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Abstract 

The popularity of new social media platforms such as Facebook, Twitter etc. has created an open 

platform to disseminate information about common software vulnerabilities and vulnerability 

exploits. Also, there exists speculation about existing markets for vulnerability exploits in these 

mediums. In this work, we have collected and analyzed about 5,000,000 tweets over 15 days 

period for understanding the nature of advertisements regarding vulnerability exploits in Twitter. 

Our study reveals that, vulnerability related tweets are mostly informative and their number has 

some correlation with the risk presented by the vulnerabilities. We also found code fragments, 

exploit demo and information dissemination networks related to different vulnerabilities in 

Twitter.  Our limited study period and processing capabilities did not uncover any underground 

sales of vulnerability exploits; however, we found that, there exist widely followed legitimate 

corporations that deals with business of selling vulnerability exploits. This limited study should 

be considered as a stepping stone in exploring vulnerability exploits advertised in Twitter.  

 

Introduction  

The world today is leaping forward to real time communications with Facebook, Twitter, and other social 

networking sites.  Twitter has appeared to be one of the most common and preferred social networking 

medium that allows us to communicate information, follow and be followed by other users. Such 

communication medium has also made it possible to send information about malicious and non-malicious 

cyber events in an open forum.  So, the questions that we are asking are: (i) Are vulnerability exploits are 

advertised on Twitter?   (ii) If they are then who are tweeting them and who are following?  (iii) Can we 

determine which vulnerabilities are exploited in the wild by analyzing Twitter messages? (iv)  Can 

Twitter analysis be employed to gauge the risk presented by each vulnerability exploit?  The goal of this 

work is to answer these research questions. 

To answer these questions, the paper will be broken down to the following sections: section 2 will give 

background on Twitter, Twitter API, and Common Vulnerability Exposures (CVE) database; section 3 

will discuss the process of gathering tweets; section 4 will talk over the processing of the tweets into 

different classes, section 5 will present the results and findings that we uncovered and finally, section 7 

will be our conclusion. 

 

Background 

Twitter is one of the many social networking sites that connect people to follow anyone or groups that we 

wish to connect with.  The idea behind twitter is to allow people to blog to a large audience their feelings, 

thoughts, and emotions.  The tweet itself is only 140 characters long. This allows SMS messages to 

interact with Twitter.  So the information relayed is usually small blurts or shorten URLs.  Twitter is 

hitting an all-time high with usage and is only behind Instagram of most popular among certain age 

groups.  
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Twitter has Application Programming Interface (API) for developers to interface with twitter.  These 

APIs are used to search through past tweets (REST API)[1] or to gather them while they are happening 

(Streaming API)[2].  These API do not just return the text of the tweet but also additional information 

from the metadata associated with each tweet.  The REST API uses the resource of GET search/tweets 

this will return a collection of tweets matching a specified query.  The streaming API works along the 

same concept as REST API where a resource such as POST statuses/filter or GET Statuses/sample.  

These resources grab tweets that match one or more filter predicates.  The Twitter API gives us the ability 

to sample a small portion of all the tweets being tweeted across Twitter.   

To gather data on vulnerability exploits, one good resource is national CVE database. CVE is used to 

categorize and document vulnerabilities in operating systems and other software that has been released to 

the public.  This list which was started in 1999 has over 58,000 vulnerabilities to date.  Most of these 

vulnerabilities are giving a Common Vulnerability Scoring System (CVSS) number from 0.0 to 10.0.  

The areas that are evaluated are by three metric groups: Base, Temporal, and Environmental.  These 

groups are broken down even more into characteristics these values are assessed according to risk to each 

area.  The score is calculated using a formula which goes beyond the scope of this paper and is given a 

rating of High (10.0 – 7.0), Medium (6.9 – 4.0) and Low (3.9 – 0.0)[3].   There are other scoring metrics 

that track the same areas as the CVSS but we mainly focused on using the scores from CVEs.  The name 

of each CVE is designed as such CVE-YYYY-XXXX[4] the YYYY is for the year and XXXX starts at 

0000 and numbers count up to represent each vulnerability when it is disclosed to the public.   

For our data collection and analysis, we used the R programming language. R is free and has a GNU 

public license.  The R environment is an integrated suite that performs data manipulation, calculation and 

graphical display.  The language of R is designed around a true computer language that users can add to 

and define new functions.  With this freedom to create a process to gather and identify tweets through the 

Twitter API we can now have a statistical interaction with the data we uncover.   

 

Data Collection 

As discussed above, for data collection we had the option to use either Twitter’s REST API or the 

streaming API. The R-package twitteR[6], provides an updated an interface to the Twitter web REST API, 

that supports Twitter’s new authentication system. Another option is to use the streamR package [7] to 

collect data from the streaming API. We use both the package for different analysis. 

The first step in our work was to collect tweets that match certain keywords list [The keywords are given 

in the attachment: base_dictionary.txt]. Although this small list is limited by our initial knowledge on 

security research, we parsed some valuable results using this small wordlist. The keywords are broken 

down into the major software, CVE- which is the start of all CVEs,, and code fragments of what could 

appear in a malicious code. This initial wordlist helped us to stream tweets from the streaming API and 

process them for further analysis. 

From the initially parsed tweets, we uncover the security professional and the communities that are 

concerned about the vulnerability exploit advertised in Twitter.  We advanced our small dictionary of 

keywords by analyzing the tweets posted by security groups such as Vupen, The Hacker News, FireEye 

etc. The scripts we use to capture tweets allowed us to run our system for days at a time and collect over 

5,000,000 tweets over the span of 15 days. Due to the limitation of our hardware, the tweets we gathered 

are sporadic in temporal distribution and cover tweets for the following dates: Nov 12-14, 2013, Nov 17-

20, 2013, Nov 26-29, 2013 and Dec 4-8, 2013. 
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Data Processing 

One way of handling this large volume of data is to divide into small parts, compute and join the results. 

We parsed the tweets from the streaming API and saved them in an hourly basis. After accumulating the 

hourly data, we search the contents of the tweets over an extended dictionary that contains not only the 

security terms but also some business terms as well [The second dictionary is attached with the report.] 

Depending on the occurrence of the terms we attached new tag fields with the tweets that record the 

occurrence of the dictionary terms. We define the cumulative score as the total number of tags a 

document contains. We found that with the basic vulnerability dictionary, we parse approximately 500000 

tweets. However, when we clean the corpus by tagging with an exact search and a better dictionary, less 

than 4% of the tweets contain nonzero cumulative score. We separate the tweets in new .Rda files.  Later, 

when analyzing different aspects, we search the text, user or tag fields of these files and join the results in 

a data frame for further processing. 

For most of the analysis presented in the work, we used tm package [8] of R for text mining. We 

converted the data frame resulting from our database search to term-document matrices for text mining 

purposes. We used standard word stemming, stop word removals and case-conversion function to clean 

our text corpuses.  

We understand that, tagging and word based searching has their own limitations and therefore, for better 

searching and classification of tweets we sought for adapting machine learning approaches. To analyze 

the effectiveness of machine learning approach in our search, we have used k- nearest neighbor 

approximation algorithm provided in the plyr package of R. k-nearest neighbor is an algorithm used for 

classification and regression that can predict using a training set to recognize patterns. K-NN is a two 

phased machine learning algorithm which consists of the training and classification.  Training phase is 

where the algorithm will store the feature and class labels from a training set.  The classification phase is 

where an unlabeled vector is classified through assigning labels based on the training set data.   

Due to the time limitation of this study, we trained a small subset of tweets (957 tweets) for analyzing the 

effectiveness of k-nearest neighbor method. We took random tweets that have a cumulative score greater 

than 2.  We transpose the regarding term-document matrix into document term one and provided a new 

column that contained the type of the message conveyed by the tweet. We defined three categories of 

tweets as given in the table below: 

Tag Example 

Not 

relevant/eligible 

"#F-SecureGB: Get 30% #Discount Internet Security, Protection For Surfing And 

Shopping, Using #Voucher Code, Here: http://t.co/wSH10CmKSZ ツ" 

Informative "E.KIA (Enemy Killed in Action) – Microsoft Office Zero Day (CVE-2013-3906) 

http://t.co/ZcKFsKEi2U" 

Malicious claim After Win7/Srv2008 & BSD, we successfully exploited the Intel x64 Sysret vuln on 

Xen hypervisor to achieve a full VM to Host escape. 

Table 01: Example of different classes of tweets 

First, we manually train the tweets about their categories. Then to test the accuracy of this approach, we 

randomly take 70% of the training data and untag the rest 30% data for using them as test data.  We find 

that in this circumstance the accuracy of the method is about 84%. Several testing shows that, the total 

accuracy ranges from 70-85%. However, accuracy in detecting a malicious claim is very low (from 0-

40%) and accuracy detecting informative claim is moderate (35%-80%). The low rate of finding 

malicious claim is due to the fact that the number of not eligible class is more dominate than the others.   

We conclude that knn is weak in differentiating malicious claims from informative tweets; however, a 

trained   knn can become very useful in differentiating irrelevant tweets from the relevant ones.   
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Calculations and Results  

Vulnerability appearance on the Twitter 

Our first research question was whether vulnerability exploits are advertised in Twitter. We search for the 

current CVE entries by their exact entry number in the tweet-database that contains tweets having non-

zero cumulative score term. The vulnerabilities that make the most appearance in our dataset are shown 

below. 

(a) 

 

(b) 

Figure 01: (a) The search result over our complete database for the published vulnerabilities in the CVE 

database. As the search looks for the exact term “CVE-XXXX-XXXX”, we have a very small number of 

hits per vulnerabilities. (b) The CVSS values chart for each vulnerability analyzed.  
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It can be seen from figure 01 that, the top 2 pronounced vulnerabilities in our dataset are CVE-2013-5065 

and CVE-2013-3906. We will take a closer look at these vulnerabilities and some of the tweets that were 

associated with them. Also, if we compare both charts, it can be seen that the number of appearances for a 

given CVE in our database does not have a proportional relationship with its CVSS rank. However, as the 

analysis looks for only the CVE index, a better search with corresponding terms may provide a better 

view on the presence of vulnerabilities in twitter space. Also, we can further deduce that, one can have 

some idea on what vulnerabilities are exploited in the wild by analyzing their signature in twitter-space. 

We group the tweets regarding these two vulnerabilities by doing a simple search of CVE numbers, 

related terms and the tags. We the go through the data and manually inspect the resulting data sets. 

If we look at the CVE-2013-5065 vulnerability we found that it is a vulnerability in NDProxy.sys in the 

Kernel of Microsoft Windows XP SP2 and Server 2003 SP2 that allows local users to gain privileges via 

a crafted application. It was exploited in the wild in November 2013[9]. Microsoft confirmed this exploit 

on November 27
th
 [10].  Another website that published this vulnerability was fireeye.com, which 

produces real-time threat prevention to their clients.  We see the emergence of this vulnerability in our 

dataset on November 27
th
 as soon as Microsoft’s announcement. After its inception point, we found a 

huge up-rise in public awareness and CVE database gave it a 10.0score at November 28
th
. We also found 

a demo of the exploit in the wild which has been advertised on twitter by twitter name, 0x009AD6, from 

Japan.  

Another important vulnerability exploit was CVE-2013-3609. This was an exploit that allowed remote 

attackers to execute arbitrary code via a crafted TIFF image.  The entry date of this vulnerability was June 

3
rd
, 2013 but does not indicate when a vulnerability was discovered, it was reported being exploited in 

October. Microsoft first released information about the vulnerability of November 6
th
. Our search on the 

REST API and our initial undocumented database contains tweets about the vulnerability right after its 

announcement from Microsoft.  This CVE had a wide public attention and it was still the talked about in 

early December. Microsoft claims that it had been patched but several twitter accounts (e.g. virusbtn) 

tweeted otherwise. Also, there were advertises and demos of this exploit available via Yuang Yu. Also, 

we noticed a change in the language of the tweets regarding this tweets. It started mostly as English, but 

in the later databases there were a lot of Chinese and Russian tweets that talks about this vulnerability and 

related topics. 

We also found several tweets about the buying and selling of vulnerability exploits by Vupen and ZDI 

(zero-day initiative). We did not found any underground network of buyers and sellers of vulnerability 

exploits, however, this might arouse from our limited amount of data collection and analysis. A further 

study on a broader data set will allow us to locate such market (if there exist any).  

In the following table we provide some examples on tweets about vulnerability advertisements: 

User Tweet 

TheHackersNews NSA bought Hacking tools from 'Vupen', a French based zero-day Exploit Seller 

0x009AD6 Microsoft GDI+ TIFF Integer Overflow (CVE-2013-3906) 0day Exploitation & 

Mitigation Demo 

deepquest Novell Zenworks Mobile Device Managment Local File Inclusion Vulnerability 

http://goo.gl/mjNKD 

deepquest VoipNow <= 2.5 - Local File Inclusion Vulnerability http://goo.gl/tuoEqh 

  

Vulnerability information network 

To gain a better idea about the eco-system of the vulnerability advertisements, we search for the 

retweeting pattern for different CVE vulnerabilities exploited in the past month. From our dataset we 

deduce several information centers from which common information about the current vulnerabilities are 
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disseminated. Below, we provide the retweet pattern for CVE-2013-3906, the most tweeted vulnerability 

for last month. 

 

 
Figure02: Retweet pattern for CVE-2013-3906. 

From the distribution network, we have the top 6 account that provided most of the retweeted 

information. We found that, except for Security Wang, others are established security professionals who 

usually talks about these exploits as a part of their business.   

Account 

 

Followers 

 

% of Retweet 

population 

Fireeye 47801 8.3 

The Hacker News 112084 7.1 

Security Affairs 4115 5.5 

Security Wang 2231 3.6 

Threat Intel(Symantec) 19000 3.1 

Webroot  12341 2.8 

 

Analysis of tweets from security experts 

Contents of vulnerability advertisements are based on the terms associated with current vulnerabilities 

that are being exploited in the wild. Therefore, for maintaining a better dataset one needs to reseed and 

refresh the dictionary used for the data acquisition. One way of gaining insight on the vulnerabilities 

exploited in the wild is to analyze the tweets from the most popular security experts. So, we collected the 

REST API tweets from four security experts (Vupen, FireEye, The Hacker News and Threat Intel) and 

tweets advertising CVE vulnerabilities. We group all these tweets and performed text-mining to get the 

common vocabulary in present vulnerability exploit.  The resulting word-cloud is presented below. A 

quick glimpse on the Vupen tweets informs us about the Microsoft’s recent vulnerabilities exploited in 

the wild. A better study of the top 5% most frequent words gives an idea of vocabularies for most of the 

vulnerabilities reported and advertised in the given period.  
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Figure02: (a) Word cloud for Vupen for last month, (b) Word Cloud for the most retweeted 

security experts and “CVE-”   contents for last month. The size of a text represents its frequency 

over the documents. See the uploaded image files for better quality. 

 

 

Sentiment analysis of vulnerabilities 

Finally, we did a sentiment analysis on the REST API data from the first week of November to figure out 

the effectiveness of such analysis in analyzing public perception on vulnerability exploits on different 

operating systems. We used the dictionary of positive and negative words by Liu et al. [11] for this 

analysis. We used the tweets present in the REST API that contains terms related to Microsoft, Apple, 

Linux and VM system vulnerabilities. We found the general perception about vulnerabilities is usually 

negative and on Microsoft products this negative perception is highly pronounced.  This pronounced 

negative sentiment might be due to the advent of CVE-2013-3906 which had a comparatively large 

impact on security concerned or this might be a general consensus about Microsoft’s vulnerable products. 

Therefore, we recommend further studies on these features over a large timeframe to confirm any 

hypothesis on sentiment analysis regarding vulnerable products.  

 

Figure 04: Sentiment analysis over product vulnerabilities of different operating systems.  
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Conclusions  

In this work, we tried to answer some fundamental questions regarding vulnerability advertisement on the 

Twitter platform. To do so, we have collected about 5 million tweets from the streaming API, developed a 

dictionary search based scoring technique and   K-nearest neighbor based machine learning technique for 

tweets classification. From our limited search on our twitter database, we found that, there exists some 

correlation between the CVSS rank and user awareness, and information about vulnerabilities with severe 

risks is widely distributed in Twitter. We uncover the existence of the information dissemination and 

retweet network regarding vulnerability exploits and found high centrality in these networks. Our study 

also provided a better seed dictionary based on the tweets of security professionals. We also found some 

examples and demos for exploiting vulnerabilities in the wild. 

The work suffers from severe limitation in terms data collection since Twitter only allows 1% of random 

samples on any search topic to be parsed from its Streaming API. We also suffered from the limitation of 

our hardware and time for large scale implementation of k-NN algorithm. The very simplistic nature of 

scoring texts is limited to the efficiency and scope of the dictionary provided. From our perspective, this 

work requires more profound and systematic analysis. The merit of the work is that, it reflects the 

existence of vulnerability advertisement in Twitter and provides some research direction in terms of 

dictionary building, user profiling, text mining and improved machine learning techniques that can be 

employed in similar analysis.   
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