight vector

- Why does this work?
- If $(a^{(i)}, x_i)$ is correctly classified, don't change
- If wrongly classified as -1, then $w = w + a^{(i)}$
- If wrongly classified as +1, then $w = w - a^{(i)}$