
ChainSmith: Automatically Learning the Semantics of Malicious Campaigns by
Mining Threat Intelligence Reports

Ziyun Zhu, Tudor Dumitras,
University of Maryland, College Park, MD, USA

Email: {zhuziyun, tdumitra}@umiacs.umd.edu

Abstract—Modern cyber attacks consist of a series of steps
and are generally part of larger campaigns. Large-scale field
data provides a quantitative measurement of these campaigns.
On the other hand, security practitioners extract and report
qualitative campaign characteristics manually. Linking the two
sources provides new insights about attacker strategies from
measurements. However, this is a time-consuming task because
qualitative measurements are generally reported in natural
language and are not machine-readable.

We propose an approach to bridge measurement data with
manual analysis. We borrow the idea from threat intelligence:
we define campaigns using a 4-stage model, and describe each
stage using IOCs (indicators of compromise), e.g. URLs and IP
addresses. We train a multi-class classifier to extract IOCs and
further categorize them into different stages. We implement
these ideas in a system called ChainSmith. Our system can
achieve 91.9% precision and 97.8% recall in extracting IOCs,
and can determine the campaign roles for 86.2% of IOCs
with 78.2% precision and 80.7% recall. We run ChainSmith
on 14,155 online security articles, from which we collect 24,653
IOCs. The semantic roles allow us to link manual attack
analysis with large scale field measurements. In particular, we
study the effectiveness of different persuasion techniques used
on enticing user to download the payloads. We find that the
campaign usually starts from social engineering and “missing
codec” ruse is a common persuasion technique that generates
the most suspicious downloads each day.

1. Introduction

The field of threat intelligence focuses on gathering and
analyzing information about security threats to understand
adversary strategies and respond to attacks. The premise
of threat intelligence is that sharing the technical details
of breaches and attacks makes everybody safer because it
makes it harder for attackers to reuse attack methods and
artifacts, thus increasing their work factor [57]. Threat intel-
ligence is a billion-dollar industry [34] and has introduced
standards [11], [14], [13], and information-sharing platforms
[28], [6], [15], [8]. These standards define threats using
indicators of compromise (IOCs). For example, to represent
recent measurements of malware delivery networks [39],
[61], [36], [40] using these standards, we can identify
IOCs such as file hashes of malware droppers and of their

payloads, URLs and IP addresses of command-and-control
(C&C) servers, or names of malware families and exploit
kits.

However, the utility of threat intelligence is not well
understood. For example, malware samples are frequently
repacked [22] and malicious domains do not remain active
for a long time [38]. In consequence, security tools based
on IOC detection may not provide an adequate defense.
We propose a novel use of threat intelligence: producing
new insights about the threat landscape by connecting the
intelligence with measurement data, collected in the field.
For example, we can identify the methods that underground
actors employ for baiting users to run malware or to visit
an exploitation site (e.g. spam, malvertising, compromised
sites), by analyzing the threat intelligence, and we can
measure their effectiveness in the real world, by quantifying
the resulting volume of malware downloads recorded in the
field data.

Producing such insights automatically requires under-
standing the role of each IOC in a malicious campaign. For
example, malware delivery campaigns consist of a sequence
of actions, e.g. baiting, exploitation, installation, command
& control, that are often performed by different actors. How-
ever, individual IOCs do not allow us to distinguish between
components used for these various stages. Understanding the
sequential actions of malicious campaigns requires careful
manual analysis, and the results of this analysis are sel-
dom encoded in a machine-readable format. However, these
results are often published, either in practitioner-oriented
journals such as Virus Bulletin, or on the blogs of analysts or
security companies, such as Webroot or Trend Micro. These
reports connect the dots between multiple attack identifiers
and state the semantics of the corresponding campaigns in
natural language.

It is challenging to extract useful information from se-
curity articles with off-the-shelf natural language processing
(NLP) techniques. These techniques usually rely on the
context of complete sentences, however in security articles
IOCs are often included in bulleted lists and tables, while
the relevant relations are discussed in the text. Moreover,
the security arms race gives rise to a growing number of
technical terms [65], while language models cannot usually
handle previously unseen words. The recent work on mining
security articles [65], [43], [53] does not extract the roles of
IOCs in campaigns, and does not correlate the information

extracted from natural language with measurement data.
We present the design and implementation of Chain-

Smith, a system that automatically extracts IOCs, as well as
their corresponding campaign stages, from technical doc-
uments. ChainSmith implements new NLP techniques that
address technical challenges specific to the security domain.
To identify the stages accurately, we propose a malware
delivery model with four stages. Our model is inspired by a
recent standard for sharing threat intelligence [13], but we
modify it to account for the writing style of security articles
and for the characteristics of malware delivery campaigns.
We also collect the ground truth for training and evaluating
ChainSmith, using a Web application for manually labeling
articles according to our malware-delivery model.

We apply ChainSmith to 14,155 unstructured techni-
cal reports. manually extracting the details of campaigns
from such a large corpus is infeasible, which illustrates
the need for automated techniques. With our system, we
extract 24,653 IOCs and are able to classify 20,774 of
them into their corresponding campaign stage. We further
classify IOCs into 8,902 campaign groups based on the
campaign stage and blog post time. We apply the campaign
information to study the influence and effectiveness of dif-
ferent persuasion techniques on the subsequent download
behaviors. Unlike prior work [50], which manually labels the
attacks that belong to social engineering, we automate this
annotation process. We also provide new insights about indi-
vidual campaigns (e.g. underground business relationships),
by connecting the dots among multiple articles. We find
that the “missing codec” ruse is most common in malware
delivery campaigns, resulting in 4× more download events
per day than any other technique. However, social network
messaging and fake update notifications are the most suc-
cessful techniques which result in the most downloads per
payload.

In summary, we make the following contributions:

• We design ChainSmith, an IOC extraction system
that collects indicators from security articles and
classifies them into different campaign stages.

• We evaluate the effect of different persuasion tech-
niques on the subsequent payload delivery in the
wild, by connecting campaigns from blog posts and
the real-world telemetry data.

• We report new findings about the underground busi-
ness relationship and the characteristics of campaign
infrastructures. This allows us to assess the utility of
threat intelligence.

• We set up a Web application to release the latest data
from ChainSmith to further stimulate the research on
threat intelligence.

The rest of paper is organized as follows. In Section
2, we state our goals and give the definition of payload
delivery model. In Section 3, we describe the design of
ChainSmith. In Section 4, we evaluate the performance
of ChainSmith and analyze the effect of different baiting
techniques on binary delivery. Finally, we discuss the lessons

learned from this study and the related work in Section 5
and 6 respectively.

2. Problem statement

Unlike measurement data, which is collected automat-
ically, threat intelligence reflects a careful manual analy-
sis of security threats, with conclusions drawing from the
human knowledge and intuition of expert analysts. These
conclusions can be encoded in indicators of compromise
(IOCs). An IOC is an observable attack artifact—e.g., a file
(identified by name or hash), a URL, an IP address—that the
analyst has linked to a given security threat. To understand
the strategies of an attack group, the analysts identify mul-
tiple IOCs that correspond to a malicious campaign and the
role of each IOC in the attack—e.g. whether the URL points
to an exploitation site or command-and-control server. The
analysts publish this threat intelligence on technical blogs
and in industry reports. Additionally, some of the indicators
identified during these investigations are also made available
in commercial or open-source IOC feeds. These indicators
are then used for detecting security threats, for forensic
investigations after data breaches, and for attack attribu-
tion. However, the utility of threat intelligence is not well
understood. For example, malware samples are frequently
repacked [22] and malicious domains do not remain active
for a long time [38], so security tools based on IOC detection
may not provide an adequate defense against these malicious
campaigns.

We explore a novel use of threat intelligence by link-
ing the threat intelligence to the measurement data. Threat
intelligence describes the semantics of security threats in
detail, but it is available for only a few threats that the
analysts consider representative. In contrast, measurement
data can be collected systematically but cannot determine
the semantics of the indicators recorded in an automated
fashion. By linking the two independent sources, we gain
new insights about attacker strategies from measurement
data and quantitative analysis on the impact of attacks
mentioned in threat intelligence.
Application example: understanding malware delivery
campaigns. A malware delivery campaign [40], [39], [35],
[56], [49] involves multiple steps: baiting the user to perform
a risky action, such as opening an email attachment or visit-
ing an unknown site; exploiting an unpatched vulnerability
on the user’s computer; and installing a dropper [39], which
then downloads additional malware. If one step fails, the
malware delivery fails; for example, an exploit kit [30] is
useless unless the attacker can lure users to the landing page.
The technical challenges for implementing each of these
steps make it difficult for an individual actor to execute a
campaign from end to end. Instead, malware creators rely
on a thriving underground economy [22], [30], [36], [61],
where specialized services are provided for a fee and one
can quickly set up a campaign by summoning the hacking
expertise of third parties.

In this ecosystem, we call the actors that provide
malware-delivery services suppliers and the actors that uti-

lize the service customers. Understanding the business rela-
tionships among suppliers and their customers can uncover
important dependencies among these actors and may guide
effective interventions [62]. For example, we distinguish
between tier 1 suppliers, which are directly involved in
user baiting and exploitation, and other suppliers that act
as middlemen. Because only tier 1 suppliers bring victims
to the delivery network, the effectiveness of their techniques
is critical for the entire ecosystem.

However, neither threat intelligence nor measurement
studies can provide a complete picture of malware delivery
campaigns. Threat intelligence reports analyze the strategies
employed in a campaign, but do not assess the effectiveness
of these strategies in a systematic manner. For example, the
reports may discuss a tier-1 supplier’s baiting methods (e.g.
spam, malvertising, compromised sites) but do not quan-
tify the volume of malware downloads that these methods
produce in the wild, as this would require comprehensive
field data. Field measurements can record download events
systematically, and provide various IOCs, but they may not
be able to indicate the role of them. For example, the mea-
surement data does not usually indicate whether a dropper
corresponds to a tier 1 supplier, nor does it indicate how the
dropper was installed on the host. Moreover, measurement
studies often focus on a single phase of the campaign—e.g.,
baiting [42], [44], exploitation [27], [26], or installation [39],
[40]—and do not shed light on the strategies of long-lasting
campaigns. These insights require the ability to connect the
threat intelligence with the field measurements.

Challenges. The key challenges to automating the insight
generation process are the semantics of security threats in a
machine-readable format, extracting them from the available
threat intelligence, and developing analytics that combine
the threat intelligence with measurement data. Existing stan-
dards for sharing threat intelligence like OpenIOC [11] and
STIX [13] are incomplete and do not capture important con-
cepts, such as the persuasion strategy employed by attackers
to convince users into running malware or to lure them
to an exploit kit. Worse, the IOC feeds currently available
omit critical information, even when this information can
be represented in the current standards. For example, STIX
specifies the kill_chain_phase IOC attribute, which
indicates the role of the indicator in the campaign; however,
current feeds omit this attribute. Instead, this information
is usually provided in the threat intelligence reports in
natural language. However, prior work on mining security
articles [65], [43] does not extract the roles of IOCs in
campaigns, and does not correlate the information extracted
from natural language with field measurement data.

To overcome these challenges, we aim to extract the
threat and campaign semantics from intelligence reports
written in colloquial English. In doing so, we further identify
three technical challenges that are specific to security dis-
courses. First, natural language processing (NLP) techniques
usually rely on the context of complete sentences. However
in security articles IOCs are often included in bulleted
lists and tables, while the relevant relations are discussed

in the text. Second, some indicators are presented in an
obfuscated form. For example, to prevent the mis-clicking
of a malicious site, malicious links are transformed to use
“hxxp” instead of “http”, and “[dot]” or (dot)” instead of “.”,
and authors use different names and delimiters for malware
families. Third, the security arms race gives rise to a growing
number of technical terms [65], while language models
cannot usually handle previously unseen words.

Goals. Our first goal is to build a generic system that
mines descriptions of security threats written in natural
language, and extracts threat intelligence in a format that
enables correlations and complements measurement data.
Specifically, we aim to extract both IOCs and their roles
in an attack, which allows us to augment the measurement
data with the semantics of security threats observed. To this
end, we develop new NLP techniques that address technical
challenges specific to the security domain.

Our second goal is to apply our system to the concrete
problem of understanding malware delivery campaigns and
to gain new insights into this security threat. To this end, we
propose a model of malware delivery campaigns (detailed in
Section 2.1), and we build a Web application for manually
labeling articles according to this model. We also correlate
the threat intelligence with a comprehensive data set of
download events [39], observed on 5M hosts. With this
combined data set, we ask the following research questions:

• RQ1 What is the relative effectiveness of various
persuasion techniques in generating downloads on
real-world hosts?

• RQ2 What roles do various attack groups play in
the malware delivery ecosystem, and what are the
business relationships among them?

• RQ3 How long do malware delivery campaigns re-
main active?

• RQ4 How long do their support infrastructures re-
main active?

In addition to our findings and their actionable implica-
tions, we expect that the process of answering these research
questions will provide important lessons about the utility
of threat intelligence—both for the tasks it was originally
meant to address and for the novel application proposed in
this paper. This is our third and final goal.

Non-goals. We do not aim to validate the threat intelligence
published in technical blogs and industry reports with field
measurement data. We are unable to assess the quality of
the information discussed in these articles because we lack a
corpus of known malware delivery campaigns; the data sets
currently available focus on malware samples and malicious
domains, rather than end-to-end campaigns. Moreover, the
threat intelligence and the field measurements are collected
from different observation perspectives and likely reflect
different aspects of the underground economy. For the same
reason, we do not aim to systematically attach semantics
to all the measurements. Instead, our goal is to gain new
insights about the malware delivery ecosystem.

2.1. Malware delivery model

The emerging standards for sharing threat intelli-
gence [11], [13], [14] are based on the observation that
cyber attacks often follow certain high-level patterns. This
allows analysts to define generic models for representing
and sharing the information.

In particular, the STIX standard [13] has been adopted
by an increasing number of security products [1]. STIX
defines a comprehensive schema that uses IOCs to de-
scribe campaigns [13]. In this schema, a campaign con-
sists of a set of indicators which specify an attack
pattern. An Indicator is then defined to be a set of
observables, which includes all the resources and in-
frastructure in the attack pattern. An Observable, defined
in CybOX (v2.1) [14], contains 88 different types including
URI, IP address, file, registry key, etc.. To add semantics
for the attack pattern, STIX defines kill_chain_phase
as an attribute for indicator. A kill chain1 breaks down
an attack in a sequence of stages. The original definition of
the cyber kill chain [33] specified 7 stages: reconnaissance,
weaponization, delivery, exploitation, installation, command
& control and actions on objective.
Malware delivery campaigns. To represent malware deliv-
ery campaigns, we adopt three stages from the STIX data
model: exploitation, installation, and command & control.
Additionally, we redefine the first stage of these campaigns
based on our observation that, while attackers will some-
times gain an initial foothold on a host by delivering mali-
cious files (e.g. as email attachments), in other causes they
rely on malvertising to lure users to an exploit kit’s landing
page or to persuade them to download and install a dropper.
We therefore replace the delivery stage with a baiting stage,
which captures all these strategies.

There are 4 different types of indicators, which
cover the most common and important stages involved in
malware delivery.

1) Baiting: This is the first stage of delivery cam-
paign. The most common approaches to draw users
to the malware delivery chain are email spam,
malvertising and compromised sites. Once the user
clicks on a link from a spam message, or visits a
compromised site, the browser will be redirected
to a malicious site. Before landing on the exploit
server, users might be redirected through several
relay pages, which are included this stage.

2) Exploitation: After user is redirected to the landing
page of an exploit kit, the exploit server fingerprints
the browser and the installed plugins and tries to
identify open vulnerabilities. The server then tries
to exploit a vulnerability and deliver a payload.

3) Installation: A malicious payload is downloaded
on the end host, and the exploit server installs

1. “Kill chain” is a military term describing the stages of an attack that
results in the destruction of a target (i.e. a “kill”). Separating the attack
stages is helpful for identifying different defensive techniques that could
break the chain and disrupt the attack.

TABLE 1: IOCs and indicator phase in malware delivery
model.

Phase IOCs IOC Type

baiting
attachment_hash hash

attachment_family malware family
server_URL URL
server_IP IP

exploitation

exploit_site_URL URL
exploit_site_IP IP

exploited_vulnerability vulnerability
exploit_kit exploit kit

installation malware_hash hash
malware_family malware family

C&C C&C_server_URL URL
C&C_server_IP IP

and executes the malware. Without using exploits,
attackers can also lure users to install and execute
the malware through social engineering.

4) Command & Control: The executed malware con-
tacts its command and control server and receives
remote commands. The commands may involve
downloading the next stage of the malware, drop-
ping unrelated samples (e.g. in the case of a Pay-
per-Install infrastructure [61]) or performing other
malicious actions (e.g. spam, DDoS).

These stages are not necessary for every payload delivery.
For example, campaigns can entice users to download and
install the payload by users themselves through social engi-
neering. In this case, the exploit stage would be unnecessary.

Table 1 lists all the observables we use for each type
of indicators. Observable contains 6 types, i.e. URL,
IP address, file hash, malware family, exploit kit, and vul-
nerability, in which CybOX observable includes the
former 3 types. Figure 1 shows one example of how the
malware delivery schema can well fit the actual blog posts.
Our payload delivery model simplifies the data model in
STIX in that (1) we primarily focus on network activity
in the campaign rather than the behavior on the victim
machine, and (2) many observables are unlikely to be
discussed in security articles and cannot be used to uniquely
determine the campaign. Note that the term IOC (indicator
of compromise) is equivalent to the concept of an observable
in STIX. In order not to confuse the reader, we use the terms
IOC and indicator phase instead of STIX’s observable and
indicator in rest of this paper.

A campaign group corresponds to the actors of a cam-
paign, represented by a set of IOCs. A supplier corresponds
to an actor that provides delivery services by controlling
droppers in the field. A tier-1 supplier is a supplier that
operates baiting and exploitation domains.
High-risk binaries. We utilize the VirusTotal service [17] to
assess the binaries recorded in the measurement data. Virus-
Total provides file scan reports for up to 54 anti-virus (AV)
products. In line with prior work [40], if a binary receives
more than 30% anti-virus detection from VirusTotal, then
we considered it a high-risk binary. Because the blog posts
discuss both malware and potentially unwanted programs

!

"#$%&'()'*)%+&$%&,-.&()%*/0&1/.2/&32.&.4#$/.5&,$&,-.&'().%,6/)5.&

!"#$%&'(")�;4#($),&<),=.
!
4#($),/&/.27.5&89&,-.&(3,./,&7.2/)$%&$:&,-.&

>3?#(.&'$?#2$?)/.5&"@A/&1/.5&)%&,-.&'3?#3)+%B

*++,-..///0#"#$12$0(34025.16,718$60*96"C&
!

D().%,6/)5.&.4#($),/&/.27)%+&"@A/B&

++,-..2)94)#3:1271#02)9.7)9)98.718(;)3:16,(39#29<6)88#4)0,,C�

"#$%&($35)%+0&,-./.&"@A/&3,,.?#,&,$&.4#($),&=>?:@ABA:ABCC�89&

!
52$##)%+&3&?3()')$1/&EFG&:)(.=

>3?#(.&5.,.',)$%&23,.&:$2&,-.&52$##.5&?3(H32.B&

IFJB&CADABEEBFB$CG))G@DHGAIJ)JDC$DHJ@

5.,.',.5&89&K&$1,&$:&KK&3%,)7)21/&/'3%%.2/&3/&

KLM-L#24)3(N8OHP)$90QN"910R)2)31$=

"#$%&.4.'1,)$%0&,-.&/3?#(.&#-$%./&83'*&,$

@AA0BDI0BG0CJ-CACA.ST9/.K=UV3LSS.K7W#8LSS

(a) Blog post from Webroot [18]

!

"#$%$&'()!

*+,-+,./01()234445#6#7$&758,'5&93:

;<

+=>68$%#%$8&()!

*+,-+,./01()23&+%'+#,?$&@$#5&+%A:<

+=>68$%+@.-B6&+,#"$6$%C()23DEF?GHIH?HIJJA:<

+=>68$%.K$%()23L6#7K)M86+A:

;<

$&*%#66#%$8&()!

N#64#,+.O#*O()2PJHQHIRRISI7JT++TGQ"THUV+VQJ7Q"VGA:<

N#64#,+.S#N$6C()23/WX(W#&'+,8B*Y"Z+7%5[B6%$5\+&+,$73:

;<

D]D()!

D]D.*+,-+,.^_()23GHH5IQU5IT5JV(JHJH3:

;

;

(b) Structured malware delivery campaign

Figure 1: An example of mapping unstructured blog post to structured schema for malware delivery.

(PUPs), we do not aim to distinguish if a specific binary is
malware or PUP. Instead, we focus on binaries that present
a high risk to the end hosts because (1) they are highlighted
as security threats in the articles we analyze, and (2) they
have a high detection rate among AV products. A high-
risk download is a download event with a high-risk binary
payload.
Generality. Our system for mining security articles, de-
scribed in Section 3, requires a model of the malicious
activity to extract the relevant semantics. The model defined
in this section is specific to malware delivery campaigns;
however, our NLP techniques are generic and may be
applied to other models. The results in this paper could
be extended to other cyber threats by defining a pertinent
model, for example by starting from an existing standard
such as STIX.

2.2. Threats to validity

First, because the existing threat intelligence does not
cover all ongoing campaigns, and anti-virus programs may
not detect malware as soon as it is released in the wild,
we cannot determine which binaries present a low risk. A
binary with no IOCs or VirusTotal detections may be either
a benign program or a false negative. However, if we find a
suspicious binary in both threat intelligence reports and in
the measurement data, this represents a confirmation from at
least two independent sources. This increases our confidence
in the fact that the binary presents a high risk to end hosts.

Second, threat intelligence reports may be incorrect [7],
which introduces noise in the extracted IOCs. This threat
also affects other empirical results from prior work, as data
collected in the wild is likely to blend normal activities
with attacks. This makes it difficult to obtain a clean ground
truth for security research [29], [59]. To mitigate this, we
do not detect threats based on specific IOCs. Instead, we
focus on aggregating data from multiple articles and from
download events that occur on multiple hosts. This approach
minimizes the impact of individual false positives.

Finally, since our measurement data was collected using
Symantec’s WINE platform [25], it does not cover the
whole Internet. We select this data set because (1) the
security telemetry in WINE is similar to the data available
to other security vendors and (2) the data is collected on
a large number of hosts (5M) and is representative for the
events that Symantec—a major security vendor—observes
in the wild [54]. Additionally, the data is collected on hosts
where there is an anti-virus program, which blocks the mali-
cious activities. It prevents the measurement from observing
long running campaigns. We utilize this incomplete data to
demonstrate how we can fill the gaps in measurement data
with information from threat intelligence.

3. Experimental methods

In this section we describe the design of ChainSmith,
a system that extracts and categorizes IOCs from security
technical articles in colloquial English, according to the
schema defined in Section 2.1. The key intuition behind
ChainSmith is that the context words in adjacent sentences
indicate the stage of a campaign, and the context words that
directly relate to the IOC determine its level of malicious-
ness. In addition, we are able to group IOCs from different
actors by considering the campaign stages and article post
time.

Figure 2 shows the architecture of ChainSmith. The
system consists of 6 components: article crawler, expression
detector, syntactic parser, semantic parser, named entity
recognition, and IOC classifier.
Article crawler. Just like the actors involved in malware
delivery tend to specialize on narrow tasks, security analysts
also focus on specific phases of the delivery campaigns. The
full picture of an end-to-end campaign often emerges only
after reading articles from multiple sources. We therefore
implemented a generic crawler to collect security articles
published online.

We use our crawler to mine 10 sources, listed in Ta-
ble 2. We select these sources in that (1) the articles are

Figure 2: Architecture of ChainSmith. The article crawler
module is not shown in this figure.

likely to include detailed information about the campaign,
and (2) the sources are diverse—including news websites
covering cyber threats, blogs from anti-virus companies, or
the personal blogs of security experts.

TABLE 2: Summary of security articles. For some articles,
we fail to identify the posting time.

Article source Time span Count
Forcepoint 2010-02-11 – 2017-05-13 227
Hexacorn 2011-10-01 – 2017-05-15 331
Malwarebytes 2012-04-20 – 2017-05-15 1590
Sophos 2000-11-24 – 2017-04-17 1171
Sucuri 2009-09-13 – 2017-05-12 927
TaoSecurity 2003-12-01 – 2017-05-08 2653
Trend Micro 2009-09-13 – 2017-05-15 1382
Virus Bulletin 2005-09-01 – 2016-01-29 601
WeLiveSecurity 2009-05-08 – 2017-05-16 4295
Webroot 2009-03-23 – 2017-05-14 978
Total 2000-11-24 – 2017-05-16 14155

Expression detector. Because security narratives often in-
clude multi-word expressions, we cannot simply analyze
individual words. For example, Black Hole is the name of
an exploit kit; in this context, the words Black and Hole are
meaningless when considered separately. We identify multi-
word expressions using the method proposed by Mikolov et
al. [48], and we consider such expressions as single terms
in the rest of our analysis pipeline. The intuition behind
this method is that the joint probability of words is much
higher than the product of the probability of individual
words for multi-word expression. In the example, since the
word “Black” is likely to appear together with “Hole”, we
identify “Black Hole” as a multi-word expression.
Syntactic parser. This component performs tokenization
and dependency parsing, which processes the raw string to a
tree structure that indicates the word dependency. This stage
is equivalent to the lexical analysis and syntactic analysis in
a compiler. Dependency parsing represents sentences as a di-
rected graph to express the relationship between words. The

!"# $%&'%()* +,-'. //01$234220$2$%32+56522347%%85%9 -* :"# #;'<-(:#+ "-.:.

*.=3> +-3>

&-+?-

%&-++#:

$%.#+#:

Figure 3: Example of dependency parsing, where the arc
label is the dependency type [24].

parser identifies the grammatical relationship between words
and labels each relationship with a type, which is essential
in determining which words are directly related to the IOC
candidates. For example, Figure 3 shows one example of de-
pendency tree. From the typed dependencies, we know that
the MD5 “4462c5b3556c5cab5d90955b3faa19a8”
is the object of “drop”, while the subject of “drop” is
“campaign”. Therefore, we learn that the given hash depends
on “drop” instead of “on”, even though they are equally
close to the hash. Syntactic parsing is widely used in NLP
applications and the state-of-the-art system has a reason-
able experimental performance. In this paper, we use both
Python NLTK [19] and Stanford CoreNLP [46] for syntactic
parsing.
Semantic parser. Since syntactic parsing cannot tell the
semantic similarity among words, to make the system more
generic, we have to understand the meaning of words.
Therefore in this step, we parse the words semantically by
using the state-of-the-art algorithm word2vec [47], [48].
The words with close semantic meaning will be represented
in a close position in the vector space, and the word vector
is trained by maximizing the probability of a word given the
words around it. ChainSmith uses dependency-based word
embedding [41], which utilizes context words+dependencies
instead of just context words. For example, for the MD5 in
Figure 3, the context is drop:dobj rather than {“drop”,
“on”}. The benefit of dependency-based word2vec is that
it learns functional similarity rather than topical similarity.
We also record the embedding for word dependency pairs,
which indicates the common context pattern of a word.
For example, the dependency drop:dobj represents a
direct object of drop and is usually the context for mal-
ware. In the embedding space, drop:obj is close to
drop:nsubjpass (a passive nominal subject of drop),
and download:nsubjpass (a passive nominal subject
of download). In rest of the paper, we refer to this process as
dependency embedding . We use both the word embedding
and dependency embedding as features for topic and IOC
classification.
Named entity recognition. Since IOCs strings tend to
follow fixed patterns, classifying every word in an article is
unnecessary. To remove the irrelevant words, we use regular
expression to identify candidate IOCs. Table 3 lists the rules
and additional constraints of recognizing each type of entity.
We take into account certain writing practices common to
security articles that do not follow general patterns. For
example, to prevent the mis-clicking of malicious site, some
bloggers use “hxxp” instead of “http”, and “[dot]” or (dot)”
instead of “.”. Additionally, authors might use different
delimiters for malware family names, e.g. replacing under-

TABLE 3: Rules of named entity recognition.

Type Rules
URL Identified top level domain must be found [16].
IPv4 Contains 4 digits (<256) and the address is not reserved [12].
hash A hexadecimal string of length 32, 40 or 64.
family Starts with malware types, and contains common delimiter [10].
EK Either in defined dictionary [2] or ends with EK or exploit kit.
vuln. CVE-[0-9]{4}-[0-9]{4,5}

scores with semicolons, so we accept the delimiter to be any
one of underscore, slash, period, colon, and semicolon.
IOC classifier. The primary goal of this step is to identify
whether the given word is an IOC as well as the stage of the
campaign it belongs to. The intuition of this step is that the
context words in close sentences determine the campaign
stage and the dependencies in the same sentence decide
whether the candidate is an IOC.

As discussed in Section 2.1, we model malware delivery
campaigns as a chain of 4 phases: baiting, exploitation,
installation, and command & control. We first train a clas-
sifier to check if the topic of a sentence falls in any of
these 4 phases. Since the various words used to identify the
campaign stage are not usually located in a single sentence,
we construct the IOC classifier to consider features at both
the dependency tree and sentence levels. This is in contrast
to prior work by Liao et al. [43] which focused only on
features at the sentence level.

First, we identify informative words in the sentence. We
use Equation (1) to estimate the importance of a word in
identifying topics,

S(w) = max
t∈T

p(w|t)
p(w)

(1)

where T is the set of malware campaign phases, w is
word we evaluated, p(w) is the probability of word w,
and p(w|t) is the probability that word w will be used
for describing topic t. A higher word score means that
w is more likely to be used in a certain campaign phase.
For example, iframe, src, malvertising have high scores for
the baiting phase, and exploit-serving has a high score for
the exploitation phase. We consider informative words to
be words with high score and high occurrence. For each
sentence, we determine the context from 3 sources: (1)
informative words from the current sentence; (2) informative
words from previous sentences, if no informative words are
found for the current sentence; and (3) informative words
from the previous sentence that mention the same IOC. The
motivation behind source 2 is that the topic of an article is
usually consistent. For example, if the topic of the current
sentence is command and control, then it is very likely that
the next sentence is also discussing command and control.
The last context source comes from the observation that the
same IOC can be discussed repeatedly in different sentences.

We use 3 types of features to identify the sentence topic:

• Average word embedding of the context words.
• Average word embedding of the article title.
• Number of IOCs of each type.

Because the topic may not be mutually exclusive, we
train 4 binary classifiers to identify topic probabilities. We
implement the classifier using neural network with 1 hidden
layer and 50 hidden nodes. To reduce the false positives, we
skip the IOC candidates if no informative words are found.

Next, we use the result of topic classification as the
feature for another neural net for IOC classification. The
candidate IOCs extracted in the previous steps may not be
related to malware delivery campaigns. For example, a file
hash mentioned in the blog post may refer to a benign
executable, such as a new patch or anti-virus product.

To verify that the named entities identified represent
IOCs of a campaign, we train a multi-class classifier for each
entity type (e.g. URL, IP address). The feature set includes:

• The probability of each topic.
• Average dependency embedding for all dependen-

cies connected to the named entity.
• Type specific features (URL and IP only).

The first feature is useful in determining which campaign
stage the named entity belongs to, and the rest of the features
are effective in determining whether the named entity is an
IOC. The type specific features include (1) the top level
domain of the URL and (2) mis-click prevention strategies,
e.g. “hxxp” and “[dot]”.

Instead of applying a softmax layer to the output layer,
we use a logistic function to scale the output probability,
such that the sum of the probabilities is not necessarily to
be 1. To reduce the false positive rate, we add a special
label “malicious” as another output, for the case when the
classifier returns more than one label from a single sentence.
For these IOCs, the classifier cannot reliably tell which
stages they belong to. Therefore, rather than drop the results,
we label them as “malicious”.
Campaign group identification. Technical articles are
likely to mention both suppliers and customers in the un-
derground economy. From our manual investigation, we find
that different from scientific literature, security blogs usually
discuss one observation from single campaign rather than
investigate the problem in a broader view. For example,
blog posts are likely to record the current status of single
campaign as shown in Figure 1. However, unlike scientific
literature, the comparison between different campaigns is
usually absent from blog posts. Therefore, we assume that
each technical article discusses one supplier and multiple
customers. For each article, we group all the IOCs in bait-
ing and exploitation phase as one group and consider the
other IOCs as individual groups (one IOC for each group).
In addition, as campaigns may change infrastructure and
strategies over time to evade detection, we must connect
campaigns from different articles in order to study the long-
term behavior and campaign evolution. We use a more
conservative idea to connect different campaigns with the
same IOCs than the method in [43] . If two campaigns
contain identical IOCs and appear within a short time frame
of another, then we consider that they are in fact the same
campaign. For example, if one domain is mentioned by
two articles in May 2012 and August 2012, then we group

Figure 4: Screenshot of annotation website.

the campaigns from two articles. In this study, we choose
the time window to be 6 months, which means that the
campaign groups are merged only if they share common
IOCs and are discussed within 6 months of one another.

4. Insights into malware delivery campaigns

In this section, we first discuss the performance of
ChainSmith and how to link the results to the real-world
telemetry data. Then we study campaigns from 3 direc-
tions: baiting techniques (Section 4.2), business relationship
between campaign groups (Section 4.3) and implication to
threat intelligence (Section 4.4)

4.1. ChainSmith performance

A key challenge for semantics extraction is the lack
of a ground truth. While IOCs are available on several
threat intelligence platforms, the malware delivery phase
that these IOCs correspond to are usually unavailable. To
train and evaluate ChainSmith, we built a web application
for manually annotating articles, as shown in Figure 4. The
annotators can first specify which campaign stage the IOC
belongs to and then enter the IOC name in the box. This
tool allows us to collect the ground truth for our system.
4 graduate students from our group participated in the
annotation exercise. To increase their chances of extracting
meaningful information about malware delivery campaigns,
we presented only articles that contain at least 20 named
entities for labeling. In this way, we annotate 153 articles
and 6264 IOCs.

Even with the ground truth collected from manual an-
notation, off-the-shelf NLP techniques are inadequate for
characterizing malware delivery campaigns. We design a
baseline system that models the campaign stage classifi-
cation using traditional topic modeling. We consider each
sentence as an individual document, and train a topic model
using Latent Dirichlet allocation (LDA) [21]. LDA is an
unsupervised algorithm widely used for topic modeling. For
example, the Toronto Paper Matching System (TPMS) [45]
employs LDA to model the reviewers’ research areas and the
areas of papers under submission. Additionally, a growing

TABLE 4: Performance comparison of ChainSmith and a
baseline NLP system, which utilizes Latent Dirichlet Allo-
cation.

IOC detection
Precision Recall

ChainSmith 91.9% 97.8%
Baseline 78.2% 66.7%

Stage classification
Precision avg Recall avg

ChainSmith 78.2% 69.6%– 80.7%
Baseline 37.0% 28.7%

TABLE 5: Summary of extracted IOCs.

Stage Attribute Count

baiting server_URL 4,874
server_IP 1,001

exploitation

exploit_site_URL 3,735
exploit_site_IP 732
exploited_vulnerability 554
exploit_kit 572

installation malware_hash 4,263
malware_family 1,604

C&C C&C_server_URL 2,161
C&C_server_IP 1,271

unknown 3,879
Total 24,653

number of conferences utilize TPMS for making automated
reviewer assignments. After training in this manner, we
identify the topic for each stage using the training set. If a
sentence belongs to one malware campaign stage, then we
extract all the named entities and label them as the attribute
of that stage.

We use 5-fold cross-validation to evaluate the perfor-
mance of ChainSmith and of our baseline system. Table
4 shows the results. ChainSmith achieves 91.9% precision
and 97.8% recall, which is 13.7% and 31.1% higher than
the baseline model, respectively. Since the campaign stage
classification is a multi-class problem, we take the average
precision and recall for all classes. Out of the detected IOCs,
we are able to classify 86.2% of them into a campaign stage
with 78.2% precision and 80.7% recall, which is more than
twice as high as the baseline model. 2 ChainSmith outper-
forms the baseline because it is able to better determine the
sentence context and the informative words.

We run ChainSmith on all 14,155 articles we collected,
and discover 24,653 IOCs. Table 5 shows the summary for
each type of IOCs. In addition, from the extracted IOCs,
we further identify 8,902 campaign groups mentioning ei-
ther suppliers or customers. We use one Sun Fire X2200
M2 server with 8 logical processors and 8GB RAM for
this experiment. Extracting IOCs from one security article
requires 0.214 seconds on average for each article.

To assess the need for ChainSmith, we collect 568,348
fully qualified domains and 297,218 IPv4 addresses from

2. Because ChainSmith is able to detect but fails to categorize part of
IOCs, we cannot precisely calculate the recall . For a fair comparison
to the baseline model, we calculate the lower bound by multiplying the
classification rate (86.2%) to the recall (80.7%).

Hailataxii [8], a repository providing threat intelligence
feeds in the STIX format [13]. 3 Compared to the IOCs
collected from ChainSmith, only 60 overlapping domains
and 26 overlapping IP addresses are found in both data
sets, and Jaccard index is 1.0 ∗ 10−4 and 8.7 ∗ 10−5 for
domain and IP address respectively. This illustrates the fact
that most of the indicators discussed in the threat intelligence
reports are not made available in a machine-readable format.
Moreover, none of the IOCs from Hailataxii specifies the
kill_chain_phase attribute, which would preclude the
analysis we conduct in the rest of this section from being
performed on the dataset.

Next, we link the campaign groups extracted from blog
posts to Kwon et al.’s data set of download events [39].
This data set is based on Symantec’s WINE platform, which
provides security telemetry from real-world hosts. Each
download event in the data set specifies the file hash of
the downloader and its payload (the downloaded file), and
optionally the URL or IP from which the payload was down-
loaded. In total, the telemetry data records 50.5M download
events from 5M real-world users. Using the download event
data, we check if IOCs for each campaign group are used
as the downloader or downloading portal. We are able to
find the subsequent download events for 59 groups, 37
of which produce high-risk downloads in the measurement
data. We label all the suspicious download events based on
the campaign IOCs. Consequently, we further discover 224
suspicious downloaders and 3,395 suspicious payloads.

Data release. We plan to release the ChainSmith system
in the form of a Web application at https://ioc-chainsmith.
org. We set up a web crawler for collecting articles each
week. Then ChainSmith parses the articles and updates the
database with new results. The website provides the entire
data for download as well as a search interface to access the
data.

4.2. Persuasion techniques

To entice users to download the payloads, attackers
are creative in designing persuasion methods. Email spam,
compromised websites, and malvertising can be used as the
basic approaches to targeting large group of individuals. In
addition, the attacker can post deceptive advertisements to
persuade users to click on malicious link. By integrating
human discovery from blog posts and the real-world down-
load data from WINE, we aim to study different persuasion
strategies as well as their impact on subsequent download
behaviors.

In Section 4, we identify 59 campaign groups that are
both reported by security analysts and WINE. Then we
manually label the campaign groups based on the platform
where the information is displayed and the trigger that
initiated the download, e.g. the message that lures users
to click or exploit kit that exploits a machine directly. As

3. The data is collected by 2016-12-15.

a result, we are able to label baiting techniques for 44
campaign groups.4

Table 6 shows the top campaign groups that drop the
most high-risk binaries in WINE. To study the timeline
of campaign groups, we further define active time to be
the time span when high-risk downloads are observed in
measurement data, and discovery time as the time period
that the corresponding blogs are posted.

26 campaign groups start from social engineering, which
is the most commonly used technique in our data. Unlike
drive-by downloads, social engineering does not involve ex-
ploitation and intrusion, and malware delivery is initiated by
user actions. Table 6 shows that all the top campaign groups
entice users simply through social engineering, which sug-
gests that social engineering is prevalent and effective.

To dig deeper into the social engineering methods, we
group the high-risk binary payloads according to the persua-
sion technique utilized, and we calculate the daily rate of
high-risk downloads produced by each technique. Figure 5
shows the daily high-risk downloads for the top 10 baiting
techniques. For a fair comparison among the social engi-
neering methods, we remove drive-by downloads that deliver
payloads directly using exploits. Figure 5a shows the total
daily downloads of high-risk binaries. Media player related
advertisement involves providing deceptive information that
entices users to download something in order to watch an
online video. For example, group 1 in Table 6 provides a
fake video, and asks users to download the missing plug-in
in order to play it. Most high-risk download events occur
in response to media player advertising. In fact, this ruse
can be substantially more persuasive than other techniques:
groups 1 and 3 from Table 6 generate an order of magnitude
more downloads than other groups.

Figure 5b shows the daily downloads per file, for each
persuasion technique, which reflects the delivery ability
from the perspective of customers. The most prolific cam-
paign group sends messages containing the download URL
to the contacts of compromised Skype accounts. The ef-
fectiveness of this technique in distributing high-risk files
suggests that users are less alert to the message received
from their friends and colleagues. However, we do not
observe a large volume of downloads for these campaigns,
which are limited by the number of compromised accounts.
Another effective baiting trick is to present a fake software
update notification, and the common target applications are
Flash Player and IE. To enhance credibility, the page hosting
the supposed plug-in can even mimic the Flash Player
installation process; instead, a dropper is usually installed
on the user’s machine. The least attractive baiting content
is anti-virus scanners. These anti-virus scanners are usually
labeled as PUP (potentially unwanted program) since they
do not behave as they claimed and ask users to buy the
license. The low rate of downloads suggests that users
are less susceptible to the rogue anti-virus advertisement,

4. Some blog posts focus more on the payload and only report the fact
where the payload is dropped, without describing the download infrastruc-
ture. In this case, we are not able to collect the baiting techniques.

TABLE 6: Top 10 campaign groups that drop the most suspicious binaries. The group name is identified from the information
provided by the references. Active time corresponds to the time span of suspicious downloads, and discovery time corresponds
to the date when the references are posted. hrd: high-risk download, hrb: high-risk binaries.

Rank Name # of hrb. # of hrd. Active time Discovery time Persuasion technique
1 Pinball Corp 874 25,578 05/19/2010 - 10/06/2013 03/29/2011 Advertise missing codec.
2 InstallCore 281 502 03/19/2012 - 02/07/2014 06/24/2013 - 10/18/2013 Advertise missing codec.
3 YieldManager 167 29,756 10/06/2012 - 06/28/2014 12/20/2012 - 07/03/2013 Advertise Flash Player.
4 Somoto installer 137 4,703 04/16/2012 - 06/27/2014 05/15/2013 - 07/26/2013 Advertise missing codec.
5 EzDownloaderpro 29 119 07/06/2012 - 09/30/2013 10/22/2013 Download portal.
6 OpenCandy 18 497 07/29/2013 - 06/15/2014 05/02/2014 Download portal.
7 Clikug 16 450 11/20/2013 - 06/30/2014 12/04/2013- 02/13/2014 Advertise Skype credit generator.
8 Awimba LLC 14 144 05/28/2012 - 05/23/2013 06/19/2013 Flash update notification.
9 BubbleDock 10 58 08/08/2013 - 01/05/2014 11/11/2013 Advertise missing codec.
10 – 6 88 02/04/2013 - 10/27/2013 03/02/2013 Flash update notification.

0

250

500

750

m
is
si
ng

 c
od

ec

fa
ke

 F
la
sh

do
w
nl
oa

d
po

rta
l

Fla
sh

 u
pd

at
e

IE
 u

pd
at

e

Sky
pe

 c
re

di
t g

en
er

at
or

sh
ip
pi
ng

 d
oc

um
en

ts

Sky
pe

 m
es

sa
ge

ca
si
no

Fa
ce

bo
ok

 w
al
l p

os
ts

Baiting techniques

D
a
ily

 d
o
w

n
lo

a
d
s

(a) Total downloads

0.0

0.5

1.0

1.5

Sky
pe

 m
es

sa
ge

IE
 u

pd
at

e

sh
ip
pi
ng

 d
oc

um
en

ts

fa
ke

 F
la
sh

Fla
sh

 u
pd

at
e

cr
ed

it
ca

rd
 n

ot
 a

cc
ep

te
d

em
ai
l (

Fa
ce

bo
ok

 a
cc

ou
nt

)

em
ai
l (

ta
x)

do
w
nl
oa

d
po

rta
l

Fa
ce

bo
ok

 w
al
l p

os
ts

Baiting techniques

D
a

ily
 d

o
w

n
lo

a
d

s
 p

e
r

fi
le

(b) Average downloads

Figure 5: Daily downloads of high-risk binaries. Total daily
download (left) reflects the frequency that a specific baiting
technique is used in high-risk download; while the average
of individual file (right) reflects the effectiveness of binary
delivery of a single file.

which is also supported by prior work [50]. Interestingly, an
application that warns about an impending zombie invasion
produces a higher download rate than the rogue anti-virus
scanners.

We do not include drive-by downloads in our analysis,
as the total number of downloads is too small to accurately
estimate the influence and effectiveness of the technique.
This suggests that attackers likely change the domains used
for exploitation and intrusion frequently so that the IOCs
collected from blog posts cannot be used to capture the
download behaviors. The binary download behaviors from
three exploit kits are recorded in WINE. However, the total
number of high-risk downloads is less than 10 for each of
groups, which suggests that the domains can change rapidly
for the exploitation and intrusion campaigns.

Table 6 shows the dates when campaigns from the top
tier-1 groups were active. This shows that these campaigns
are long lasting, usually exceeding 1 year in duration. Be-
cause the download event data-set was collected until June
2014, we cannot track the full length of some campaigns
persisting past that date. The campaigns for half of the
top tier-1 groups remain active at that date, suggesting
that the real duration may be significantly longer. These
long durations suggest that we currently lack the technical
means to stop the delivery campaigns involved in social

engineering. Interestingly, for 7 out of the 10 campaigns,
the articles mentioning them are published well within the
activity period of the campaigns, suggesting that the cam-
paigns go on after they are discovered by security analysts.
This suggests that the baiting techniques remain effective in
luring users, and the benefits of switching to another baiting
technique do not outweigh the costs.
Implications. Comparing the effectiveness of the persuasion
techniques employed by malicious actors suggests areas
where public awareness and education are most likely to
have an impact on malware delivery. In addition, the cam-
paigns from tier-1 suppliers usually go on for at least 1
year—even after they have been discovered. This reveals
the limitations of existing security tools in preventing cam-
paigns that rely upon social engineering. Because most tier-
1 suppliers employing social engineering do not exhibiting
any exploitation or intrusion intentions, and because the
downloaded payload may not expose obvious malicious
behavior, it is difficult to detect and determine whether to
block such campaigns in the gray area.

4.3. Underground business relationships

To study the business relationship between tier-1 sup-
pliers and their customers, we identify the ownership of
payloads from the certificate and the anti-virus signatures. If
the payload is signed, which is often the case for PUPs, then
we consider the publisher in the certificate as the owner of
the payload. If the payload is not signed, then we identify the
malware family using the AVclass tool [58]. As a result, we
identify 289 payload owners. The payload owners maintain
a direct relationship with tier-1 suppliers if the payload is
dropped from the domains of tier-1 suppliers. Otherwise,
we consider the relationship as indirect if the binary is bun-
dled by the reseller without establishing direct relationship
with tier-1 suppliers. 87.5% of payload owners maintain a
direct relationship with the tier-1 suppliers, which suggests
that the majority of downloads are directly associated with
the baiting techniques.5 In addition, one actor might have
different ways to deliver its payloads. For example, Somoto

5. The actual percentage of direct should be higher, because the payload
owner and tier-1 supplier can be the same. In this case, the customer of
the payload dropper also has a direct relationship with tier-1 suppliers.

better installer has its own advertising network [3], but it is
also delivered through OpenCandy in our data set.

Some business relationships might be hidden from the
measurement data because the real creator of a binary may
not be the parent process. For example, if the application
creates a service, then svchost.exe might be recorded
as the parent of any subsequent behaviors from the service.
Therefore, the parent-child relationship might be incomplete
from the measurement data. However, blog posts provide
another complementary data source to bridge the missing
relations because security analysts are able to differentiate
and report the real causal relationships. By integrating the
results from security articles, we are able to formulate
hypotheses about the business relationship between cam-
paign groups. For example, tpstneuknash[dot]com is re-
ported as the C&C server for ZeroAccess, and it delivers
TrojanSpy:Win32/Bafi.E in WINE. Therefore, it is likely
that the victim of ZeroAccess receives the command to
download Win32/Bafi from tpstneuknash[dot]com. More-
over, such business relationship might be previously un-
known, since Win32/Bafi is absent from malware families
that are dropped by ZeroAccess [4]. Moreover, Symantec
security response lists two malware families dropped by
ZeroAccess, and the payload malware we discovered is not
on the list, which implies that the business relationship
might be previously unknown.

Implications. Although not all campaign groups have in-
frastructure for baiting, most of the groups are the direct
customer of tier-1 suppliers. In addition, the tier-1 suppliers
can also be the customer of another group. This suggests
that the business relationship is prevalent and the actors in
the underground market can be highly connected. Moreover,
there might be more business relationships hidden from
measurement data due to the fact that it is hard to find the
real parent of a download event.

4.4. Lifecycles of campaigns and infrastructures

As noted in Section 4.2, most of campaign groups use
social engineering for binary delivery. This suggests that
most of the domains used in exploitation and intrusion may
change frequently, and consequently it is difficult to use
IOCs for detecting long-running campaigns. Figure 6 shows
the distribution of IOC occurrence in technical blogs for
file hash, URL and IP address.6 Owing to malware poly-
morphism and domain generating algorithms, most domains
and malware will not be identical during the same campaign
and therefore security analysts are likely to report different
IOCs from the same campaign. In addition, IP addresses
are more likely to be discussed in different articles, because
they are more difficult to be changed than URLs and file
hashes. This suggests that attackers are likely to change the
domains they used in order to evade detection, and therefore
IOCs are usually short-lived and may never be used again.

6. We use fully qualified domain for counting URL, which ignores the
associated path name.

0.00

0.25

0.50

0.75

1.00

1 2 3

Occurrence

P
e

rc
e

n
ta

g
e type

Hash

IPv4

URL

Figure 6: Percentage of the IOC occurrence in technical
blogs for file hash, URL and IP address. The distribution
of IOC occurrence is highly skewed, and therefore we only
show the percentage of the occurrence less than 3.

While their utility for real-time detection is limited,
IOCs can be useful in security forensics to identify long-
term campaign groups. Domains can be changed frequently,
but the attackers are still likely to reuse part of the infras-
tructure, which makes it possible to connect the dots and
observe the long-term evolution of a campaign. Figure 7
shows examples of spam campaigns related to the Cridex
family collected from 6 different articles. All the spam
emails redirect users to the BlackHole exploit kit, and drop
one version of Cridex malware. The malware communicates
with different command and control servers, and the IP of
the C&C server keeps changing over time, which is likely
because the server’s IP gets blacklisted. But in some cases,
the attacker reuses old C&C IPs. For example, as shown in
Figure 7, attacker reused 210.56.23.100 on November 19 (4
months later), and reused 95.142.167.193 on November 26
(3 months later). One possible explanation for this behavior
is that IPs are removed from blacklists after several months
so that the attackers may add them back to the campaign
infrastructure. Kührer et al. studied 15 blacklists from which
they estimated the average blacklisting time [38]. Although
the average listing time varies for different blacklists, the
malicious domain will be delisted after 100 days on average.
This suggests that attackers might actively check if the
domain and IP are removed from blacklist, and utilize the
old delisted domain and IP.

Implications. Our findings provide important lessons for
the most effective uses of threat intelligence. The premise
of threat intelligence is that sharing the technical details
of breaches and attacks makes everybody safer because it
makes it harder for attackers to reuse attack methods and
artifacts, thus increasing their work factor [57]. Our results
suggest that the detection of IOCs based on URLs and
IPs is not an effective mitigation, as the network identities
of servers involved in malware delivery campaigns already
change frequently. While several domain generation algo-
rithms have been reverse engineered in prior work [55],
future IP and domain name changes within one campaign
cannot, in general, be predicted based only on the threat
intelligence. Even though the URLs and IP addresses of

Figure 7: Spam campaigns that drop Worm:Win32/Cridex.E.

malicious servers are short-lived, campaigns using this in-
frastructure can be long-lasting and they may continue after
some components are taken down. This suggests that the
connections established among IOCs and the qualitative
insights about the campaigns are the most useful outcomes
of threat intelligence.

5. Discussion

Persuasion techniques. In Section 4, we collect the IOCs
for tier-1 suppliers from technical blogs and further link
them to the download telemetry in WINE. Most of tier-
1 groups entice users to download payload through social
engineering, and the subsequent high-risk downloads can
continue for more than one year. This suggests that current
security tools have important limitations in stopping the
campaigns using social engineering tricks. The fact that
both the downloading portal and the dropped payloads do
not exhibit obvious malicious behaviors makes it difficult
for anti-virus vendors to detect, or even determine, if the
download should be blocked. Consequently, the campaign
is usually long-lasting, and the high-risk download behavior
can continue for more than one year. In addition, regardless
of whether the high-risk file is PUP or malware, most of
the campaigns discussed by technical blogs have already
exhibited suspicious intentions from the way they present
the advertisement to the victims. The message from the ad-
vertisement is usually misleading and deceptive, for example
the fake software download and fake update notification.
Campaign detection. As social engineering is the prevalent
strategy to start the delivery campaign, human factors play
an important role in the security arms race. The state-of-
the-art detection systems focus more on blocking network
intrusion and removing malicious programs, but they usually
ignore whether the behaviors are consistent with what is as
expected. In many cases, especially for PUP delivery, the
message provided in the campaign is inconsistent with the

behavior behind the scenes. This provides an opportunity
for stopping these campaigns by blocking the misleading
advertisement, regardless of whether the downloaded pay-
load is malicious or not. For example, a benign download
should be blocked when it is bundled with a fake Flash
update notification. In this case, understanding the semantics
of advertisement is the key to preventing the deception.
Threat intelligence. In this paper, we compare the IOCs
collected from blog posts to the real-world measurement
data. We show that threat intelligence is useful in security
forensics, because it provides semantics to the measurement
data and make it possible for security researchers to explain
the measurement data. However, measuring the effective-
ness of IOCs in detecting malicious campaigns is equally
important and has not been studied thoroughly. In fact, that
few IOCs are shared in both measurement data and security
articles suggests that the infrastructure in the campaign is
likely to change frequently. Therefore, how to make the most
use of threat intelligence in real-time campaign detection
should be an important next step.

Automatically extracting the semantics of security
threats from natural language documents is a promising
direction for the analysis of long-lasting campaigns. In
particular, determining semantics of the relationships among
indicators of compromise is key to reconstructing chains
of actions and distinguish different actors in the campaign.
Prior techniques for extracting IOCs from technical doc-
uments [43], [9], [5] are unable to reconstruct campaigns
automatically (in [43], the authors established some links be-
tween a C&C infrastructure and the exploits utilized through
manual analysis). In contrast, ChainSmith automatically re-
constructs the semantics of entire delivery campaigns. One
benefit of semantic relationships is that they allow us to
identify different actors in campaigns. To stimulate further
research on cyber threat intelligence, we released a Web
application (https://ioc-chainsmith.org) for providing data
extracted automatically from natural language reports in a
timely manner.

6. Related work

Malware campaign. Most prior measurement studies fo-
cused on only one stage of malware delivery campaigns.
Prior work has identified social media advertising [64],
[23], [50], spam email [20], [31], compromised site [44],
or SEO poisoning [42] as techniques used for delivering
payloads. However, most of the work did not quantify the
volume of malware downloads resulting from these tech-
niques. Nelms et al. [50] measure the influence of different
persuasion techniques on malware downloads quantitatively
by parsing HTTP response and manually annotating the
content. However, this method is not scalable from both
manual annotation and network monitoring. In addition, this
method fails if the package is encrypted using HTTPS. The
advantage of our technique is that there are less restrictions
on measurement data, because the campaign information is
collected from independent sources.

Eshete et al. propose a system to detect if the URL is the
landing page of exploit kit based on the common techniques
and behaviors of exploit kit. [27]. Moreover, Eshete et al.
design a exploit kit infiltration toolkit to detect the exploited
vulnerabilities [26].

The malicious downloading behavior was analyzed by
Kwon et al. in [39], [40]. In [39], a classifier is designed
to detect malware using downloader-payload relationships.
In [40], the authors propose a system to detect coordi-
nated behaviors among downloaders on multiple hosts. PUP
delivery services were studied in [37], [61]. The former
identifies the PUP publisher and the delivery service from
the certificate and structure of download relationships, while
the latter closely investigates a few prevalent PPI services
and monitors the subsequent delivery behavior.

Zhang et al. propose a system to detect malicious servers
and group them into campaigns using HTTP traces from
ISPs [63]. Plohmann et al. comprehensively analyze domain
generating algorithms and pre-compute the DGA domains
in [55].

Threat intelligence. IOCs (indicators of compromise) are
commonly used to model malware campaigns. The IOCs
specified in OpenIOC, STIX and CybOX standards [11],
[13], [14] define the role of an indicator in a campaign, for
instance that an IP address corresponds to a C&C server.
Researchers at Lockheed-Martin corporation proposed a cy-
ber kill chain model to describe the action sequence from
attacker to launch malware campaign [33]. STIX includes
the cyber kill chain definition, however this is seldom used
in existing IOC feeds. For example, Hailataxii [8] is a
repository for threat intelligence data formatted according to
the STIX standard. Although more than 700,000 indicators
are provided by Hailataxii, none of them include the kill
chain phase, which can only be inferred manually from
natural language description of indicator.

In [43], Liao and Yuan et al. propose a system to auto-
matically collect IOC from blog posts in natural language.
They model the problem as graph similarity problem, and
identify the IOC item if it has a similar graph structure as the
training set. However, the identified IOCs do not preserve
their roles in a malicious campaign, which makes it difficult
to analyze the characteristics of campaign in different stages
and to correlate with field measurements.

NLP in security. Few references in security utilize natu-
ral language processing in system design. Neuhaus et al.
analyze the trend of vulnerability by applying LDA to
vulnerability description [51]. Pandita et al. identify Android
permissions that are implicitly stated in the app description
by using a dependency parser and first order logic [52].
Zhu et al. propose a framework to represent the knowledge
available in security literature and generate features for
detecting malware [65]. Liao and Yuan et al. propose a
system to automatically extract OpenIOC items from blog
posts [43]. Sun et al. design a system to generate human-
friendly report for the results from Cuckoo sandbox [60].
Panwar designs a framework to generate IOCs in STIX
format from Cuckoo sandbox results [53]. A concurrent

work by Husari et al. convert the Symantec malware report
to STIX format by utilizing a pre-defined ontology [32].
In terms of the NLP techniques, we use word embedding
instead of manually defined rules to learn the semantics of
sentences, which is more general and applicable to a broader
area. In addition, most of the work only focus on how to
apply NLP to security but do not show security implications
behind it.

7. Conclusions

We describe ChainSmith, a system that automatically
extracts IOCs from technical articles and industry reports,
and classifies them into different campaign stages, i.e. bait-
ing, exploitation, installation and command and control. This
provides a semantic layer on top of IOCs that captures
the role of indicators in a malicious campaign. ChainSmith
achieves 91.9% precision and 97.8% recall in extracting
IOCs from natural language documents and is able to de-
termine the campaign stage for 86.2% of IOCs with 78.2%
precision and 80.7% recall. In addition, we identify 8,902
campaign groups from IOCs based on the stages and ar-
ticle post time. This makes it possible to combine threat
intelligence with field-gathered data. The data is released at
https://ioc-chainsmith.org.

We use a data set of download events to measure the ef-
fectiveness of different persuasion strategies employed in the
baiting stage. We find that most campaigns deliver payloads
through social engineering, without exhibiting any intrusion
intentions. Media player advertising is most persuasive and
generates the largest number of high-risk downloads, but
“friends recommendations” and fake update notifications are
most effective, as they generate the most daily downloads
per file. In addition, we find that most of the customers in
the malware delivery ecosystem have direct relationships to
the suppliers that operate baiting services. Finally, we give
use cases for leveraging IOCs in security forensics, which
sheds new light on the best uses of threat intelligence.
Acknowledgments. We thank Dylan O’Reagan and Ben
Livshits, our shepherd, for their feedback. This research
was partially supported by the National Science Foundation
(grant CNS-1464163) and by the Maryland Procurement
Office (contract H98230-14-C-0127).

References

[1] “STIX support survey,” OASIS Cyber Threat Intelligence (CTI) TC
Wiki. https://wiki.oasis-open.org/cti/Products.

[2] “Overview of exploit kit,” http://contagiodump.blogspot.com/2010/
06/overview-of-exploit-packs-update.html, 2010.

[3] “Somoto baiting technique,” https://www.webroot.com/blog/
2013/07/03/deceptive-ads-targeting-german-users-lead-to-the-
w32somotobetterinstaller-potentially-unwanted-application-pua/,
2013.

[4] “Symantec security response: Zeroaccess,” https://www.symantec.
com/security response/writeup.jsp?docid=2011-071314-0410-
99&tabid=2, 2013.

[5] “Alienvault otx,” https://otx.alienvault.com, 2017.

[6] “Cyber security / information assurance (CS/IA) program,” http:
//dibnet.dod.mil/, 2017.

[7] “cyberscoop: Dhs slammed for report on russian hackers,” https:
//www.cyberscoop.com/dhs-election-hacking-grizzly-steppe-iocs/,
2017.

[8] “Hail a TAXII: a repository of open source cyber threat intellegence
feeds in STIX format,” https://http://hailataxii.com, 2017.

[9] “Ioc parser,” https://github.com/armbues/ioc parser, 2017.

[10] “Malware naming convention,” https://www.microsoft.com/en-us/
security/portal/mmpc/shared/malwarenaming.aspx, 2017.

[11] “The openioc framework,” http://www.openioc.org/, 2017.

[12] “Reserved ip addresses,” https://en.wikipedia.org/wiki/Reserved IP
addresses, 2017.

[13] “STIX: Structured threat information expression,” http://stixproject.
github.io, 2017.

[14] “A structured language for cyber observables,” https://cyboxproject.
github.io, 2017.

[15] “ThreatConnect,” https://www.threatconnect.com/, 2017.

[16] “Top level domains,” http://data.iana.org/TLD/tlds-alpha-by-domain.
txt, 2017.

[17] “Virus total,” www.virustotal.com, 2017.

[18] “Webroot: Your discover card services blockaded themed
emails serve client-side exploits and malware,” https:
//www.webroot.com/blog/2012/11/08/your-discover-card-services-
blockaded-themed-emails-serve-client-side-exploits-and-malware/,
2017.

[19] S. Bird, E. Klein, and E. Loper, Natural language processing with
Python: analyzing text with the natural language toolkit. ” O’Reilly
Media, Inc.”, 2009.

[20] E. Blanzieri and A. Bryl, “A survey of learning-based techniques of
email spam filtering,” Artificial Intelligence Review, vol. 29, no. 1,
pp. 63–92, 2008.

[21] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of machine Learning research, vol. 3, no. Jan, pp. 993–1022,
2003.

[22] J. Caballero, C. Grier, C. Kreibich, and V. Paxson, “Measuring pay-
per-install: The commoditization of malware distribution.” in USENIX
Security Symposium, 2011.

[23] C. Cao and J. Caverlee, “Detecting spam urls in social media via be-
havioral analysis,” in European Conference on Information Retrieval.
Springer, 2015, pp. 703–714.

[24] M.-C. De Marneffe and C. D. Manning, “Stanford typed dependencies
manual,” Technical report, Stanford University, Tech. Rep., 2008.

[25] T. Dumitras, and D. Shou, “Toward a standard benchmark for com-
puter security research: The Worldwide Intelligence Network Envi-
ronment (WINE),” in EuroSys BADGERS Workshop, Salzburg, Aus-
tria, Apr 2011.

[26] B. Eshete, A. Alhuzali, M. Monshizadeh, P. A. Porras, V. N.
Venkatakrishnan, and V. Yegneswaran, “Ekhunter: A counter-
offensive toolkit for exploit kit infiltration.” in NDSS, 2015.

[27] B. Eshete and V. Venkatakrishnan, “Webwinnow: Leveraging exploit
kit workflows to detect malicious urls,” in Proceedings of the 4th ACM
conference on Data and application security and privacy. ACM,
2014, pp. 305–312.

[28] Facebook, “ThreatExchange,” https://threatexchange.fb.com/, 2017.

[29] C. Gates and C. Taylor, “Challenging the anomaly detection
paradigm: a provocative discussion,” in Proceedings of the 2006
workshop on New security paradigms. ACM, 2006, pp. 21–29.

[30] C. Grier, L. Ballard, J. Caballero, N. Chachra, C. J. Dietrich,
K. Levchenko, P. Mavrommatis, D. McCoy, A. Nappa, A. Pitsillidis,
N. Provos, M. Z. Rafique, M. A. Rajab, C. Rossow, K. Thomas,
V. Paxson, S. Savage, and G. M. Voelker, “Manufacturing compro-
mise: the emergence of exploit-as-a-service,” in ACM Conference on
Computer and Communications Security, Raleigh, NC, Oct 2012.

[31] G. Ho, A. Sharma, M. Javed, V. Paxson, and D. Wagner,
“Detecting credential spearphishing in enterprise settings,” in 26th
USENIX Security Symposium (USENIX Security 17). Vancouver,
BC: USENIX Association, 2017, pp. 469–485. [Online]. Avail-
able: https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/ho

[32] G. Husari, E. Al-Shaer, M. Ahmed, B. Chu, and X. Niu, “Ttpdrill:
Automatic and accurate extraction of threat actions from unstructured
text of cti sources,” in Proceedings of the 33rd Annual Computer
Security Applications Conference. ACM, 2017, pp. 103–115.

[33] E. M. Hutchins, M. J. Cloppert, and R. M. Amin, “Intelligence-
driven computer network defense informed by analysis of adversary
campaigns and intrusion kill chains,” Leading Issues in Information
Warfare & Security Research, vol. 1, p. 80, 2011.

[34] International Data Corporation, “Worldwide threat intelligence secu-
rity services 2014–2018 forecast: “iterative intelligence” — threat
intelligence comes of age,” IDC Market Forecast, Mar 2014.

[35] L. Invernizzi, S.-J. Lee, S. Miskovic, M. Mellia, R. Torres, C. Kruegel,
S. Saha, and G. Vigna, “Nazca: Detecting malware distribution in
large-scale networks,” in NDSS, 2014.

[36] P. Kotzias, L. Bilge, and J. Caballero, “Measuring PUP prevalence
and PUP distribution through Pay-Per-Install services,” in 25th
USENIX Security Symposium (USENIX Security 16). Austin, TX:
USENIX Association, Aug. 2016, pp. 739–756. [Online]. Avail-
able: https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/kotzias

[37] P. Kotzias, S. Matic, R. Rivera, and J. Caballero, “Certified PUP:
Abuse in Authenticode code signing,” in CCS, 2015. [Online].
Available: http://doi.acm.org/10.1145/2810103.2813665

[38] M. Kührer, C. Rossow, and T. Holz, “Paint it black: Evaluating
the effectiveness of malware blacklists,” in RAID, 2014. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-11379-1 1

[39] B. J. Kwon, J. Mondal, J. Jang, L. Bilge, and T. Dumitras, , “The
dropper effect: Insights into malware distribution with downloader
graph analytics,” in CCS, 2015.

[40] B. Kwon, V. Srinivas, A. Deshpande, and T. Dumitras, , “Catching
worms, trojan horses and PUPs: Unsupervised detection of silent
delivery campaigns,” in Network and Distributed System Security
(NDSS) Symposium, San Diego, CA, Feb 2017.

[41] O. Levy and Y. Goldberg, “Dependency-based word embeddings.” in
ACL (2). Citeseer, 2014, pp. 302–308.

[42] X. Liao, C. Liu, D. McCoy, E. Shi, S. Hao, and R. Beyah, “Char-
acterizing long-tail seo spam on cloud web hosting services,” in
Proceedings of the 25th International Conference on World Wide Web.
International World Wide Web Conferences Steering Committee,
2016, pp. 321–332.

[43] X. Liao, K. Yuan, X. Wang, Z. Li, L. Xing, and R. Beyah, “Acing
the IOC game: Toward automatic discovery and analysis of open-
source cyber threat intelligence,” in ACM Conference on Computer
and Communications Security, Vienna, Austria, 2016.

[44] X. Liao, K. Yuan, X. Wang, Z. Pei, H. Yang, J. Chen, H. Duan, K. Du,
E. Alowaisheq, S. Alrwais et al., “Seeking nonsense, looking for
trouble: Efficient promotional-infection detection through semantic
inconsistency search,” in Security and Privacy (SP), 2016 IEEE
Symposium on. IEEE, 2016, pp. 707–723.

[45] X. Liu, T. Suel, and N. Memon, “A robust model for paper reviewer
assignment,” in Proceedings of the 8th ACM Conference on Recom-
mender systems. ACM, 2014, pp. 25–32.

[46] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard,
and D. McClosky, “The Stanford CoreNLP natural language
processing toolkit,” in Association for Computational Linguistics
(ACL) System Demonstrations, 2014, pp. 55–60. [Online]. Available:
http://www.aclweb.org/anthology/P/P14/P14-5010

[47] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient esti-
mation of word representations in vector space,” arXiv preprint
arXiv:1301.3781, 2013.

[48] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their compo-
sitionality,” in Advances in neural information processing systems,
2013, pp. 3111–3119.

[49] T. Nelms, R. Perdisci, M. Antonakakis, and M. Ahamad, “Webwit-
ness: Investigating, categorizing, and mitigating malware download
paths,” in USENIX Security Symposium, 2015. [Online]. Avail-
able: https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/nelms

[50] ——, “Towards measuring and mitigating social engineering
software download attacks,” in 25th USENIX Security Symposium
(USENIX Security 16). Austin, TX: USENIX Association, 2016,
pp. 773–789. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/nelms

[51] S. Neuhaus and T. Zimmermann, “Security trend analysis with
CVE topic models,” in IEEE 21st International Symposium on
Software Reliability Engineering, ISSRE 2010, San Jose, CA,
USA, 1-4 November 2010, 2010, pp. 111–120. [Online]. Available:
http://dx.doi.org/10.1109/ISSRE.2010.53

[52] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “WHYPER:
towards automating risk assessment of mobile applications,” in
Proceedings of the 22th USENIX Security Symposium, Washington,
DC, USA, August 14-16, 2013, S. T. King, Ed. USENIX Association,
2013, pp. 527–542. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity13/technical-sessions/presentation/pandita

[53] A. Panwar, “igen: Toward automatic generation and analysis of in-
dicators of compromise (iocs) using convolutional neural network,”
Ph.D. dissertation, Arizona State University, 2017.

[54] E. E. Papalexakis, T. Dumitras, D. H. P. Chau, B. A. Prakash,
and C. Faloutsos, “Spatio-temporal mining of software adoption &
penetration,” in IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining (ASONAM), Niagara Falls, CA,
Aug 2103.

[55] D. Plohmann, K. Yakdan, M. Klatt, J. Bader, and E. Gerhards-
Padilla, “A comprehensive measurement study of domain generating
malware,” in 25th USENIX Security Symposium (USENIX
Security 16). Austin, TX: USENIX Association, 2016, pp.
263–278. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/plohmann

[56] B. Rahbarinia, R. Perdisci, and M. Antonakakis, “Segugio:
Efficient behavior-based tracking of malware-control domains
in large ISP networks,” in DSN, 2015. [Online]. Available:
http://dx.doi.org/10.1109/DSN.2015.35

[57] J. H. Saltzer and M. D. Schroeder, “The protection of information
in computer systems,” Proceedings of the IEEE, vol. 63, no. 9,
pp. 1278–1308, 1975. [Online]. Available: http://dx.doi.org/10.1109/
PROC.1975.9939

[58] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero, “Avclass: A
tool for massive malware labeling,” in International Symposium on
Research in Attacks, Intrusions, and Defenses. Springer, 2016, pp.
230–253.

[59] R. Sommer and V. Paxson, “Outside the closed world: On using ma-
chine learning for network intrusion detection,” in IEEE Symposium
on Security and Privacy, 2010, pp. 305–316.

[60] B. Sun, A. Fujino, and T. Mori, “Poster: Toward automating the
generation of malware analysis reports using the sandbox logs,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2016, pp. 1814–1816.

[61] K. Thomas, J. A. E. Crespo, R. Rasti, J.-M. Picod, C. Phillips,
M.-A. Decoste, C. Sharp, F. Tirelo, A. Tofigh, M.-A. Courteau,
L. Ballard, R. Shield, N. Jagpal, M. A. Rajab, P. Mavrommatis,
N. Provos, E. Bursztein, and D. McCoy, “Investigating commercial
pay-per-install and the distribution of unwanted software,” in 25th
USENIX Security Symposium (USENIX Security 16). Austin, TX:
USENIX Association, Aug. 2016, pp. 721–739. [Online]. Avail-
able: https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/thomas

[62] K. Thomas, D. Huang, D. Wang, E. Bursztein, C. Grier, T. J.
Holt, C. Kruegel, D. McCoy, S. Savage, and G. Vigna, “Framing
dependencies introduced by underground commoditization,” in WEIS,
2015.

[63] J. Zhang, S. Saha, G. Gu, S.-J. Lee, and M. Mellia, “Systematic
mining of associated server herds for malware campaign discovery,”
in Distributed Computing Systems (ICDCS), 2015 IEEE 35th Inter-
national Conference on. IEEE, 2015, pp. 630–641.

[64] X. Zhang, Z. Li, S. Zhu, and W. Liang, “Detecting spam and pro-
moting campaigns in twitter,” ACM Transactions on the Web (TWEB),
vol. 10, no. 1, p. 4, 2016.

[65] Z. Zhu and T. Dumitras, “Featuresmith: Automatically engineering
features for malware detection by mining the security literature,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2016, pp. 767–778.

