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Abstract
In recent years, software defects have become the dominant
cause of customer outage, and improvements in software relia-
bility and quality have not kept pace with those of hardware.
Yet, software defects are not well enough understood to provide
a clear methodology for avoiding or recovering from them. To
gain the necessary insight, we study defects reported between
1986 and 1889 from a on a high-end operating system product.
We compare a typical defect (regular) to one that corrupts a
program’s memory (overlay) given that overlays are considered
by field services to be particularly hard to find and fix.

This paper:

g Shows that the impact of an overlay defect is, on aver-
age, much higher than that of a regular defect.

g Defines error types to classify the programming mis-
takes that cause software to fail.

g Defines error trigger to classify the events that cause
latent errors in programs to surface. The error trigger dis-
tribution weights events and environments that are prob-
ably inadequately tested.

g Shows that boundary conditions and allocation
management are the major causes of overlay defects, not
timing.

(bu Shows that most overlays are small and not too far
from their intended destination.

Further analysis are provided on defects in fixes to other
defects, symptoms, and an assessment of their impact. These
results provide a base line understanding useful to designers and
developers. The data will also help develop realistic fault
models for use in fault-injection experiments.

1. Introduction

Software failures have become a dominant cause of sys-
tem unavailability. [Gray90] shows that in the the past 5 years
the main cause of outage has shifted from hardware and mainte-
nance failures to failures in software and to a lesser extent
operations. In fact, improvements in hardware and maintenance
shrank their contributions to outage from 50% to 10%, while
those due to software grew from 33% to 60%. The trend is
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likely to continue given the rise in installed lines of code,
dependency between vendor products, increased use of parallel-
ism, and smaller timing windows. Clearly, the technology to
detect and recover from software errors will play a critical role
in increasing system availability.

Building highly available systems requires a combina-
tion of high quality software (i.e. few defects shipped), recovery
mechanisms which mask any software errors that surface in the
field, and the capability for non-disruptive maintenance. In
order to build software for highly available systems, it is
imperative that there exist a good understanding of field prob-
lems: the defects experienced in shipped code and their impact
on the system. Without this understanding, design decisions
and software engineering methods tend to be ad-hoc. A clear
model of software errors is also necessary to test new systems
effectively and to validate new designs. In this regard, fault-
injection methods [Segall88] [Chillarege89] [Arlat89] have
gained interest and are fast becoming a validation and evalua-
tion methodology. Effective fault-injection requires a suite of
injectable faults which accurately reflect system failure
behavior.

There have been several studies of software errors; how-
ever, for the most part, they concentrate on the system develop-
ment and test phases. [Endres75] studied software errors found
during internal testing the DOS/VS operating system. His
classification was oriented towards differentiating between
high-level design faults and low level programming faults.
Another early error study, [Thayer78] provides some of the
same level of error analysis that our study provides, but on
errors discovered during the testing and validation phases.
[Glass81] provides another high level, specification-oriented
picture of software errors discovered during the development
process. [Basili84] studies the relationship between software
errors and complexity. [Chillarege 91] provides an analysis of
defects found during the test process and their impact on the
growth curve.

Software errors experienced in the field have different
characteristics from those detected during the system test phase.
Environmental differences and workload variation often exer-
cise defective code that the testing procedure has missed.
Unfortunately, most of the published literature on field failures
concentrates on reliability metrics and trends (for example,
[Levendel89]) rather than error characteristics. A number of
studies on field failure done at Stanford [Mourad87] [Iyer86]
and CMU [Castillo81] used data from error logs to track system
failures. Error log records are generated by the system after



programs fail with an abnormal end (ABEND) completion
code. Although error logs accurately count failure frequency,
they give little semantic information about the error that caused
the failure.

Understanding software errors often requires a careful
inspection of the environment of failure, the traps and dumps
used, and the programming changes that were required to fix the
defect. This paper uses data tracked by IBM field service on
software errors reported against a high-end operating system
product. The text of the error report provides the extra level of
detail necessary for good fault characterization.

The study analyzes two groups of software errors, Regu-
lar and Overlay, providing comparisons when relevant. The
Regular software error group represents the typical software
error encountered in the field. The other group, Overlay errors,
is composed of software errors that resulted in a storage over-
lay. IBM field service uses the term ‘‘overlay’’ to describe
corruption of program memory. A network protocol module,
for example, could accidentally overlay a process control block
with the contents of a message buffer.

The decision to single out overlays came in part from the
opinion of experienced field service and development person-
nel. It is commonly accepted by service personnel that overlays
are the hardest software errors to find and fix. It is also believed
that they have a significant impact on system availability. An
additional reason to better quantify overlay error characteristics
is that fault-injection experiments commonly use fault models
based on overlay errors.

The study shows that Overlay defects have a higher
impact on average than Regular defects. Both groups of defects
have been categorized by their error type and trigger event.
The error type provides insight on the programming mistakes
that cause field failures. The trigger illustrates the situations in
a customer environment that allow the latent errors to surface.
We also analyze failure symptoms and bug fix errors -- errors in
fixes of earlier errors. Distributions are provided for each error
categorization.

Section 2 describes the defect database, the data, and
sampling technique used. Also described are the categories
used for error type and trigger. Section 3 contains the results
and a discussion of the errors. Section 4 summarizes some of
the key findings of the paper.

2. Software Error Data from RETAIN

The data we use comes from an IBM internal field ser-
vice database called REmote Technical Assistance Information
Network (RETAIN). RETAIN serves as a central database for
hardware problems, software problems, bug fixes, release infor-
mation, etc. The database is available to IBM field service
representatives world-wide.

Software error reports in IBM parlance are called
Authorized Program Analysis Reports, or APARs for short. An
APAR describes a software error recorded against a specific
program product. The APAR report contains a few pages of
text describing the symptoms of the problem, some context and
environment information, and a description of the fix. In addi-
tion to the textual description there are fields that contain some
standard attributes of the error. An error’s impact on the

customer can be estimated from these standard attributes:

Severity is a number between one and four. A severity one
error (the highest) corresponds to a system outage and consider-
able impact to the customer. Severity two, also signifies dam-
age, however, a circumvention or temporary solution to the
error was readily available. Three and four correspond to lesser
damage and can range from annoyance to touch and feel type
problems.

HIPER Highly pervasive (HIPER) errors are flagged by the
team fixing the error. HIPER software errors are those con-
sidered likely to affect many customer sites -- not just the one
that first discovered the error. Flagging a error as HIPER pro-
vides a message to branch offices to encourage their customers
upgrade with this fix.

IPL errors destroy the operating system’s recovery mechanism
and require it to initiate an Initial Program Load (IPL) or
‘‘reboot.’’ An IPL is clearly a high impact event since it can
cause an outage of at least 15 minutes. This metric is probably
the most objective of the impact measurements since there is lit-
tle room for data inaccuracy. While labeling a error HIPER or
severity one is a judgement call, the occurrence of IPL is
difficult to mistake.

This paper uses error data from a high-end operating sys-
tem for the period 1985-1989, representing several thousand
machine years. It includes errors in the base operating system as
well as a number of products that tend to be bundled with it, but
does not include any major sub-systems such as database
managers. Since we are primarily interested in errors that affect
availability we have restricted the study to only severity 1 and
2 errors.

Software defects are similar to design errors, in that once
fixed, the do not show up again - unless the fix is in error too.
An APAR represents a unique software defect that escaped the
testing process. It may be found several months after the pro-
duct is in use and may only be triggered by a specific customer
environment. Thus, APARs are different from a classicial
hardware component which when replaced has yet a finite pro-
bability of failure and therfore can be associated with a failure
rate. Associating a failure rate with an APAR is not meaning-
ful, for once fixed, they do not reappear. The only variant is
when the fix is in error and causes another defect.

2.1. Sampling from RETAIN

Data from APARs contain both keyed fields and free-
form text. The error type and trigger event are identified by
reading the text and categorizing the APAR. In order to limit
the time required to complete the study, we used sampling to
reduce the number of APARS to be read and categorized.

To analyze Regular and Overlay software errors, we
needed to construct a group of representative APARs for each.
The population of Regular errors is the complete set (approxi-
mately 3000) of severity 1 or 2 errors from 1986-1989 for the
operating systems studied; thus, the Regular APAR group was a
random sample from this population. To identify Overlay
errors from this population, we searched the text parts of the
APAR for strings containg words such as ‘‘overlay,’’



‘‘overwrote,’’ etc. which are commonly used in descriptions of
overlay errors. This search yielded APARs that potentially
overlays, but further reading is necessary to weed out ones that
are not.

One of the problems in straight random sampling over
the population of all severity 1 and 2 errors is that the severity 2
errors far out number the severity 1 errors. Thus, in any sam-
ple, there would be too few severity 1 errors to be categorized --
probably fewer than the number of categories. To overcome
this problem, we pulled independent random samples from the
population of severity 1 and 2. Each sample was large enough
to allow the necessary categorization. We then combined the
results from the severity 1 and 2 samples in the proportion they
are represented in the population. We used boot-strapping
[Efron86] to combine the samples rather than a simple weighted
average. Boot-strapping has the advantage that when used to
make confidence-interval estimates it does not depend on
assumptions about the distribution of the parent population. In
all, we classified 150 APARs in the Regular sample and 91
from the overlay sample. We estimate the proportion of the
overlay errors to be between 15% and 25% of the severity 1 and
2 errors.

2.2. Characterizing Software Defects

There are many different ways to think about the cause
of an error. Eventually, we chose the two described in the
introduction as error type and error trigger. Error type is the
low level programming mistake that led to the software failure.
This classification had to describe the error well enough that it
could serve as the basis for future fault injection experiments.
The error trigger event classification was meant to give infor-
mation about the environment providing insight to the testing
process. When defective code survives the testing process and
is released to customers, some aspect of the customer’s execu-
tion environment must have caused the defective code to be
executed. The trigger classification distinguishes several ways
in which defective code could be executed at the customer site
when the same defective code was never executed during test-
ing.

To determine error and trigger classes, we made several
passes through the sample looking for commonalities in the
errors. The error classifications had to be orthogonal; each error
report had to fit into only one class. The classification also had
to have few enough classes so the confidence intervals on the
data were acceptable. When classes were too small, we com-
bined them into larger, more general classes.

2.3. Error Types

A few programming errors caused most of the overlays.
These are:

Allocation Management: One module deallocates a region of
memory before it has completely finished with it. After the
region is reallocated, the original module continues to use it in
its original capacity.

Copying Overrun: The program copies bytes past the end of a
buffer.

Pointer Management: A variable containing the address of
data was corrupted. Code using this corrupted address caused

the overlay.

Register Reused: In assembly language code, a register is
reused without saving and restoring its original contents.

Type Mismatch: A field is added to a message format or a
structure, but not all of the code using the structure is modified
to reflect the change. Type mismatch errors could also occur
when the meaning of a bit in a bit field is redefined.

Uninitialized Pointer: A variable containing the address of
data is not initialized.

Undefined State: The system goes into a state that the
designers had not anticipated. In overlay errors, the bad state
caused the program to mistake the contents of a memory region.
For example, the designer may have assumed that pages are
always pinned in memory when a certain routine is called. If
the routine is called on an unpinned page, memory corruption
can occur. For the Overlay data set, most of these undefined
state errors had to do with management of page tables.

Unknown: The error report described the effects of the overlay
(the part of memory that was overlaid), but not adequately for
us to classify the error.

The Regular sample containing both overlay and non-
overlay errors required a few additional error types:

Data Error: An arithmetic miscalculation or other error in the
code makes it produce the wrong data.

PTF Compilation: Individual bug fixes are distributed together
on a PTF (Program Temporary Fix) tape. Occasionally, a bug
is repaired in one PTF but lost when the next one is compiled (a
later bug fix is applied to an earlier version of the software).

Sequence Error: Messages were sent or received in an unex-
pected order. The system deferred an action, such as an ack-
nowledgement message, but then forgot to execute the action.

Statement Logic: Statements were executed in the wrong order
or were omitted. For example, a routine returns too early under
some circumstances. Forgetting to check a routine’s return code
is also a statement logic error.

Synchronization: A error occurred in locking code or syn-
chronization between threads of control.

Unclassified: We understood what the error was, but couldn’t
fit it into a category.

2.4. Software Error Triggering Events

This classification describes what allowed a latent error
to surface in the customer environment. For every error in the
sample, we determined the error’s triggering event:

Boundary Conditions: Often software failures occur under
limit conditions. Users can submit requests with unusual
parameters (e.g. please process zero records). The hardware
configuration may be unique (e.g. system is run with a faster
disk than was available during testing). Workload or system
configuration could be unique. (e.g too little memory for net-
work message buffering).

Bug Fixes: An error was introduced when an earlier error was
fixed. The fix could be an error that is triggered only in the
customer environment, or the fix could uncover other latent



bugs in related parts of the code.

Client Code: A few errors were caused by errors in application
code running in protected mode.

Recovery or Error Handling: Recovery code is notoriously
difficult to debug and difficult to test completely. When an
error is discovered, the system runs a recovery routine to repair
the error. The recovery code could have errors.

Timing: Timing triggers are an important special case of boun-
dary conditions in which an unanticipated sequence of events
directly causes an error. An error that only occurs when the
operating system is interrupted at an inopportune moment
would be a timing-triggered error.

Unknown: The triggering event could not be determined from
the available data.

2.5. Symptom Codes

When an APAR is opened a symtom code is entered into
a field. This is often used by field personnel to search for other
failures matching these symtpoms. Since this was a keyed field
it did not require any classification effort. Failure symptoms fall
into these classes:

ABEND: An abnormal program termination occurred. The
currently running a application program fails and must be res-
tarted.

Addressing Error: The operating system fails after trying to
use a bad address. It should be noted that an addressing error,
in this system, does not force a reboot as it does in most works-
tation operating systems.

Endless Wait: Processes wait for an event that will never
occur.

Incorrect Output: The operating system produces incorrect
output without detecting the failure.

Loop: The operating system goes into an infinite loop. IPL is
required to restart the system.

Message: The operating system cannot perform the requested
function but prints an error message on the screen and performs
local recovery rather than ABENDing

3. Results

The earlier sections described the data source, sampling
technique, and categorization of defects. Here we present the
results and discuss their significance.

3.1. Impact of Overlay Errors

No single metric is best for evaluating the customer
impact of different of regular and overlay defects. However, a

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Impact Metric Overlay Sample Regular Sampleiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
IPL (reboot) 19.8 6.3
HIPER 18.7 5.2
HIPER or IPL 30.8 10.8
Severity 1 17.6 12.6iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
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c
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c

Table 1. Error Impact: Overlay vs. Regular Sample

collection of metrics provide different ways to compare the
relative impact of the defect groups. Table 1 shows the percen-
tage of APARs that caused IPLs, rated HIPER, or rated Severity
1. By each of these measures, overlay defects clearly have a
higher impact than regular defects. This finding concurs with
the perception of IBM’s field service people.

In order to understand why overlay errors have high
impact, let us first re-examine what an overlay defect is in
greater detail. An overlay is called such because the post-
mortem of the failure reveals a part of the program storage was
corrupted. For example, a network protocol module can over-
lay a control block with the contents of a message. After the
overlay, there are potentially two failures: one due to the lost
message and another due to corrupted information in the control
block. Often the module using the corrupted data, rather than
the one containing the original error, causes the system to fail.
Thus, overlays, in addition to being hard to track down, also
cause propagation of errors.

Recovery is usually set up to deal with problems that
could be encountered during the execution of the module and
some unexpected status conditions. The recovering subsystem
usually tries to reinitialize itself and re-execute the failed opera-
tion. If retry fails, a higher level subsystem attempts to recover
from the error. A propagated error resulting in the loss of key
control information can often defeat the established recovery
mechanisms, accounting for the higher IPL counts in the Over-
lay sample.

Overlays caused by the operating system are often within
the operating system (as we will see shortly). It has also been
shown through experiments [Chillarege 89, Chillarege 87] that
such errors in the operating system can remain latent for a long
time. Large latency provides greater opportunity for propaga-
tion, resulting in possibly multiple error conditions that are hard
to recover from. It seems that change teams recognize this pos-
sibility which accounts for the higher HIPER counts.

3.2. Characterizing Overlay Errors

Table 2 shows the breakdown of overlay error types.
Each row in the table represents one of the error types defined
in sections 2.2.2. The columns are the fraction of all APARs,
HIPER APARs, and IPL APARs caused by each type of error.
Note that a defect may be counted both under HIPER and IPL.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Percent of

Defect Type all APARs HIPERs IPLsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Allocation Mgmt. 19 31 17
Copying Overrun 20 13 5
Pointer Mgmt. 13 16 27
Register Reused 7 6 11
Uninitialized Ptr. 5 12 0
Type Mismatch 12 10 0
Undefined State 4 0 17
Unknown 13 0 5
Synchronization 8 12 17iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

Table 2. Overlay Sample Error Types



The most common error types were memory allocation
errors, copying overruns, and pointer management errors.
Together, these three classes accounted for more than half of
the total. The error types with the highest impact were memory
allocation and pointer management errors, which together
accounted for about half of the high impact errors.

An interesting result is that memory allocation errors
were more likely than locking or synchronization errors to
cause overlays in shared memory. For example, a process can
request a software interrupt and then free a region of memory
before the interrupt is scheduled. If the interrupt tries to use this
freed memory, an overlay occurs. While the garbage collection
did not work correctly, synchronization is correct; the interrupt
is not scheduled while the original process is using the memory
region. The most common synchronization errors occurred
when interrupt handlers corrupted linked list data structures.

Mismanagement of address data (pointers) caused a
significant fraction of errors and many of the high impact errors.
It makes sense that a high proportion of operating system errors
would affect addresses since much of what the operating system
does is manipulate addresses. Also, corrupted pointer data
structures are difficult to repair, making IPL necessary.

Although allocation management, pointer management
and copying overrun have about the same number of error
reports filed against them, copying overruns have low impact.
Many of these errors appeared in the terminal I/O handling code
or in code for displaying messages on the console. Copying
overruns were often caused by overflows or underflows of the
counter used to determine how many bytes to copy. Many oth-
ers were "off-by-one" errors. In network-management code and
terminal I/O handlers, buffers are processed slightly and passed
from one routine to another. If the offset to the beginning of
valid data or the count of valid bytes is corrupted, copying over-
runs occur. Most copying overruns involved only a few bytes.
The few overruns which had high impact, however, caused
massive corruption of memory.

The few overlay errors caused when the system went
into an undefined state were fairly severe. For the most part,
these errors occurred in page fault handling. When the page
fault handler became confused about a process state, the process
eventually corrupted so much of the system that no recovery
was possible. The errors were often extremely complex. The
reports usually listed a long chain of separate events and propa-
gations that had to occur before the failure would occur.

Recovery system designers and fault-injection experi-
mentors both need two pieces of information about overlays to
develop fault models: the overlay’s size and its distance from
the correct destination address. Table 3 shows the average size
of an overlay in bytes. Note that most overlays are small,
nearly half are less than 100 bytes. Table 4 gives a rough

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Overlay Size Percent of Overlay APARSiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Less than 100 bytes 48.4
100 to 256 bytes 25.3
One or more pages 4.4
Unknown size 22.0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c
c
c

c
c
c
c
c
c

Table 3. Average Size of an Overlay

‘‘distance’’ between the overlaid data and the area that should
have been written. For example, a copying overrun error cor-
rupts data immediately following the buffer that the operating
system is supposed to be using, hence, has distance ‘‘Following
data structure.’’ An example of the distance type ‘‘Within data
structure’’ is a type mismatch error in which the operating sys-
tem overlays a field of the same structure it intends to update.

Summarizing the size and distance tables, we find that
most of the overlays are small with a vast majority of them
close to their intended destination. Only about a fifth were
‘‘wild stores’’ that overwrite distant, unrelated areas of storage.
This creates a challenge for fault-detection mechanisms and for
recovery techniques. The smaller the granularity of overlays,
the more expensive the protection mechanism, either hardware
or software.

3.3. Characterizing the Regular Sample

The regular sample corresponds to defects that are
representative of the typical defect in this product. Recall that
the regular sample was drawn from all severity 1 and 2 defects.
In all we classified 150 APARs. Table 5 summarizes the types
of errors found in the regular sample. As in the table 2, each
row represents one of the error types defined in sections 2.2.2
and 2.2.3. The first column shows the total percentage of
APARs attributed to the error type. The second and third show
the fraction of HIPERs and IPLs caused by the error type. Note
that a defect may be counted both under HIPER and IPL.

The error type distribution for the Regular sample breaks
errors down fairly evenly into twelve classes (plus a class for

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Overlay Distance Percent of Overlay APARSiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Following data struct 30.8
Anywhere in storage 18.7
Within data struct 26.4
Unknown 24.2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c
c
c
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c
c

Table 4. Distance Between Intended Write Address
and Overlaid Address

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Percent of

Defect Type all APARs HIPERs IPLsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Allocation Mgmt. 7 4 0
Copying Overrun 2 0 4
Pointer Mgmt. 9 0 0
Uninitialized Ptr. 8 10 0
Deadlock 5 0 58
Data Error 6 5 3
PTF Compilation 8 0 0
Register Reused 3 4 3
Sequence Error 5 0 0
Statement Logic 7 4 0
Synchronization 9 0 22
Type Mismatch 1 0 0
Undefined State 12 49 6
Unknown 9 0 3
Other 10 24 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc

c
c
c
c
c
c
c
c
c
c
c
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c
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Table 5. Regular Sample: Error Types



Unknown error types and an Other class combining several
unclassifiable errors). These twelve classes can be regrouped
into three larger classes: overlay and overlay-like errors,
concurrency-related errors, and administrative errors. Impor-
tant error types from the overlay sample -- pointer management,
copying overrun, pointer initialization, and memory allocation
errors -- together make a fairly large sub-group (24 percent) of
the regular sample. Many of these were not identified in the
text as overlay errors, but were errors which probably involved
overlays.

Many of the non-overlay errors were concurrency-
related. Common errors include deadlocks 5 percent, sequence
errors 5 percent (programmer assumes that external events will
always occur in a certain order), undefined state 12 percent
(programmer assumes an external event will never occur), and
synchronization errors 8 percent. Among the non-overlay
errors, another large class of errors are administrative. PTF
compilation errors are mistakes made in the error fix distribu-
tion rather than errors in the code itself.

3.4. Error Triggering Events

This section characterizes the events that make latent
errors surface in code that has passed through system test. A
defect in the field can be found months after a product has been
in use. When such latent defects do surface it is usually due to
stress or environmental conditions that allow them to surface.
Clearly, these conditions are not exercised during system test,
or they would be detected earlier. The trigger is meant to cap-
ture the condition that causes defective code to be executed.
The trigger, thus, provides insight into areas which additional
system test effort could help decrease the defect exposure.
Tables 5 and 6 show the breakdown of the regular and overlay
samples by error trigger. This time, the rows represent errors
attributable to each trigger type defined in section 2.2.4.

Conventional wisdom about software failures in the field
is that most are caused by timing-related problems. Because it
is impossible to test all possible interleavings of events before
the software is released, failures might occur when an untested
interleaving occurs after months or years in the field. Our data
partially supports this hypothesis. Bad timing triggered 12 per-
cent of the Overlay sample and 11 percent of the Regular sam-
ple APARs.

Recovery code is also difficult to test so one would
expect many of the field failures to be triggered by recovery. In
fact, recovery accounted for 21 percent of the Overlay sample’s
error triggers and the largest fraction (35/38 percent) of its high
impact errors. Recovery seemed to be less important to the

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Percent of

Trigger Event all APARs HIPERs IPLsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Boundary Cond. 24 22 23
Bug Fix 20 24 5
Recovery 21 35 38
Timing 12 19 28
Unknown 17 0 0
Customer Code 6 0 6iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 6. Overlay Sample: Error Triggering Events

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Percent of

Defect Trigger all APARs HIPERs IPLsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Boundary Cond. 34 56 4
Bug Fix 16 31 3
Customer Code 2 0 0
Recovery 13 5 31
No Trigger 12 0 0
Timing 11 8 59
Unknown 13 0 3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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c
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c
c
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Table 7. Regular Sample: Error Triggering Events

Regular sample -- accounting for roughly the same fraction as
timing.

A surprising result in both samples is that boundary con-
ditions accounted for the largest fraction of RETAIN’s errors
(34 percent) and a high percentage of its HIPER errors (56 per-
cent). Among overlay errors, boundary conditions had much
lower impact, but still accounted for a quarter of the errors stu-
died. Boundary conditions are the type of error that one would
expect testing to detect most easily. In fact, many unanticipated
boundary conditions continue to arise after the software is
released.

Code reuse can partially explain the high incidence of
errors triggered by boundary conditions. Programmers often
use the services provided by an old module rather than write
new ones with slightly different functionality. Over time, some
modules are used for things the original designer never con-
sidered. While this increases productivity, it also lessens the
effectiveness of module-level testing. The tests run on the old
module by the original programmer do not stress aspects of the
module used by newer clients.

3.5. Errors Introduced During Bug Fixes

Not every fix to a defect is perfect. Sometimes, the fixes
themselves have defects, which in this paper are referred to as
bug fix defects. Tables 8 and 9 show the impact of errors in bug
fixes, for the overlay and regular samples respectively. For
these charts, we removed all errors representing non-fix errors
from the samples. The ones that remain have a much different
error type distribution than the original sample.

For the Overlay sample, many errors in bug fixes were
type mismatches. In these errors, a message format or data
structure originally had one organization. The bug fix changed
the organization, adding or changing the use of a field in the

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Percent of

Defect Type all APARs HIPERs IPLsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Allocation Mgmt. 12 21 0
Copying Overrun 17 22 0
Register Reused 17 19 100
Synchronization 6 0 0
Type Mismatch 31 17 0
Uninitialized Ptr. 18 20 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 8. Overlay Sample: Bug Fix Error Types



message or structure. Later, execution of other modules turned
up implicit assumptions about the message format or the data
structures. For example, the programmer used an unused byte
in a message header only to find after installation of the fix that
another module assumed that this byte was zero under some cir-
cumstances. The Regular sample had few type mismatch errors
of any kind.

Uninitialized Pointers and Register Reuse errors were
also frequently caused by bad bug fixes. Some of these arose
when the routine’s parameters were changed without changing
all of the code that called the routine. In both these cases, better
tools for keeping track of cross references between routines
would improve the failure rate of error repairs.

Overlay bug fixes have a fairly high HIPER rate, but are
not a factor in many IPLs. There are several possible reasons
for the high HIPER rate in bug fixes. One consideration is that
many customers will not have installed the fix by the time the
error is discovered. Flagging the second fix as HIPER will
prevent other systems from ever exposing themselves to the
error. Non-fix errors are probably already installed at most cus-
tomer sites by the time they are discovered. If that is the case,
HIPER may not be the best measure of bug fix impact. Using
IPL as an impact measure, errors in bug fixes have low impact.
In the Regular sample, bug fixes have little impact by either
metric.

3.6. Failure Symptoms

When an APAR is opened, the symptom of the failure is
recorded. Tables 10 and 11 summarize the symptoms of the

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Percent of

Defect Type all APARs HIPERs IPLsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Allocation Mgmt. 5 12 0
Copying Overrun 5 0 0
Pointer Mgmt. 7 0 0
Uninitialized Ptr. 7 0 0
Data Error 1 13 100
PTF Compilation 21 0 0
Register Reused 11 0 0
Sequence Error 5 0 0
Statement Logic 5 0 0
Synchronization 0 0 0
Undefined State 11 74 0
Unknown 5 0 0
Other 6 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 9. Regular Sample: Bug Fix Error Types

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Percent of

Failure Symptom all APARs HIPERs IPLsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
ABEND 33 29 22
Address Error 39 38 17
Incorrect Output 14 5 17
Infinite Loop 5 18 22
Error Message 3 5 0
Endless Wait 5 6 22iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 10. Overlay Sample: Failure Symptoms

failure that occurred when code containing errors was executed.
An important observation from the symptom chart is that only
39 percent of overlay errors are detected as addressing viola-
tions. This suggests that the subsystem damaged by an overlay
uses the corrupted data before failing, hence has an opportunity
to propagate the error. The failing system does not always
immediately take an address fault when it uses corrupted
memory.

As expected, overlay errors are more likely to cause
addressing faults than other errors. Non-overlay errors are
more likely to cause the system to go into endless wait states.
The common non-overlay error types -- synchronization,
sequence error, and undefined state -- often appear in network
and device protocols. The failures caused by these errors often
cause processes to wait for events which never happen.

Non-overlay errors are also more likely to cause
incorrect output than overlay errors. Incorrect output failures
include jobs lost from the printer queue or garbage characters
written into console messages. None of the errors we saw
caused failures which corrupted user data.

4. Summary

This paper uses five years of field data on software
defects to develop a taxonomy of defects, providing insight into
their behaviour and impact. The data comes from IBM’s field
service database called RETAIN. This paper focuses on those
software defects reported against a specific (unnamed) high-end
operating system product.

This study is performed in the backdrop of a computer
industry faced with tremendous challenges in software reliabil-
ity, quality, and availability. Recent studies have demonstrated
that while, in the past five years hardware reliability has made
tremendous improvements, software has not. Unless software
reliability improves, it will limit the total reliability and availa-
bility possible in computer systems.

Software errors found in the field are fundamentally dif-
ferent from classical hardware errors. Like hardware design
errors, once fixed, they will not reappear. It is important to
understand the type of software errors that remain undiscovered
after system test and the conditions in a customer environment
that allow them to surface. We have chosen to call these attri-
butes, the error type and the trigger, respectively. This paper
provides distributions of both the error type and the trigger, and
provides customer impact information for each of these attri-
butes. The paper focuses on a particular type of defect called
the overlay by field service personnel -- errors which corrupt

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Percent of

Failure Symptom all APARs HIPERs IPLsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
ABEND 21 5 3
Address Error 21 5 14
Incorrect Output 27 53 6
Infinite Loop 0 9 0
Error Message 17 0 18
Endless Wait 11 29 59iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 11. Regular Sample: Failure Symptoms



program memory. The overlay defect is contrasted to the typi-
cal defect, herein referred to as the regular defect.

The study finds:

(1) Overlay defects have, on the average, a much higher
impact on the system than regular defects. This is meas-
ured by its probability of causing an IPL, its probability
of achieving a severity 1 rating, and its probability of
being flagged as ‘‘highly pervasive’’ across the customer
base.

(2) Most overlay defects are due to boundary condition and
allocation problems. Contarary to popular folklore, they
are less likely to result from timing or synchronization
problems.

(3) Most overlays are small (order of a few bytes) and occur
near the address the software was supposed to write.
Less than a fifth of the overlays cause wild stores in a
process address space.

(4) Non-overlay defects are dominated by undefined state
errors in which the module implementing a network or
device protocol mistakes the current protocol state and
goes into a wait or deadlock state.

(5) Untested boundary conditions in the software trigger a
majority of failures. Recovery and timing-triggered
failures have slightly higher impact than failures trig-
gered by boundary conditions.

(6) Among errors in fixes to other errors the causes are
related to mismatch in data types and interfaces.

(7) While overlay errors are more likely to cause addressing
faults than non-overlay errors, most overlay errors do not
cause the system to take an address fault. That suggests
that the corrupted data can actually be used before the
failure occurs, making error propagation more likely.

The above list summarizes some of the salient findings. It is
also the intent of this paper to provide a more structured and
systematic method to classify and understand software defects.
This understanding is critical to designing appropriate tech-
niques to shield against them -- either in development or opera-
tion. Furthermore, the paper provides a framework from which
fault-models for fault-injection based evaluation can be
developed.
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