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Abstract
At any given time there exist a large number of soft-

ware vulnerabilities in our computing systems, but only
a fraction of them are ultimately exploited in the wild.
Advanced knowledge of which vulnerabilities are being
or likely to be exploited would allow system administra-
tors to prioritize patch deployments, enterprises to assess
their security risk more precisely, and security compa-
nies to develop intrusion protection for those vulnerabil-
ities. In this paper, we present a novel method based on
the notion of community detection for early discovery of
vulnerability exploits. Specifically, on one hand, we use
symptomatic botnet data (in the form of a set of spam
blacklists) to discover a community structure which re-
veals how similar Internet entities behave in terms of
their malicious activities. On the other hand, we analyze
the risk behavior of end-hosts through a set of patch de-
ployment measurements that allow us to assess their risk
to different vulnerabilities. The latter is then compared
to the former to quantify whether the underlying risks are
consistent with the observed global symptomatic com-
munity structure, which then allows us to statistically de-
termine whether a given vulnerability is being actively
exploited in the wild. Our results show that by observ-
ing up to 10 days’ worth of data, we can successfully
detect vulnerability exploitation with a true positive rate
of 90% and a false positive rate of 10%. Our detection
is shown to be much earlier than the standard discovery
time records for most vulnerabilities. Experiments also
demonstrate that our community based detection algo-
rithm is robust against strategic adversaries.

1 Introduction

Most software contains bugs, and an increased focus on
improving software security has contributed to a grow-
ing number of vulnerabilities that are discovered each
year [12]. Vulnerability disclosures are followed by

fixes, either in the form of patches or new version re-
leases. However, the installation/deployment of software
patches on millions of vulnerable hosts worldwide are
in a race with the development of vulnerability exploits.
Owing to the sheer volume of vulnerability disclosures, it
is hard for system administrators to keep up with this pro-
cess. The severity of problem was highlighted in 2017
by the the WannaCry and NotPetya outbreaks, as well as
the Equifax data breach exposing sensitive data of more
than 143 million consumers; in all three cases the under-
lying vulnerability had been patched (but not deployed)
months before the incident [46, 47, 20]. Prior research
suggests that, on median, at most 14% of the vulner-
able hosts are patched when exploits are released pub-
licly [30].

On the other hand, many vulnerabilities are never ex-
ploited. For instance, Nayak et al. [32] found that only
15% of known vulnerabilities are exploited in the wild.
In an ideal world, all vulnerabilities should be patched as
soon as they are identified regardless of their possibility
of eventual exploitation. However, in reality, we live in a
resource-constrained world where risk management and
patch prioritization become important decisions. Even
though patches may be released before or shortly after
the public disclosure of a software vulnerability, many
enterprises do not patch their systems in a timely manner,
sometimes caused by the need or desire to test patches
before deploying them on their respective machines [6].
Within this context, the ability to detect critical vulnera-
bilities prior to incidents would be highly desirable, as it
enables enterprises to prioritize patch testing and deploy-
ment. Furthermore, identifying actively exploited-in-
the-wild vulnerabilities that have not yet been addressed
by the software vendor can also guide them in prioritiz-
ing patch development.

However, determining critical software vulnerabilities
is non-trivial. For example, intrinsic attributes of vul-
nerabilities, such as the CVSS score [28], are not strong
predictors of eventual exploitation [36], underlining the
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Figure 1: Vulnerability disclosure, exploits and
detection time line. Early detection in this study refers
to the ability to detect after tC, i.e., post-disclosure, but

much earlier than tE , the current state of the art.

need for detection techniques based on field measure-
ments. In this paper, we ask the question: How early can
we determine that a specific vulnerability is actively be-
ing exploited in the wild? To put this on the appropriate
time scale, we illustrate the sequence of events associ-
ated with a vulnerability in Figure 1: its introduction at tA
with application installation, disclosure at tC, patching at
tF ; and for those eventually exploited in the wild, detec-
tion at tE . However, real exploitations may occur much
earlier, shown at tD (post-disclosure) and sometimes tB
(pre-disclosure). In this study, by early detection we refer
to the ability to detect exploits after tC (post-disclosure)
but before tE (before the current state of the art).

We show that this early detection can be well accom-
plished by using two datasets: end-host software patch-
ing behavior and a set of reputation blacklists (RBLs)
capturing IP level malicious (spam) activities. Specifi-
cally, when viewed at an aggregate level (e.g., an ISP),
the patching delays for a given vulnerability constitute a
risk profile for that ISP. If a symptom that often follows
exploitation (e.g., increased spam or malicious download
activities) occurs in a group of ISPs that share a certain
risk profile, then it is likely that the vulnerabilities as-
sociated with that risk profile are being exploited in the
wild. We show that there is strong empirical evidence of
a strong correlation between risk profiles and infection
symptoms, which enables early detection of exploited
vulnerabilities, even in cases where the exploit was not
yet discovered and where causal connection between ex-
ploitation and the symptom is not known.

By observing these signals up to 10 days after vulner-
ability disclosure (tC), we can detect exploits with true
and false positive rates of 90% and 10%, respectively.
Note that intrinsic attributes of a vulnerability (e.g., re-
mote exploitability) are available immediately after dis-
closure, however, we show that features extracted from

10 days of post-disclosure data can significantly improve
the accuracy of detecting active exploitation. Moreover,
the median time between vulnerability disclosure and re-
ports of exploitation in our dataset is 35 days, with 80%
of reported exploits appearing beyond 10 days after the
public disclosure of the underlying vulnerability. This in-
dicates that our proposed method can improve detection
times for active exploits. Note that compared to other
techniques such as detection of exploits from social me-
dia posts (which usually appear around the time exploits
are discovered) [36], we base our detection on statistical
evidence of exploitation from real-world measurements,
which can capture much weaker indications of exploits
shortly after the public disclosure of a vulnerability.

Our main contributions are summarized as follows:

1. We use a community detection [51] method for cor-
relating and extracting features from user patching
data and IP level malicious activities. We show that
the resulting features can detect active exploitation,
validated using a ground-truth set of vulnerabilities
known to be exploited in the wild.

2. Using these features, combined with other intrinsic
features of a given vulnerability, we show that accu-
rate detection can be achieved within 10 days of vul-
nerability disclosure. This is much earlier than the
state-of-the-art on average, and thus provides sig-
nificant time advantage in patch development and
deployment. We also evaluate retrospective analy-
sis of pre-disclosure data on the disclosure date to
detect and promptly respond to zero-day exploits.

3. The community structure generated during feature
extraction can also be used to identify groups of
hosts at risk to specific vulnerabilities currently be-
ing exploited, adding to our ability to strengthen
preventative and protective measures.

4. We evaluate the robustness of our technique against
strategic adversaries, observing graciously degrad-
ing performance even when the adversary can con-
trol a significant number of hosts within many ISPs.

The rest of paper is organized as follows. In Section 2
we outline the conceptual idea behind our methodology
and how community detection is used as a feature extrac-
tion tool. We describe our datasets and data processing in
Sections 3 and 4. Section 5 details the community detec-
tion technique. Section 6 presents our classifier design,
detection performance, and comparison with a number
of alternatives. In Section 7 we present case studies of
our system’s output, evaluate the robustness of our tech-
nique against strategic adversaries, and discuss how our
proposed methodology could be used in practice. Sec-
tion 8 summarizes related work and Section 9 concludes
the paper.



(a) Symptom pattern (b) Risk behavior 1 (c) Risk behavior 2

Figure 2: Detecting active viral strain by comparing population symptom pattern and risk behavior pattern. There are
two strains of viruses: those exposed to air contamination are more at risk/susceptible to strain 1, while those exposed
to water contamination are more at risk/susceptible to strain 2. By comparing the symptom group to the risk groups

we can infer which strain is likely to be the underlying cause of the infection.

2 Overview of Concept and Methodology

Our study is premised on a simple observation, that vul-
nerability exploitation leads to host infection, which then
leads to manifestation of symptoms such as malicious ac-
tivities. However, using the latter to detect the former is
far from trivial: observed signs of infection do not reveal
which vulnerability is the underlying culprit.

This led us to consider a more verifiable hypothesis:
entities (to be precisely defined shortly) that exhibit sim-
ilar patching behavior in a particular vulnerability (and
thus their vulnerability state) might also exhibit similar
patterns of infection associated with that vulnerability
if it is being actively exploited; on the other hand, the
same similarity association should not exist if the vulner-
ability is not being actively exploited. If this hypothesis
holds, then it follows that one should be able to assess
the strengths of association between patching behavior
and infection symptoms and use it to detect whether a
vulnerability is likely being actively exploited.

2.1 Main idea

We illustrate the above idea using an analogy shown in
Figure 2. Suppose in any given year multiple strains
of a virus may be active in a particular region. Each
strain works through a different susceptibility: some
through contaminated air, some through contaminated
water, shown in Figure 2b and 2c respectively. When in-
fected, regardless of the active strain, the outward symp-
toms are indistinguishable. However, if we know the in-
fected population, then by identifying the underlying risk
pattern it becomes possible to infer which strain may be
active. Comparing Figure 2b to 2a and then 2c to 2a, we
see a large overlap between the symptom group and the
group at risk to strain 1 (through air contamination), in-
dicating a likelihood that stain 1 is active; by contrast,
the symptom group and those at risk to strain 2 (through
water contamination) are largely disjoint, suggesting that

strain 2 is likely not active.
To apply this analogy in our context, the symptom

pattern refers to malicious activities while risk behav-
ior refers to host patching. More specifically, infected
population maps to hosts showing explicit signs of bot-
net activities, and exposure to active (non-active) viral
strains maps to having vulnerabilities that are (not) being
actively exploited.

2.2 Challenges

This example illustrates the conceptual idea behind our
methodology, though it is a gross simplification as we
elaborate below. In particular, we face two challenges.
First, the telemetry that many security vendors collect on
end-hosts is often anonymized, for user privacy reasons,
and omits attributes that may identify the host, such as
its IP address. This makes it impossible to correlate the
risky behaviors (reflected in this telemetry) with symp-
toms (reflected in RBLs) at the host or IP level. Yet since
we are correlating behavioral and symptomatic data, it
is essential that both are associated with the same entity.
To resolve this, we use aggregation to assess this idea at
a higher level. Specifically, while the patching data does
not contain IP addresses, it shows ISP information asso-
ciated with each host. This allows us to aggregate patch-
ing behavior at the ISP level. On the RBL side, we use a
separate IP intelligence database to aggregate malicious
behavior at the ISP level by using IP to ISP mappings.
In other words, each unit in the population shown in the
above example now maps to an ISP. With this aggrega-
tion, the above hypothesis essentially states that ISPs be-
having similarly in patching a certain vulnerability (risk
patterns) are most likely to show similar infection symp-
toms if that vulnerability is being exploited.

This technique can be adapted for a more fine-grained
aggregation, such as autonomous systems (ASs), or
not using any aggregation when both risk behavior and
symptoms are available at the host level. However, as is



evident from our results in Section 6.2, aggregation at the
ISP level is not too coarse so as to impede our technique
from detecting actively exploited vulnerabilities.

Our second challenge is in determining the right met-
ric to use to capture “similarity” both in the patching be-
havior and in the symptoms. Unlike what is shown in
the example, in our context neither the symptoms (spam
activities from an ISP) nor the risk behaviors (patching
records of end-hosts in an ISP) are binary, or even nec-
essarily countable as they are extracted from time series
data. This makes identifying either pattern within the
population much less straightforward. One natural first
step is to compute pairwise correlation for each pair of
ISPs’ time series. This results in two similarity matri-
ces, one from the patching behavior data for a specific
vulnerability, one from the symptomatic infection data
(collected following that vulnerability’s disclosure from
spam lists). It is the second-order similarity compari-
son between these two matrices that is hypothesized to
be able to tell apart exploited vulnerabilities from non-
exploited ones. To this end, we present the use of com-
munity detection [10, 51] over the symptom similarity
matrix to identify groups of similar ISPs; this is then fol-
lowed by quantifying the consistency between the risk
behavior similarity matrix and the detected community
structure. Our results show that indeed for vulnerabil-
ities with known exploits, this match is much stronger
than that for those without known exploits.

We then use the consistency measures as features,
along with a number of other intrinsic features, to train a
classifier aimed at detecting exploitations.

2.3 Threat model

One type of adversaries implicit in this work are those
actively exploiting software vulnerabilities. One basic
assumption we adopt is that such exploitation can occur
as soon as the vulnerabilities are introduced (with new
version releases, etc.), though our detection framework
is triggered by the official vulnerability disclosure, as in-
dicated in Figure 1. We assume such an adversary can
potentially develop and actively pursue exploits for any
existing vulnerability.

A second type of adversaries we consider are those
who not only seek exploitation but also have the abil-
ity to control a significant number of end-hosts so as to
manipulate the patching signals we use in our detection
framework. In other words, this is a type of attack (or
evasion attempt) against our specific detection methodol-
ogy which uses patching signals as one of the inputs. The
manipulation is intended to interfere with the way we
measure similarity between networks; in Section 7.2 we
examine the robustness of our detection method against
this type of attack.

3 Datasets

Table 1 summarizes the datasets used in this study. Since
we need time-aligned measurements to compare behav-
iors between patching and malicious activity signals,
only the overlapping time period, 01/2013-07/2014, is
used in our analysis.

3.1 End-host patching

Our study draws from a number of data sources that col-
lectively characterize the users’ patching behavior, al-
lowing us to assess their susceptibility to known vulnera-
bilities and exploits at any point in time. This set will also
be referred to as the risk/behavioral data. These include
the host patching data [14], the National Vulnerability
Database (NVD) [33], and release notes from software
vendors of the products examined in our study.

Patch deployment measurements This data source
allows us to observe users’ patching behavior to assess
their susceptibility to known vulnerabilities. We use
patch deployment measurements collected by Nappa et
al. on end-hosts [30]. This corpus records installation
of subsequent versions of different applications along
with each event’s timestamp, by mapping records of bi-
nary executables on user machines to their correspond-
ing application versions. This data is derived from the
WINE dataset provided by Symantec [14], and includes
observations on hosts worldwide between 02/2008 and
07/2014. In addition, we extract the security flaws af-
fecting each application version from the National Vul-
nerability database (NVD), where each vulnerability is
denoted by its Common Vulnerabilities and Exposures
Identifier (CVE-ID).

For each host and CVE-ID, we follow the methodol-
ogy described in [38] to collect the periods of time where
a host is susceptible to disclosed but unpatched vulnera-
bilities, through the presence of vulnerable application
versions on their machines. This method involves find-
ing the state of a host, i.e., the set of applications installed
on the machine, for any point throughout the observation
period, and extracting the set of disclosed vulnerabilities
corresponding to those application versions from NVD.
Note that a user might also install different product lines
of the same application, e.g., Flash Player 10 and 11, at
the same time. We will elaborate on this in Section 4.1.

For this study, we analyze user patching behavior over
7 applications with the best host coverage in our dataset,
namely Google Chrome, Mozilla Firefox, Mozilla Thun-
derbird, Safari, Opera, Adobe Acrobat Reader, and
Adobe Flash Player; we ignore hosts that have recorded
less than 10 events for all of these applications. Re-



Category Collection period Datasets

End-host patching (risk behavior) Feb 2008 - Jul 2014 NVD [33], patch deployment measurements [14],
vendors’ release notes

Malicious activity (symptom) Jan 2013 - Present CBL [9] , SBL [39], SpamCop [41], UCEPRO-
TECT [45], WPBL [48]

Vulnerability exploits (cause) Jan 2010- Present SecurityFocus [40], Symantec’s anti-virus signa-
tures [42], intrusion-protection signatures [4]

Table 1: Summary of datasets. For this study, we use the intersection of all observation windows (01/2013-07/2014).

stricted to the study period of 01/2013-07/2014, we ob-
serve 370,510 events over 30,310 unique hosts.

Vulnerability exploits As noted earlier, only a small
fraction of disclosed vulnerabilities have known exploits;
some exploits may remain undiscovered, but a large
number of vulnerabilities are never exploited. We iden-
tify the set of vulnerabilities exploited in the real world
from two sources. The first is the corpus of exploited
vulnerabilities collected by Carl et al. [36]. These are ex-
tracted from public descriptions of Symantec’s anti-virus
signatures [42], and intrusion-protection signatures (IPS)
[4]. Limiting the vulnerabilities included in our study to
the above 7 products between 01/2013 to 07/2014, we
curate a dataset containing 18 vulnerabilities. The sec-
ond source of exploits is the SecurityFocus vulnerability
database [40] from Symantec. We query all CVE-IDs
extracted from NVD included in our study and obtain 44
exploited-in-the-wild (EIW) vulnerabilities. Combining
all curated datasets we obtain 56 exploited-in-the-wild
(EIW) and 300 not-exploited-in-the-wild (NEIW) vul-
nerabilities.

Software release notes To find whether a host is sus-
ceptible to a vulnerability and to address the issue of par-
allel product lines, we utilize the release date of each
application version included in our study. For Thunder-
bird, Firefox, Chrome, Opera, Adobe Acrobat Reader
and Adobe Flash Player, we crawl the release history logs
from the official vendor’s websites or a third party. How-
ever, there sometimes exist sub-versions that are not in-
cluded in these sources. Thus, we also use release dates
from Nappa et al. [30] who automatically extract soft-
ware release dates by selecting the first date when the
version appears in the patch deployment dataset [14].

3.2 Malicious activities

Our second main category of data consists of IP level
spam activities and will refer to this as symptomatic
data since malicious activities are ostensible signs that
end-hosts have been infected, possibly through the use
of an exploited vulnerability present on the host. This
dataset is sourced from well-established monitoring sys-

tems such as spam traps in the form of various reputation
blacklists (RBLs) [9, 39, 41, 45, 48]. In this study, we
use 5 common daily IP address based RBLs from Jan-
uary 2013 to July 2014 which overlap with the patch de-
ployment measurements.

Note that the use of spam data is only a proxy for host
infection caused by vulnerability exploits and an imper-
fect one at that. For instance, not all spam are caused by
exploits; some spamming botnets are distributed through
malicious attachments. Similarly, it is also common for
cyber-criminals to rent pay-per-install services to install
bots. In both cases, the resulting spam activities are not
correlated with host patching patterns. This raises the
question whether these other types of operations may
render our approach ineffective. Our results show the op-
posite; the detection performance we are able to achieve
suggests that spam is a very good proxy for this purpose
despite the existence of non-vulnerability related spam-
ming bot distributions.

Note that hosts in our patch deployment dataset are
anonymized, but can be aggregated at the Internet Ser-
vice Provider (ISP) level. Hence, we also use the Max-
mind GeoIP2ISP service [29] (identifying 3.5 million
IPv4 address blocks belonging to 68,605 ISPs) to aggre-
gate malicious activity indicators at the ISP level. We
then align the resulting time series data with aggregated
patching signals for evaluating our methodology.

4 Data Processing and Preliminaries

In this section we further elaborate on how time series
data are aggregated at the ISP level and how we define
similarity measures between ISPs.

4.1 Aggregating at the ISP level

The mapping from hosts to ISPs is not unique; as devices
move it may be associated with different IP addresses
and possibly different ISPs. This is the case with both
the patching data and the RBLs and our aggregation takes
this into account by similarly mapping the same host to
multiple ISPs whenever this is indicated in the data.

Aggregating the RBL signals at the ISP level is rel-
atively straightforward. Each RBL provides a daily list



of malicious IP addresses, from which we count the to-
tal number of unique IPs belonging to any ISP. Formally,
let Rn(t) denote the total number of unique IPs listed on
these RBLs on day t that belong to ISP n (by mapping
the IPs to prefixes associated with this ISP). This is then
normalized by the size of ISP n; this normalization step
is essential as pairwise comparisons between ISPs can be
severely skewed when there is a large difference in their
respective sizes. The normalized time series rn(t) will
also be referred to as the symptom signal of ISP n.

Aggregating the patching data at an ISP level is signif-
icantly more involved. This is because the measurements
are in the form of a sequence of application versions in-
stalled on a host with their corresponding timestamps. To
quantify the risk of a given host, we first extract known
vulnerabilities affecting each application version from
NVD using the Common Vulnerabilities and Exposures
Identifier (CVE-ID) of the vulnerability. Each vulnera-
bility will also be referred to as a CVE throughout this
paper. However, this extraction is complicated by the
fact that there may be multiple product lines present on
a host, or when a user downgrades to an earlier release.
Moreover, multiple product lines of a software are some-
times developed in parallel by a vendor, all of which
could be affected by the same CVE, e.g,. Flash Player
10 and 11. It follows that if a host has both versions,
then updating one but not the other will still leave the
host vulnerable. In this study, we use the release notes
described in Section 3.1 as an additional data source to
distinguish between parallel product lines, by assuming
that application versions belonging to the same line fol-
low a chronological order of release dates, while multiple
parallel lines can be developed in parallel by the vendor.
This heuristic allows us to discern different product lines
of each application and users that have installed multiple
product lines on their respective machines at any point in
time, leading to a more accurate estimate of their states.

We quantify the vulnerability of a single host h to CVE
j on day t by counting how many versions present on the
host on day t are subject to this CVE. Denoted by W j

h (t),
in most cases this is a binary indicator (i.e., whether there
exists a single version subject to this CVE), but occa-
sionally this can be an integer > 1 due to the presence of
parallel product lines mentioned above. This quantity is
then summed over all hosts belonging to an ISP n, result-
ing in a total count of unpatched vulnerabilities present
in this ISP. We again normalize this quantity by the ISP’s
size and denote the normalized signal by w j

n(t).
We have now obtained two types of time series for

each ISP n: rn(t) denoting the normalized malicious
activities (also referred to as the symptom signal), and
w j

n(t), j ∈ V , denoting the normalized risk with respect
to CVE j; the latter is a set of time series, one for each
CVE in the set V (also referred to as the risk signal).

Note that rn(t) is not CVE-specific; however, a given
CVE determines the time period in which this signal is
examined as we show next.

4.2 Similarity in symptoms and in risk
As described in the introduction and highlighted in Fig-
ure 2, our basic methodology relies on identifying the
similarity structure using symptom data and quantify-
ing how strongly the risk patterns are associated with the
symptom similarity structure. This is done for each CVE
separately. Note that our aggregated malicious activity
signal rn(t) for ISP n is agnostic to the choice of CVE,
since the observed malicious activities from a single host
can be attributed to a variety of reasons including various
CVEs the host is vulnerable to. However, our analysis on
a given CVE determines the time window from which we
examine this signal. Specifically, consider the following
definition of correlation between two vectors u[0 : d] and
v[0 : d], which tries to find similarity between the two
vectors by allowing time shifts/delays between the two:

Su,v(k) =
∑

d
t=k u(t) · v(t− k)√

∑
d−k
t=0 v(t) · v(t) ·∑d−k

t=0 u(t + k) ·u(t + k)
, (1)

where k = 0, · · · ,d denotes all possible time shifts. The
above equation keeps v fixed and slides u one element
at a time and generates a sequence of correlations over
increasingly shorter vectors. Similarly, we can keep u
fixed and slide v one element at a time, which gives us
Sv,u(k) for k = 0, · · · ,d. Our pairwise similarity measure
is defined by the maximum of these correlations subject
to a lower bound on how long the vector should be:

Su,v = max( max
0≤k≤d−a

(Su,v(k)), max
0≤k≤d−a

(Sv,u(k)), (2)

where a is a lower bound to guarantee the correlation is
computed over vectors of length at least d−a to prevent
artificially high values. In our numerical experiment a is
set to d d

4 e.
With the above definition, the pairwise symptom simi-

larity between a pair of ISPs n and m for CVE j can now
be formally stated. Assume t j

o to be the day of disclo-
sure for CVE j. We will focus on the time period from
disclosure to d days after that, as we aim to see whether
by examining this period we can detect the presence of
an exploit.1 For simplicity of presentation, we shift t j

o
to origin, which gives us two symptom signals of length
d + 1: rn[0 : d] and rm[0 : d], and a pairwise symptom
similarity measure S j

rn,rm using Equations (1) and (2).
We can similarly define the pairwise risk similarity be-

tween this pair of ISPs, given by S j
wn,wm .

1In Section 6 we also examine whether signs of infection can be
detected before the official disclosure; in that case this window starts
d1 days before the disclosure and ends d2 days after.



Figure 3: Visualization of community structure of
malicious ISPs; each color denotes a single community.

5 Comparing Symptom Similarity to Risk
Similarity

In this section, we first use community detection meth-
ods [10, 51] to identify the underlying communities in
the pairwise symptom similarities. We then detail our
technique for quantifying the strength of association be-
tween symptoms and risk behavior for specific CVEs.

5.1 Community detection over symptom
similarity

The set of pairwise similarity measures S j
rn,rm constitute

a similarity matrix denoted by S j[n,m], ∀n,m∈I where
I denotes the set of all ISPs included in the following
analysis. This matrix is equivalently represented as a
weighted (and undirected) graph, where I is the set of
vertices (each vertex being an ISP) and the pairwise sim-
ilarity S j

rn,rm is the edge weight between vertices n and m
(note each edge weight is a number between 0 and 1). A
community detection algorithm can then be run over this
graph to identify hidden structures.

The general goal of community detection is to un-
cover hidden structures in a graph; a typical example is
the identification of clusters (e.g., social groups) that are
strongly connected (in terms of degree), whereby nodes
within the same cluster have a much higher number of
in-cluster edges than edges connecting to nodes outside
the cluster. This has been an extensive area of research
within the signal processing and machine learning com-
munity and has found diverse applications including bio-
logical systems [18, 43, 52], social networks [23, 51, 52],
influence and citations [31, 51, 52], among others.

In our context, the similarity matrix S j[n,m] induces a
weighted and fully-connected graph. The result of com-

(a) The green community. (b) The pink community.

Figure 4: Aggregate malicious signals of selected ISPs
belonging to either green or pink community in Fig. 3.

munity detection over such a graph is a collection of clus-
ters, each of which represents ISPs that share very sim-
ilar symptoms. We use two state-of-the-art community
detection algorithms, both of which detect overlapping
communities, i.e., a node may belong to multiple clus-
ters. The first one is BigClam (Cluster Affiliation Model
for Big Networks) [52]; this is a model-based commu-
nity detection algorithm that finds densely overlapping,
hierarchically nested, as well as non-overlapping com-
munities. The second is DEMON (Democratic Estimate
of the Modular Organization of a Network) [10], which
discovers communities by using local properties.

Figure 3 visualizes the communities discovered from
the symptom similarity matrix corresponding to CVE-
2013-2729 from 2013/05/16 to 2013/05/26 using the
Force Atlas layout [24] provided by [5]; different col-
ors encode different communities identified by the algo-
rithm. In this example, an original graph of 8,742 nodes
was reduced to one with 1,112 nodes and 10 detected
communities.2 To convey a sense of what the notion of
community captures, we further plot the spam signals of
groups of ISPs each belonging to one of two communi-
ties in Figure 4; as can be seen, those in the same com-
munity exhibit similar temporal signals.

5.2 Measuring the strength of association
between risk and symptoms

We now verify the hypothesis stated in the introduc-
tion; that is, if a CVE is being actively exploited, then
ISPs showing similar vulnerabilities to this CVE are also
likely to exhibit similar infection symptoms, while on the
other hand if a CVE is not actively exploited, then the
similarity in vulnerabilities may not be associated with
similarity in symptoms. Toward this end, we note that
there isn’t a unique way to measure the strength of as-
sociation in these two types of similarities. One could,
for instance, try to directly compare the two similarity
matrices S j[rn,rm] and S j[wn,wm]; we shall use one ver-

2The reduction in number of nodes is due to deletion of all edges to
some nodes when all their edge weights are below a certain threshold.



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Similarity

0

0.2

0.4

0.6

0.8

1

C
D

F

inter similiarity

intra similarity

(a) CVE-2014-1504 (NEIW).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Similarity

0

0.2

0.4

0.6

0.8

1

C
D

F

inter similarity

intra similarity

(b) CVE-2014-0496 (EIW).

Figure 5: Intra- and inter-cluster risk similarity on
different types of CVEs based on community detection.
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Figure 6: Distinguishing between EIW and NEIW
CVEs.

sion of this whereby we perform row-by-row correlation
between the two matrices as one of the benchmark com-
parisons presented in Section 6.

Below we will consider a more intuitive measure. We
first use the communities detected by symptom similar-
ity to sort pairwise risk similarity values into two distinct
groups: inter-cluster similarity and intra-cluster similar-
ity. Specifically, denote the set of clusters identified by
community detection over matrix S j[rn,rm] as C . Then if
we can find a cluster C ∈ C such that both n,m ∈C, then
S j

wn,wm is sorted into the intra-cluster group; otherwise
it is sorted into the inter-cluster group. This is repeated
for all pairs n,m ∈ I . Figure 5 shows the distribution
of these values within each group for two distinct CVEs,
one is known to have an exploit in the wild (detected by
Symantec 20 days post-disclosure), and the other has no
known exploits in the wild.

The difference between the two is both evident and re-
vealing: for the CVE without a known exploit, Figure 5a
shows virtually no difference between the two distribu-
tions, indicating that the risk similarity values are not dif-
ferentiated by the symptom patterns. On the other hand,
for the exploited CVE (though only known after the an-
alyzed observation time period), Figure 5b shows a very
distinct difference (p value of Kolmogorov-Smirnov test
< 0.01) between the two groups. In particular, the intra-
cluster group contains much higher risk similarity val-
ues. This suggests that high risk similarity coincides with
high symptom similarity (which is what determined the

Figure 7: Time to recorded detection (x-axis) vs the
difference measure (D j) calculated within 10 days post
disclosure (y-axis); the red curve is the mean difference
within each delay bin. Different categories of CVEs are

color-coded, with ties broken randomly when a CVE
belong to multiple categories.

community structure). Also worthy of note is the fact
that for the exploited CVE, the earliest date of exploit ob-
servation on record is 20 days post-disclosure (disclosure
on 01/15/2014, observation in the wild on 02/05/2014),
whereas this analysis is feasible within 10 days of the
disclosure (01/15-01/25/2014). This suggests that ex-
ploits occur much sooner than commonly reported, and
that early detection is possible.

We sum up the values in each group and take the dif-
ference between the intra-cluster and inter-cluster sum
and denote it by D j. This allows us to quantify the
strength of association between risk and symptoms for
any arbitrary CVE; a high D j indicates that there is a sta-
tistically significant difference between intra-cluster and
inter-cluster risk similarities, which in turn provides ev-
idence for active exploitation. Figure 6a shows the dis-
tribution of D j over two CVE subsets: one with known
exploits (with observation dates at least 10 days post-
disclosure) and one without known exploits. We see
that for the group of exploited CVEs, the intra-cluster
risk similarities are decidedly higher, suggesting a con-
sistency with communities detected using symptoms. By
contrast, for non-exploited CVEs, there is no apprecia-
ble difference between the two groups; indeed the distri-
bution looks very similar to that obtained using random
partitions of the ISP shown as a reference in Figure 6b.

We also plot for each CVE its time to earliest detection
on record against the above similarity difference measure
in Figure 7; the curve highlights the mean of D j in each
delay bin. We observe a general downward trend in the
mean, i.e., for exploits spotted earlier their inter-cluster
and intra-cluster similarity difference is also more pro-



Keyword MI Wild Keyword MI Wild

affect 0.0006 allow 0.0045
attack 0.0069 crafted 0.0012

corruption 0.0019 google 0.0012
dll 0.0016 free 0.0016

function 0.0012 exploit 0.0016
server 0.0020 runtime 0.0047
remote 0.0004 memory 0.0001
service 0.0008 xp 0.0004

Table 2: The top 16 intrinsic features, and their mutual
information with both sources of ground-truth data.

nounced. This is consistent with our belief that the simi-
larity difference D j is fundamentally a sign of active ex-
ploitation, which coincides with being detected earlier;
for those detected much later on, it is more likely that
exploitation occurred later and therefore could not be ob-
served during the early days.

6 Early Detection of Exploits in the Wild

Our results in the previous section shows that the intra-
and inter-cluster risk similarity distributions as well as
the difference D j are statistically meaningful in separat-
ing one group of CVEs (exploited) from another (not ex-
ploited). This suggests that these can be used as features
in building a classifier aiming at exploits detection.

6.1 Features and labels

Each CVE in our sample set is labeled as either ex-
ploited or un-exploited, which constitutes the label. As
described in Section 3.1, our ground-truth comes from
three sources, public descriptions of Symantec’s anti-
virus signature, intrusion-protection signatures and ex-
ploit data from SecurityFocus. Each CVE also comes
with a set of features. In addition to the spam/symptom
data and patching/risk data we analyzed rigorously in the
previous section, we will also use intrinsic attributes as-
sociated with each CVE extracted from NVD.

Specifically, CVE summary information offers basic
descriptions about its category, the process to exploit it,
and whether it requires remote access, etc. These are
important static features for characterizing the proper-
ties of a CVE. We apply bag of words to retrieve fea-
tures from the summaries after punctuation and stem-
ming processes. In total we obtained 3,037 keywords
from our dataset. We then select 16 features with the
highest mutual information with labels; these are shown
in Table 2. We observe that keywords such as attack,
exploit, server, and allow, have higher mutual infor-
mation with labels of exploited, which is consistent with

common understanding of what might motivate exploits.
Below we summarize the complete set of features used

in this study (each family is given a category name),
some of which are introduced for comparison purposes
as we describe in detail next.

• [Community]: The difference in distribution
(intra-cluster minus inter-cluster similarity) shown
in Figure 5, in the form of histograms with 20 bins.

• [Direct]: The distribution of row-by-row correla-
tion between the two similarity matrices S j[rn,rm]
and S j[wn,wm], in the form of 20-bin histograms.

• [Raw]: The two similarity matrices S j[rn,rm] and
S j[wn,rm].

• [Intrinsic]: The top 20 intrinsic features using bag
of words as shown in Table 2.

• [CVSS] CVSS [28] metrics and scores. For each
CVE, we use three metrics: AcessVecotr, Ac-
cesComplexity, and Authentication, which measure
the exploit range, required attack complexity and
the level of authentication needed for successful ex-
ploitation, respectively

We can also categorize these sets of features as graph-
based ([Community], [Direct], [Raw]) and intrinsic ([In-
trinsic], [CVSS]) features. The intrinsic features describe
what is known about a vulnerability at the time of disclo-
sure, e.g., whether it can be used to gain remote control
of the host. Intuitively, these features can affect the like-
lihood of a CVE being targeted by cyber-criminals. On
the other hand, graph-based features can detect the on-
set of active exploitation, by associating similar patching
behavior with similarity in infection patterns. Our re-
sults in the following section demonstrate that while in-
trinsic features alone are poor predictors of eventual ex-
ploitation of a CVE, combining intrinsic attributes with
graph-based features enables early and accurate detec-
tion of EIW vulnerabilities.

6.2 Detection performance
We now compare the detection performance by training
classifiers using different subsets of the features listed
above. In training the classifiers, we note there is an im-
balance between our EIW (56) and NEIW (300) classes
of CVEs. For this reason, the training and testing are
conducted using 20 rounds of random sub-sampling from
the NEIW set to match its size with the EIW set; for
each round, we apply 5-fold cross validation to split the
dataset into training and test sets. We train Random
Forests [34] for classification, and average our results
over all 20 rounds; our results are reported below.
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Figure 8: ROC and AUC comparison (left), precision and recall comparison (center), and comparison between
different observation windows post- and pre-disclosure (right).

When using [Community] features, we observed simi-
lar performance for BigClam and DEMON. BigClam has
linear time complexity, so for simplicity of exposition be-
low we only report our results using BigClam.

Also for comparison, we will directly use the two sim-
ilarity matrices (the [Raw] features) to train a classifier.
The dimensionality of the matrix is equal to the num-
ber of valid ISPs, 3050 by 3050. This is much higher in
dimension than the number of instances we have, lead-
ing to severe overfitting if used directly. We thus apply
a common univariate feature selection method [37] pro-
vide by [34] to obtain K = 150 features with the high-
est values based on the chi-squared test3. Three stan-
dard machine learning methods are then used to train a
classifier: SVM, Random Forest and a fully-connected
neural network with three hidden layers and 30 neurons
for each hidden layer. We observe similar performance
for all examined models, and thus we only report our
results using Random Forest classifiers. We depict the
ROC (Receiver Operating Characteristic) curves and re-
port the AUC (Area Under the Curve) score as perfor-
mance measures. We train and compare multiple classi-
fiers on different sets of features:

• “All features”: This is a classifier trained with all
features using 10 days of data post-disclosure.

• “Community features”: A set of classifiers trained
using only [Community] and on 10 days of observa-
tional data post-disclosure (for both symptoms and
risk). Only CVEs whose known detection dates are
beyond 10 days are used for testing these classifiers.

• “Direct features”: Trained based on the [Direct] fea-
tures alone on 10 days of data post-disclosure.

• “Raw features”: Trained with [Raw] features on 10
days of observational data post-disclosure.

3We did not use PCA for dimensionality reduction in order to retain
interpretability of the features used.

• “Day x”: A set of classifiers trained using only
[Community] and on x days of observational data
post-disclosure (for both symptoms and risk). Only
CVEs whose known detection dates are beyond day
x are used for testing these classifiers.

• “Back x”: A set of classifiers trained using only
[Community] and on 10 days of observational data
starting from x days before disclosure (for both
symptoms and risk).

• “Intrinsic features”: Trained using [Intrinsic] and
[CVSS] families of features.

• “Community+Intrinsic”: This is a classifier trained
with [Intrinsic] and [Community] features on 10
days of observational data post-disclosure.

• “Direct+Raw+Intrinsic”: This is a classifier trained
with [Intrinsic], [Direct], and [Raw] features on 10
days of observational data post-disclosure.

The main comparison is given in Figure 8a. We see a
remarkable improvement in detection performance when
we combine the community features with CVE intrin-
sic features. We see that even though both community
and direct features are extracted from the raw features,
they both perform much better than directly using raw
features. In particular, the community detection based
method is shown to perform the best among these three.
The reason why extracted features perform better than
raw features is because with the latter a lot of the tempo-
ral information embedded in the time series data is under-
utilized (e.g., in decision tree type of classifiers, time se-
ries data are taken as multiple individual inputs), whereas
the features we extract (either in the form of community
comparison or in the form of row-by-row correlation) at-
tempt to preserve this temporal information.

Additionally, we see that combining community fea-
tures with intrinsic features achieves very good detection



performance, almost similar to the concatenation of all
features; this suggests that when combined with intrin-
sic features, community features can effectively replace
the use of raw and direct features. Finally, the overall at-
tainable performance is very promising: 96% AUC, and
90% and 10% true and false positive rates. The same set
of results are re-plotted in terms of precision and recall
in Figure 8b.

As mentioned earlier and observed here, the intrinsic
features by themselves are not particularly strong predic-
tors, and weaker than the community features when used
alone, as measured by AUC (69%). This is because the
intrinsic features are a priori characterizations of a vul-
nerability (thus the use of which amounts to prediction),
whereas community features are a posteriori signs of ex-
ploitation, allowing us to perform detection. It is thus
not surprising that the latter is a more powerful metric. It
is however promising to see that the two sets of features
complement each other well by providing orthogonal at-
tributes for predicting/detecting exploitation, resulting in
much higher performance when combined.

It should be noted that this level of performance still
falls short of what could be attained in a typical intrusion
detection systems (IDS) or spam filters, and there are a
few reasons for this. Firstly, as mentioned earlier our la-
beling of vulnerabilities as exploited and non-exploited
may be noisy: some exploited vulnerabilities may have
remained unidentified and unreported. Secondly, in an
IDS type of detection system there are typically very spe-
cific signatures one looks for, whereas in our setting the
analysis is done over large populations where such sig-
natures become very weak or non-existent; e.g., we can
only observe if a host is sending out spam without any
visibility into how or why. Accordingly, a performance
gap is expected if comparing to IDS type of detection
systems. It is however worth noting that in our setting a
false positive is not nearly as costly as one in an IDS; ours
would merely suggest that an as-yet unexploited CVE
should be prioritized for patch development/deployment,
which arguably would have to be done at some point re-
gardless of our detection result.

If multiple CVEs are simultaneously exploited, our
detection can still work as long as the hosts have non-
identical patching behavior for these CVEs. This is be-
cause the risk behavior would be different even if the in-
fection groups are the same, as we showed in Figure 2c.
If the host population also exhibit the same patching be-
havior toward these CVEs, then the resulting ambiguity
will cause our algorithm to “detect” all of these CVEs,
only one/some of which are the culprit. This would be
another type of false positive; the consequence however
is again limited – all these CVEs will be suggested as
high priority even though one or some of them could
have waited.

Note that the accuracies presented here are obtained
in spite of multiple sources of noise that can appear in
our datasets or imperfections in our methodology. For
instance the one-to-multiple mapping from symptoms of
malicious behavior (indicated by RBLs) to vulnerabili-
ties, especially when multiple vulnerabilities appear in
the same time window, and hosts appearing in a black-
list for reasons other than exploitation of software vul-
nerabilities, can introduce noise in the measured symp-
toms (malicious activities). Furthermore, aggregation at
a coarse level can lead to only observing the averages
of behavior that could otherwise be utilized to detect ex-
ploitation. However, the ground-truth for testing the per-
formance of our technique is independent of the afore-
mentioned sources of noise, and the observed perfor-
mance shows that our method is, to a large extent, robust
to these imperfections.

We next examine the impact of the length of the ob-
servational period when using community detection, by
comparing the ROCs of classifiers trained using differ-
ent number of days, immediately following disclosure, as
well as starting from a few days before disclosure. This
is shown in Figure 8c. We see that as we increase the
observation period post-disclosure the predictive power
of the similarity comparison improves. This is to be
expected as longer periods are more likely to capture
symptoms of infection especially during the early days
as vulnerabilities are just starting to be exploited. Inter-
estingly, starting the observation even before disclosure
also seems to be picking up information, an indication
that some exploits do start earlier than official disclosure
as mentioned in the introduction. Among the examined
set the “Day 4” version is the worst-performing; this is
due to a very short window of observation, only 4 days
post-disclosure. This short window affects the effective-
ness of time series data analysis but also is more likely to
miss information that is just emerging post-disclosure.

7 Case Studies and Discussion

In this section we present a few examples of our sys-
tem’s output for (potentially) zero-day EIW vulnerabili-
ties, and discuss the robustness of our technique against
strategic attackers, and its practical utility for building
real-world monitoring of software vulnerabilities.

7.1 Case studies

Figure 8c suggests that by performing a retrospective
analysis on the disclosure date, our technique can also
detect zero-day exploits. We now discuss two such ex-
amples below, both of which were detected by the “Back
10” classifier with an operating point (corresponding to



a threshold of 0.7) of 80.6% true positive and 20% false
positive rate.

CVE-2013-0640 This vulnerability affects Adobe Ac-
robat Reader and was disclosed on 02/13/2013 [1]. It
allows remote attackers to execute arbitrary code via a
crafted PDF document. Our system detected this vulner-
ability on the same day as disclosure using data from the
preceding 10 days. Interestingly, we also found proof of
zero-day exploits for this vulnerability [7].

CVE-2013-5330 This vulnerability affects several ver-
sions of Adobe Flash Player and was disclosed on
11/12/2013. It allows attackers to execute arbitrary code
or cause a denial of service (memory corruption) via un-
specified vectors. Again, our system detected that this
vulnerability on the disclosure day using data from the
preceding 10 days. While this vulnerability has been re-
ported as exploited in the wild, the earliest report was on
01/28/2014 [11]; our results suggest that this CVE might
have been exploited months before this date.

7.2 Robustness against strategic attacks
In security applications, strategic adversaries always
have incentive to manipulate instances they have con-
trol over to evade detection [44, 50, 49, 16]. During
such manipulations, the attacker usually needs to mimic
normal user behavior as well as preserving their original
malicious functionality without making arbitrarily large
changes. Since our detection method relies on models
trained using measurement data, it is potentially vulner-
able to attempts of data manipulation. An adversary of
the second type mentioned in Section 2.3 is such an ex-
ample: we assume it has the ability to alter the patching
information (as it is collected) from a significant number
of hosts, so as to alter the aggregate signals and skew the
similarity analysis. Below we examine how robust our
detection system is against such evasion attempts.

We will simulate this data manipulation by altering the
risk signals for a group of ISPs. Specifically, we ran-
domly select a set of N ISPs from the total population I
and revise their risk signals as follows:

w j
n(t)←−

∑i∈N w j
i (t)

‖N‖
± γ ·w j

n(t), n ∈ N, (3)

where the first term is the average value among this con-
trolled group of ISPs, and γ is randomly drawn from the
set (0.1,0.2,0.3) for each n (similarly, ± is determined
by a random coin flip) to serve as a small perturbation
around the average. The intention of this manipulation is
to make these N values very similar to each other, each
a small perturbed version of the common average; this

Figure 9: Robustness of performance against an
adversary controlling hosts within a percentage of all

ISPs (x-axis).

revision also preserves the original average so as to min-
imize the likelihood detection by a simple statistical test.

For each selection N we perform 20 random trials of
the detection algorithm, each over different random per-
turbations shown above. The average AUC is reported in
Figure 9 as we increase the size of N, from 10% to 45%
as a fraction of the overall ISP population I . As can
be seen, our method is fairly robust against this type of
evasion attacks with gracefully degrading performance.
It should be noted that for examining the robustness of
our method we have assumed a powerful (and not very
realistic) adversary; even at 10% this would have been
an extremely costly attack as it indicates the control of
hosts within hundreds of ISPs.

7.3 Practical use
We next discuss how the proposed methodology could
be used in practice, in real time, and by whom. Any soft-
ware or AV vendor, as well a security company would
perform such a task; they typically have access to data
similar in nature to WINE. The RBLs and NVD are pub-
licly available, so is IP intelligence data (usually at a
cost). Since we rely on CVE information to perform user
patching data aggregation (risk with respect to specific
vulnerabilities) and on intrinsic features of a vulnerabil-
ity, the detection process is triggered by a CVE disclo-
sure. Following the disclosure, malicious activity data
and user patching data can be processed on a daily ba-
sis. On each day following the disclosure we have two
signals of length: risk signal w(t) and symptom signal
r(t) for each ISP. Community detection, feature extrac-
tion, and detection then follow as we described earlier. In
addition, the community structure can be updated in an
online fashion, so the information can be obtained and
maintained in a computationally efficient manner [27].



How our detection system can enhance security in
practice lies in the primary motivation of this study:
[38] has measured the portion of the vulnerability win-
dow (time from disclosure to patch installation) that is
incurred by user negligence for four of the products
included in this paper, the largest is roughly 60% for
Chrome and Flash Player; suggesting delays may exist
in patch development. The ability to detect active ex-
ploits early would allow a software vendor to better pri-
oritize patch development and more judiciously allocate
its resources. A secondary use of the system is to allow
a network (e.g., an ISP) to identify its most at-risk host
populations that have not patched a vulnerability with de-
tected exploits, and encourage prompt actions by these
hosts. This system is not meant to alter individual end-
user patching behavior, but would allow users through
silent updates to get patches sooner for vulnerabilities
most at risk of being exploited.

Furthermore, [30] suggests that in the timeline of evo-
lution of software patches, patch development happens
soon after vulnerability disclosure, yet there is a gap
prior to patch deployment, as, e.g., enterprises want to
test patches before they deploy them. In this landscape,
early detection can also be utilized by enterprises to pri-
oritize patch deployment of vulnerabilities that are being
actively exploited. Our community detection method can
be used to complement intrinsic attributes of a CVE, such
as the CVSS score, to detect critical vulnerabilities with
more precision. Additionally, the ability to detect ma-
chines with critical software vulnerabilities helps third-
parties better assess a firm’s cyber-risk, e.g., to design
cyber-insurance policies and incentivize firms to improve
their state of security [25, 26].

Note that our proposed technique relies on observ-
ing spam activity to detect compromised hosts, there-
fore our methodology fails to recognize exploits that do
not result in any spam activity. However, once a ma-
chine is compromised, it is up to the attacker how they
use the infected host, e.g., for ransomware, or to send
spam. Even though a vulnerability might be used mainly
for non-spam activities, one can detect exploitation as
long as a portion of infected devices are used for send-
ing spam. Nevertheless, infected hosts discovered by al-
ternative bot detection techniques (e.g., scanning activ-
ity extracted from network telescope data and/or honey-
pots [3]) can be appended to the proposed symptomatic
data, in order to build a more robust system.

Finally, while our technique is evaluated over mea-
surements that are 3-4 years old (due to unavailabil-
ity of the WINE dataset), the updating mechanism em-
ployed by the software examined herein have remained
largely the same. In particular, except for Adobe Acrobat
Reader, all of the software included in this study were
using silent updates to automatically deliver patches to

users, at the start of our observation windows (1/2013).
This supports our claim that the same dynamics apply to
more recent vulnerabilities, where even though patches
are developed and disseminated by vendors through au-
tomated mechanisms, users and enterprises often opt out
of keeping their software up to date, leading to eventual
exploitation, and then followed by observation of symp-
toms. WannaCry and NotPetya outbreaks (exploiting
CVE-2017-0144), and the Equifax data breach (caused
by CVE-2017-5638) are all recent examples of this phe-
nomena, where patches for the underlying vulnerabilities
had been disseminated by software vendors months be-
fore each incident, but had not yet been deployed on the
compromised machines [46, 47, 20].

8 Related Work

Bozorgi et al. [8] used linear support vector to predict
the development of proof-of-concept (POC) exploits by
leveraging exploit metadata. Our interest in this study is
solely on exploits in the wild and their early detection. In
[36] social media was used to predict official vulnerabil-
ity disclosure and it was shown that accurate prediction
can be made to gain a few days in advance of disclosure
announcements as an effective means of mitigating zero-
day attacks. The focus of this study by contrast is the
detection of exploits post-disclosure by using two dis-
tinct datasets, one capturing end-host patching behavior,
the other IP level malicious activities. Allodi [2] con-
ducts an empirical study on the economics of vulnera-
bility exploitation, by analyzing data collected from an
underground cybercrime market.

Prior studies on end-host patching behavior heavily fo-
cus on understanding the patching behavior itself and its
implication on user vulnerability and how it decays/e-
volves over time; these include e.g., observing patching
patterns at different stages [35], the decay rate [15, 53],
patching behavior across different update mechanisms
[13, 19], vulnerability decay and threat by shared li-
braries [30], among others. To the best our knowledge,
ours is the first study that attempts to to detect active ex-
ploitation by correlating patching behavior and vulnera-
bility data with host infection data inferred from a set of
spam blacklists.

Detection of community structures in graphs or net-
works is an increasingly active field in graph mining
and has seen extensive work, see e.g., [17]. It has
found wide applications in sociology [23, 51, 52], bi-
ology [18, 43, 52], computer science [31, 51, 52], and
many other disciplines, where data is often modeled as
a graph, using community detection as a tool for visu-
alization, to reduce graph size, and to find hidden pat-
terns. As an example, the notion of similarity graphs is
a commonly used technique to represent data. For in-



stance, Holm et al. built similarity protein graphs where
nodes represent protein structures and edges represent
structural alignments for efficient search in the protein
structure databases [22]. Similarly, to find disjoint sub-
sets of data, E. Hartuv et al. created similarity graphs on
pairs of elements, where similarity is determined by the
set of features for each element, and then perform clus-
tering on them [21]. In this study, we build similarity
graphs among ISPs by measuring the similarity between
their time series data.

9 Conclusion

In this paper we presented a novel method based on the
notion of community detection to perform early detec-
tion of vulnerability exploitation. We used symptomatic
botnet data to discover a community structure revealing
how similar network entities behave in terms of their ma-
licious activities. We then analyzed the risk behavior of
end-hosts through a set of patching data that allows us
to assess their risk to different vulnerabilities. The latter
was then compared to the former to quantify whether the
underlying risks are consistent with the observed global
symptomatic community structure, which then allowed
us to statistically determine whether a given vulnerability
is being actively exploited. Our results show that by ob-
serving up to 10 days worth of data post-disclosure, we
can successfully detect the presence of exploits at 90%
accuracy. This is much earlier than the recorded times of
detection for most vulnerabilities. This early detection
capability provides significant time advantage in patch
development and deployment, among other preventative
and protective measures. The community structure gen-
erated during the feature extraction can also be used to
identify groups of hosts at risk to specific vulnerabili-
ties currently being exploited, adding to our ability to
strengthen preventative and protective measures.

Acknowledgments

We thank Xueru Zhang, Parinaz Naghizadeh, Pin-Yu
Chen, and Ziyun Zhu for their valuable discussions on
this work. This work was supported by the NSF under
grants CNS-1422211, CNS-1616575, CNS-1739517,
and CNS-1464163, and by the DHS via contract num-
ber FA8750-18-2-0011.

References

[1] ADOBE. Security advisory for Adobe Reader and
Acrobat. https://www.adobe.com/support/

security/advisories/apsa13-02.html.

[2] ALLODI, L. Economic factors of vulnerability
trade and exploitation. In ACM SIGSAC Confer-
ence on Computer and Communications Security
(2017), ACM, pp. 1483–1499.

[3] ANTONAKAKIS, M., APRIL, T., BAILEY, M.,
BERNHARD, M., BURSZTEIN, E., COCHRAN,
J., DURUMERIC, Z., HALDERMAN, J. A., INV-
ERNIZZI, L., KALLITSIS, M., ET AL. Understand-
ing the Mirai botnet. In USENIX Security Sympo-
sium (2017).

[4] Symantec attack signatures. http://bit.ly/

1hCw1TL.

[5] BASTIAN, M., HEYMANN, S., JACOMY, M.,
ET AL. Gephi: An open source software for explor-
ing and manipulating networks. ICWSM 8 (2009),
361–362.

[6] BELLOVIN, S. M. Patching is hard. https:

//www.cs.columbia.edu/~smb/blog/2017-

05/2017-05-12.html.

[7] BENNETT, J. T. It’s a kind of magic.
https://www.fireeye.com/blog/threat-

research/2013/02/its-a-kind-of-magic-

1.html.

[8] BOZORGI, M., SAUL, L. K., SAVAGE, S., AND
VOELKER, G. M. Beyond heuristics: Learn-
ing to classify vulnerabilities and predict exploits.
In ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2010),
ACM, pp. 105–114.

[9] CBL. https://www.abuseat.org.

[10] COSCIA, M., ROSSETTI, G., GIANNOTTI, F.,
AND PEDRESCHI, D. DEMON: A local-first
discovery method for overlapping communities.
In ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2012),
ACM, pp. 615–623.

[11] CVE-2013-5330 (Flash) in an unknown exploit
kit fed by high rank websites. http://malware.

dontneedcoffee.com/2014/02/cve-2013-

5330-flash-in-unknown-exploit.html.

[12] CVE ID syntax change. https://cve.mitre.

org/cve/identifiers/syntaxchange.html.

[13] DUEBENDORFER, T., AND FREI, S. Web browser
security update effectiveness. In International
Workshop on Critical Information Infrastructures
Security (2009), Springer, pp. 124–137.

https://www.adobe.com/support/security/advisories/apsa13-02.html
https://www.adobe.com/support/security/advisories/apsa13-02.html
http://bit.ly/1hCw1TL
http://bit.ly/1hCw1TL
https://www.cs.columbia.edu/~smb/blog/2017-05/2017-05-12.html
https://www.cs.columbia.edu/~smb/blog/2017-05/2017-05-12.html
https://www.cs.columbia.edu/~smb/blog/2017-05/2017-05-12.html
https://www.fireeye.com/blog/threat-research/2013/02/its-a-kind-of-magic-1.html
https://www.fireeye.com/blog/threat-research/2013/02/its-a-kind-of-magic-1.html
https://www.fireeye.com/blog/threat-research/2013/02/its-a-kind-of-magic-1.html
https://www.abuseat.org
http://malware.dontneedcoffee.com/2014/02/cve-2013-5330-flash-in-unknown-exploit.html
http://malware.dontneedcoffee.com/2014/02/cve-2013-5330-flash-in-unknown-exploit.html
http://malware.dontneedcoffee.com/2014/02/cve-2013-5330-flash-in-unknown-exploit.html
https://cve.mitre.org/cve/identifiers/syntaxchange.html
https://cve.mitre.org/cve/identifiers/syntaxchange.html


[14] DUMITRAS, , T., AND SHOU, D. Toward a stan-
dard benchmark for computer security research:
The Worldwide Intelligence Network Environment
(WINE). In Workshop on Building Analysis
Datasets and Gathering Experience Returns for Se-
curity (2011), ACM, pp. 89–96.

[15] DURUMERIC, Z., KASTEN, J., ADRIAN, D.,
HALDERMAN, J. A., BAILEY, M., LI, F.,
WEAVER, N., AMANN, J., BEEKMAN, J., PAYER,
M., ET AL. The matter of Heartbleed. In Internet
Measurement Conference (2014), ACM, pp. 475–
488.

[16] EYKHOLT, K., EVTIMOV, I., FERNANDES, E.,
LI, B., RAHMATI, A., XIAO, C., PRAKASH, A.,
KOHNO, T., AND SONG, D. Robust physical-
world attacks on deep learning visual classifica-
tion. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (2018),
pp. 1625–1634.

[17] FORTUNATO, S. Community detection in graphs.
Physics Reports 486, 3 (2010), 75–174.

[18] GIRVAN, M., AND NEWMAN, M. E. Community
structure in social and biological networks. Pro-
ceedings of the National Academy of Sciences 99,
12 (2002), 7821–7826.

[19] GKANTSIDIS, C., KARAGIANNIS, T., RO-
DRIGUEZ, P., AND VOJNOVIC, M. Planet scale
software updates. In ACM SIGCOMM Computer
Communication Review (2006).

[20] GOODIN, D. Failure to patch two-month-
old bug led to massive Equifax breach.
https://arstechnica.com/information-

technology/2017/09/massive-equifax-

breach-caused-by-failure-to-patch-two-

month-old-bug.

[21] HARTUV, E., AND SHAMIR, R. A clustering al-
gorithm based on graph connectivity. Information
Processing Letters 76, 4 (2000), 175–181.
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