Some Core Learning Representations

- Decision trees
- Learning Rules
- Association rules
- Rules with exceptions
- Rules involving relations
- Linear regression
- Trees for numeric prediction
- Instance-based representation
- Clusters

Output: representing structural patterns

- Many different ways of representing patterns
 - Decision trees, rules, instance-based, ...
- Also called “knowledge” representation
- Representation determines inference method
- Understanding the output is the key to understanding the underlying learning methods
- Different types of output for different learning problems (e.g. classification, regression, ...)

Decision tables

- Simplest way of representing output:
 - Use the same format as input!
- Decision table for the weather problem:

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Humidity</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>High</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>Normal</td>
<td>Yes</td>
</tr>
<tr>
<td>Overcast</td>
<td>High</td>
<td>Yes</td>
</tr>
<tr>
<td>Overcast</td>
<td>Normal</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>High</td>
<td>No</td>
</tr>
<tr>
<td>Rainy</td>
<td>Normal</td>
<td>No</td>
</tr>
</tbody>
</table>

- Main problem: selecting the right attributes
 - Not used
Decision trees

- “Divide-and-conquer” approach produces tree
- Nodes involve testing a particular attribute
- Usually, attribute value is compared to constant
- Other possibilities:
 - Comparing values of two attributes
 - Using a function of one or more attributes
- Leaves assign classification, set of classifications, or probability distribution to instances
- Unknown instance is routed down the tree

Nominal and numeric attributes

- Nominal:
 - number of children usually equal to number values
 - attribute won’t get tested more than once
- Other possibility: division into two subsets
- Numeric:
 - test whether value is greater or less than constant
 - attribute may get tested several times
- Other possibility: three-way split (or multi-way split)
 - Integer: less than, equal to, greater than
 - Real: below, within, above

Missing values

- Does absence of value have some significance?
- Yes ⇒ “missing” is a separate value
- No ⇒ “missing” must be treated in a special way
 - Solution A: assign instance to most popular branch
 - Solution B: split instance into pieces
 - Pieces receive weight according to fraction of training instances that go down each branch
 - Classifications from leave nodes are combined using the weights that have percolated to them

Classification rules

- Popular alternative to decision trees
- Antecedent (pre-condition): a series of tests (just like the tests at the nodes of a decision tree)
- Tests are usually logically ANDed together (but may also be general logical expressions)
- Consequent (conclusion): classes, set of classes, or probability distribution assigned by rule
- Coverage: fraction of records that satisfy antecedent
- Accuracy: fraction of those covered by the rule which satisfy the consequent.
From trees to rules

- Easy: converting a tree into a set of rules
 - One rule for each leaf:
 - Antecedent contains a condition for every node on the path from the root to the leaf
 - Consequent is class assigned by the leaf
- Produces rules that are unambiguous
 - Doesn’t matter in which order they are executed
- But: resulting rules are unnecessarily complex
 - Pruning to remove redundant tests/rules

From rules to trees

- More difficult: transforming a rule set into a tree
- Tree cannot easily express disjunction between rules
- Example: rules which test different attributes
 - If a and b then x
 - If c and d then x
- Symmetry needs to be broken – select a root
- Corresponding tree contains identical subtrees (⇒ “replicated subtree problem”)

A tree for a simple disjunction

The exclusive-or problem

If x = 1 and y = 0 then class = a
If x = 0 and y = 1 then class = a
If x = 0 and y = 0 then class = b
If x = 1 and y = 1 then class = b
A tree with a replicated subtree

If \(x = 1 \) and \(y = 1 \) then class = a
If \(z = 1 \) and \(w = 1 \) then class = a
Otherwise class = b

“Nuggets” of knowledge

- Are rules independent pieces of knowledge? (It seems easy to add a rule to an existing rule base.)
- Problem: ignores how rules are executed
- Two ways of executing a rule set:
 - Ordered set of rules (“decision list”)
 - Order is important for interpretation
 - Unordered set of rules
 - Rules may overlap and lead to different conclusions for the same instance

Special case: boolean class

- Assumption: if instance does not belong to class “yes”, it belongs to class “no”
- Trick: only learn rules for class “yes” and use default rule for “no”

Association rules

- Association rules...
 - ... can predict any attribute and combinations of attributes
 - ... are not intended to be used together as a set
- Problem: immense number of possible associations
 - Output needs to be restricted to show only the most predictive associations \(\Rightarrow \) only those with high support and high confidence
Support and confidence of a rule

- Support: number of instances predicted correctly (typically, a fraction of the total # instances)
- Confidence: number of correct predictions, as proportion of all instances that rule applies to
- Example: 4 cool days with normal humidity

\[
\text{If temperature = cool then humidity = normal}
\]

\[\Rightarrow \text{Support} = 4, \text{confidence} = 100\%\]

- Normally: minimum support and confidence pre-specified (e.g. 58 rules with support \(\geq 2\) and confidence \(\geq 95\%\) for weather data)

Rules with exceptions

- Idea: allow rules to have exceptions
- Example: rule for iris data

\[
\begin{align*}
&\text{If petal-length} \geq 2.45 \text{ and petal-length} < 4.45 \text{ then Iris-versicolor} \\
&\text{Modified rule:} \\
&\text{If petal-length} \geq 2.45 \text{ and petal-length} < 4.45 \text{ then Iris-versicolor EXCEPT if petal-width} < 1.0 \text{ then Iris-setosa}
\end{align*}
\]

A more complex example

- Exceptions to exceptions to exceptions ...

\[
\begin{align*}
&\text{default: Iris-setosa} \\
&\text{except if petal-length} \geq 2.45 \text{ and petal-length} < 5.355 \\
&\quad \text{and petal-width} < 1.75 \\
&\quad \text{then Iris-versicolor} \\
&\quad \text{except if petal-length} \geq 4.95 \text{ and petal-width} < 1.55 \\
&\quad \quad \text{then Iris-virginica} \\
&\quad \quad \text{else if sepal-length} < 4.95 \text{ and sepal-width} \geq 2.45 \\
&\quad \quad \quad \text{then Iris-virginica} \\
&\quad \text{else if petal-length} \geq 3.35 \\
&\quad \quad \text{then Iris-virginica} \\
&\quad \quad \text{except if petal-length} < 4.85 \text{ and sepal-length} < 5.95 \\
&\quad \quad \quad \text{then Iris-versicolor}
\end{align*}
\]

Advantages of using exceptions

- Rules can be updated incrementally
 - Easy to incorporate new data
 - Easy to incorporate domain knowledge
- People often think in terms of exceptions
- Each conclusion can be considered just in the context of rules and exceptions that lead to it
 - Locality property is important for understanding large rule sets
 - “Normal” rule sets don’t offer this advantage
Rules involving relations

- So far: all rules involved comparing an attribute-value to a constant (e.g. temperature < 45)
- These rules are called “propositional” because they have the same expressive power as propositional logic
- What if problem involves relationships between examples (e.g. family tree problem from above)?
 - Can’t be expressed with propositional rules
 - More expressive representation required

The shapes problem

- Target concept: standing up
- Shaded: standing
 Unshaded: lying

A propositional solution

<table>
<thead>
<tr>
<th>Width</th>
<th>Height</th>
<th>Sides</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>Standing</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>4</td>
<td>Standing</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
<td>Lying</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>3</td>
<td>Standing</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>4</td>
<td>Lying</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>3</td>
<td>Lying</td>
</tr>
</tbody>
</table>

If width ≥ 3.5 and height < 7.0 then lying
If height ≥ 3.5 then standing

A relational solution

- Comparing attributes with each other
 - If width > height then lying
 - If height > width then standing
- Generalizes better to new data
- Standard relations: =, <, >
- But: learning relational rules is costly
- Simple solution: add extra attributes
 (e.g. a binary attribute is width < height?)
Trees for numeric prediction

- **Regression**: the process of computing an expression that predicts a numeric quantity
- **Regression tree**: “decision tree” where each leaf predicts a numeric quantity
 - Predicted value is average value of training instances that reach the leaf
- **Model tree**: “regression tree” with linear regression models at the leaf nodes
 - Linear patches approximate continuous function

Linear regression for the CPU data

\[
\text{PRF} = -56.1 + 0.049 \text{MYCT} + 0.015 \text{MMIN} + 0.006 \text{MMAX} + 0.630 \text{CACH} - 0.270 \text{CHMIN} + 1.46 \text{CHMAX}
\]
Instance-based representation

- Simplest form of learning: *rote learning*
 - Training instances are searched for instance that most closely resembles new instance
 - The instances themselves represent the knowledge
 - Also called *instance-based* learning
- Similarity function defines what’s “learned”
- Instance-based learning is *lazy* learning
- Methods: nearest-neighbor, k-nearest-neighbor, ...

The distance function

- Simplest case: one numeric attribute
 - Distance is the difference between the two attribute values involved (or a function thereof)
- Several numeric attributes: normally, Euclidean distance is used and attributes are normalized
- Nominal attributes: distance is set to 1 if values are different, 0 if they are equal
- Are all attributes equally important?
 - Weighting the attributes might be necessary

Learning prototypes

- Only those instances involved in a decision need to be stored
- Noisy instances should be filtered out
- Idea: only use *prototypical* examples

Rectangular generalizations

- Nearest-neighbor rule is used outside rectangles
- Rectangles are rules! (But they can be more conservative than “normal” rules.)
- Nested rectangles are rules with exceptions
Representing clusters I

Simple 2-D representation

Venn diagram

Overlapping clusters

Representing clusters II

Probabilistic assignment

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.4</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>b</td>
<td>0.1</td>
<td>0.8</td>
<td>0.1</td>
</tr>
<tr>
<td>c</td>
<td>0.3</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>d</td>
<td>0.1</td>
<td>0.1</td>
<td>0.8</td>
</tr>
<tr>
<td>e</td>
<td>0.4</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>f</td>
<td>0.1</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>g</td>
<td>0.7</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>h</td>
<td>0.5</td>
<td>0.4</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Dendrogram

NB: dendron is the Greek word for tree