
Evaluating Complexity, Code Churn, and
Developer Activity Metrics as Indicators

of Software Vulnerabilities
Yonghee Shin, Andrew Meneely, Laurie Williams, Member, IEEE, and Jason A. Osborne

Abstract—Security inspection and testing require experts in security who think like an attacker. Security experts need to know code

locations on which to focus their testing and inspection efforts. Since vulnerabilities are rare occurrences, locating vulnerable code

locations can be a challenging task. We investigated whether software metrics obtained from source code and development history are

discriminative and predictive of vulnerable code locations. If so, security experts can use this prediction to prioritize security inspection

and testing efforts. The metrics we investigated fall into three categories: complexity, code churn, and developer activity metrics. We

performed two empirical case studies on large, widely used open-source projects: the Mozilla Firefox web browser and the Red Hat

Enterprise Linux kernel. The results indicate that 24 of the 28 metrics collected are discriminative of vulnerabilities for both projects.

The models using all three types of metrics together predicted over 80 percent of the known vulnerable files with less than 25 percent

false positives for both projects. Compared to a random selection of files for inspection and testing, these models would have reduced

the number of files and the number of lines of code to inspect or test by over 71 and 28 percent, respectively, for both projects.

Index Terms—Fault prediction, software metrics, software security, vulnerability prediction.

Ç

1 INTRODUCTION

A single exploited software vulnerability1 can cause
severe damage to an organization. Annual world-wide

losses caused from cyber attacks have been reported to be as
high as $226 billion [2]. Loss in stock market value in the
days after an attack is estimated from $50 to $200 million
per organization [2]. The importance of detecting and
mitigating software vulnerabilities before software release
is paramount.

Experience indicates that the detection and mitigation of

vulnerabilities are best done by engineers specifically

trained in software security and who “think like an

attacker” in their daily work [3]. Therefore, security testers

need to have specialized knowledge in and a mindset for

what attackers will try. If we could predict which parts of

the code are likely to be vulnerable, security experts can

focus on these areas of highest risk. One way of predicting

vulnerable modules is to build a statistical model using
software metrics that measure the attributes of the software
products and development process related to software
vulnerabilities. Historically, prediction models trained
using software metrics to find faults have been known to
be effective [4], [5], [6], [7], [8], [9], [10].

However, prediction models must be trained on what
they are intended to look for. Rather than arming the
security expert with all the modules likely to contain faults, a
security prediction model can point toward the set of
modules likely to contain what a security expert is looking
for: security vulnerabilities. Establishing predictive power in
a security prediction model is challenging because security
vulnerabilities and non-security-related faults have similar
symptoms. Differentiating a vulnerability from a fault can
be nebulous even to a human, much less a statistical model.
Additionally, the number of reported security vulnerabil-
ities with which to train a model are few compared to
nonsecurity-related faults. Colloquially, security prediction
models are “searching for a needle in a haystack.”

In this paper, we investigate the applicability of three
types of software metrics to build vulnerability prediction
models: complexity, code churn, and developer activity
(CCD) metrics. Complexity can make code difficult to
understand and to test for security. Frequent or large
amount of code change can introduce vulnerabilities. Poor
developer collaboration can diminish project-wide secure
coding practices.

The goal of this study is to guide security inspection and
testing by analyzing if complexity, code churn, and developer
activity metrics can be used to 1) discriminate between
vulnerable and neutral files and 2) predict vulnerabilities. For
this purpose, we performed empirical case studies on two
widely used, large-scale open-source projects: the Mozilla

772 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 6, NOVEMBER/DECEMBER 2011

. Y. Shin is with the College of Computing and Digital Media, DePaul
University, 243 S. Wabash Ave., Chicago, IL 60614.
E-mail: yshin2@ncsu.edu.

. A. Meneely, and L. Williams are with the Department of Computer
Science, North Carolina State University, 3231 EB II, 890 Oval Drive,
Campus Box 8206, Raleigh, NC 27695-8206.
E-mail: apmeneel@ncsu.edu, williams@csc.ncsu.edu.

. J.A. Osborne is with the Department of Statistics, North Carolina State
University, 5238 SAS Hall, Campus Box 8203, Raleigh, NC 27695-8203.
E-mail: jaosborn@stat.ncsu.edu.

Manuscript received 18 Mar. 2009; revised 10 Nov. 2009; accepted 2 July
2010; published online 24 Aug. 2010.
Recommended for acceptance by K. Inoue.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2009-03-0060.
Digital Object Identifier no. 10.1109/TSE.2010.81.

1. An instance of a [fault] in the specification, development, or
configuration of software such that its execution can violate an [implicit
or explicit] security policy [1].

0098-5589/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

Firefox2 web browser and the Linux kernel as distributed
in Red Hat Enterprise Linux.3 We analyzed Mozilla
Firefox and Red Hat Enterprise Linux (each of them
containing over two million lines of source code), and
evaluated the adequacy of using CCD metrics as indica-
tors of security vulnerabilities. We also measured the
reduction in code inspection effort using CCD metrics
against random file selection.

The rest of the paper is organized as follows: Section 2
defines background terms. Section 3 provides our hypoth-
eses and the methodology for our case studies. In Sections 4
and 5, we provide the results from both case studies.
Section 6 provides the summary of results from the case
studies and discusses issues in the use of models in
practice. Section 7 discusses the threats to validity of our
study. Section 8 provides related work. Section 9 contains
conclusions and future work.

2 BACKGROUND

This section describes the background on discriminative
power, predictability, network analysis, and the binary
classification evaluation criteria that we will use in this paper.

2.1 Discriminative Power and Predictability

This study investigates the discriminative power and predict-
ability of CCD metrics in the realm of software security.
Discriminative power [11] is defined as the ability to
“discriminate between high-quality software components
and low-quality software components.” In our study,
discriminative power is the ability to discriminate the
vulnerable files from neutral files. We classify a file as
vulnerable if it has been fixed postrelease for a vulnerability
and as a neutral file if no vulnerabilities have been found at
the time of our analysis.

Predictability [11] is the ability of a metric to identify files
that are likely to have vulnerabilities with metric values
available prior to software release. Note that discriminative
power is measured for a single metric with the vulnerability
information available at the present time for the purpose of
controlling the metric values by redesign or reimplementa-
tion or to investigate the feasibility of building prediction
models using the given metrics. On the other hand,
predictability can be measured using single or multiple
metrics together and the data obtained from past and
present are applied to predict the code locations that are
likely to have vulnerabilities in the future.

2.2 Network Analysis

In this paper, we use several terms from network analysis
[12] and provide their meaning with respect to developer and
contribution networks that will be discussed in Section 3.1.
Network analysis is the study of characterizing and
quantifying network structures, represented by graphs [12].
A sequence of nonrepeating, adjacent nodes is a path, and a
shortest path between two nodes is called a geodesic path (note
that geodesic paths are not necessarily unique).

Centrality metrics are used to quantify the location of
one node relative to other nodes in the network. The

centrality metrics we use for developer activity are degree,
closeness, and betweenness. The degree metric is defined as
the number of neighbors directly connected to a node. The
closeness centrality of node v is defined as the average
distance from v to any other node in the network that can
be reached from v. The betweenness centrality [12] of node v
is defined as the number of geodesic paths that include v.

Cluster metrics are used to measure the strength of
interconnection between groups of nodes. A cluster of nodes
is a set of nodes such that there are more edges within a set
of nodes (intraset edges) than edges between a set and other
sets of nodes (interset edges). The cluster metric we use for
developer activity is edge betweenness [13]. The edge
betweenness of edge e is defined as the number of geodesic
paths that pass through e. Since clusters have many
intracluster edges, edges within clusters have a low
betweenness; conversely, edges between two clusters have
a high betweenness [13].

2.3 Binary Classification Evaluation Criteria

In this study, we use a binary classification technique to
predict files that are likely to have vulnerabilities. A binary
classifier can make two possible errors: false positives (FPs)
and false negatives (FNs). In this study, an FP is the
classification of a neutral file as a vulnerable file, and an
FN is the classification of a vulnerable file as neutral. False
positives represent excessive files to inspect or test, and
false negatives increase the chances of vulnerabilities
escaping to the field without inspection/testing. A correctly
classified vulnerable file is a true positive (TP), and a
correctly classified neutral file is a true negative (TN).

For evaluating binary classification models, we use
probability of detection (PD) and probability of false
alarm (PF).

Probability of detection, also known as recall, is defined as
the ratio of correctly predicted vulnerable files to actual
vulnerable files:

PD ¼ TP=ðTP þ FNÞ:

Probability of false alarm, also known as false positive ratio,
is defined as the ratio of files incorrectly predicted as
vulnerable to actual neutral files:

PF ¼ FP=ðFP þ TNÞ:

The desired result is to have a high PD and a low PF to
find as many vulnerabilities as possible without wasting
inspection or testing effort. Having a high PD is especially
important in software security considering the potentially
high impact of a single exploited vulnerability.

Additionally, we provide precision (P), defined as the ratio
of correctly predicted vulnerable files to all detected files:

P ¼ TP=ðTP þ FP Þ:

We report P with PD as they tend to trade off each other.
However, security practitioners might want a high PD even
at the sacrifice of P [14] considering the severe impact of one
exploited vulnerability. Additionally, precision and accuracy
(another frequently used prediction performance criterion
that measures overall correct classification) are known to be
poor indicators of performance for highly unbalanced data

SHIN ET AL.: EVALUATING COMPLEXITY, CODE CHURN, AND DEVELOPER ACTIVITY METRICS AS INDICATORS OF SOFTWARE... 773

2. http://www.mozilla.com/firefox/.
3. http://www.redhat.com/rhel/.

set where the number of data instances in one class is much
more than the data instances in another class [7], [14]. In our
case, less than 1.4 percent of the files are vulnerable in both
projects. A naive classification that classifies all files as
neutral would have an accuracy of 98.6 percent.

3 RESEARCH HYPOTHESES AND METHODOLOGY

In this section, we provide the hypotheses for the
discriminative power and the predictability of the CCD
metrics. Although CCD metrics have been known to be
effective for fault prediction [7], [15], [16], we provide the
rationale for why these metrics can also work for
vulnerabilities. Then, we provide the evaluation criteria
for the hypotheses and the methods to test the hypotheses
and explain prediction modeling techniques.

3.1 Hypotheses for Discriminative Power

3.1.1 Code Complexity

Security experts claim that complexity is the enemy of
security [3], [17]. Complexity can lead to subtle vulnerabil-
ities that are difficult to test and diagnose [17], providing
more chances for attackers to exploit. Complex code is
difficult to understand, maintain, and test [18]. Therefore,
complex code would have a higher chance of having faults
than simple code. Since attackers exploit the faults in a
program, complex code would be more vulnerable than
simple code. From this reasoning, we set up the following
hypothesis on code complexity:
HIntraComplexity DHIntraComplexity D: Vulnerable files have a higher intrafile

complexity than neutral files.
Highly coupled code has a higher chance of having input

from external sources that are difficult to trace where the
input came from. Moreover, developers can use interfaces
to modules implemented by other developers or by a third
party without properly understanding the security concerns
or assumptions of the modules. Therefore:

HCoupling DHCoupling D: Vulnerable files have a higher coupling than
neutral files.

Communication by comments between developers is
important, especially in open-source projects for which
many developers can contribute on the same code segment
without central control. Novice developers who do not
understand security concerns and do not follow secure
coding practice might comment less often. Furthermore,
code developed in a hurry (perhaps directly prior to
release) might have fewer comments and be more vulner-
able. Therefore:
HComments DHComments D: Vulnerable files have a lower comment density

than neutral files.
Table 1 defines the complexity metrics we use in this

study. Each individual metric has the same hypotheses
defined as the same way as the hypotheses for its group. For
example, CountLineCode has the same hypotheses as
HIntraComplexity D.

3.1.2 Code Churn

Code is constantly evolving throughout the development
process. Each new change in the system brings a new risk of
introducing a vulnerability [15], [19]. Therefore,
HCodeChurn DHCodeChurn D: Vulnerable files have a higher code churn than

neutral files.
Code churn can be counted in terms of the number of

check-ins into a version control system and the number of
lines that have been added or deleted by code change.
Specifically, we break down hypothesis HCodeChurn D into
the following two hypotheses:
HNumChanges DHNumChanges D: Vulnerable files have more frequent check-ins

than neutral files.
HChurnAmount DHChurnAmount D: Vulnerable files have more lines of code that

have been changed than neutral files.
Table 2 defines the code churn metrics that we use in

this study.

774 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 6, NOVEMBER/DECEMBER 2011

TABLE 1
Definitions of Complexity Metrics

3.1.3 Developer Activity

Software development is performed by development teams
working together on a common project. Lack of team
cohesion, miscommunications, or misguided effort can all
result in security problems [3]. Version control data can be
used to construct a developer network and a contribution
network based upon “which developer(s) worked on which
file,” using network analysis as defined in Section 2.

Developer Network Centrality. In our developer net-
work, two developers are connected if they have both made
a change to at least one file in common during the period of
time under study. The result is an undirected, unweighted,
and simple graph where each node represents a developer
and edges are based on whether or not they have worked
on the same file during the same release. Central devel-
opers, measured by a high degree, high betweenness, and
low closeness, are developers that are well connected to
other developers relative to the entire group. Readers may
refer to [16] for a more in-depth example of how centrality
metrics are derived from developer networks. A central
developer would likely have a better understanding of the
group’s secure coding practices because of his/her connec-
tions to the other developers of the team. Therefore:
HDeveloperCentrality DHDeveloperCentrality D: Vulnerable files are more likely to have

been worked on by noncentral developers than neutral files.
The metrics we used for our hypotheses are shown in

Table 3. Note that we chose to not study DNMaxDegree,
DNMinCloseness, and DNMaxBetweenness because, for
example, a high DNMaxDegree means at least one central
developer worked on the file, which is not as helpful as
knowing that high DNMinDegree denotes that all devel-
opers who worked on a file were central. Also note that a
high turnover rate in a project results in many noncentral
developers: When new developers are added to the project,
they initially lack connections to the other developers.

Developer Network Cluster. The metrics of developer
centrality give us information about individual developers,
but we also consider the relationship between groups of
developers. In our developer network, a file that is between
two clusters was worked on by two groups of developers,
and those two groups did have many other connections in
common. Clusters with a common connection but few other
connections may not be communicating about improving
the security of the code they have in common. Therefore:
HDeveloperCluster DHDeveloperCluster D: Vulnerable files are more likely to be

changed by multiple, separate developer clusters than neutral files.
Since edges and files have a many-to-many relationship,

we use the average and maximum of edge betweenness on
the developer network as provided in Table 3.

Contribution Network. A contribution network [21] is a
quantification of the focus made on the relationship
between a file and developers instead of relationship
between developers as in developer networks. The con-
tribution network uses an undirected, weighted, and
bipartite graph with two types of nodes: developers and
files. An edge exists where a developer made changes to a
file, where the weight is equal to the number of check-ins
that developer made to the file. If a file has high centrality,
then that file was changed by many developers who made
changes to many other files—referred to as an “unfocused
contribution” [21]. Files with an unfocused contribution
would not get the attention required to prevent the injection
of vulnerabilities. Therefore:
HContributionCentrality DHContributionCentrality D: Vulnerable files are more likely to have

an unfocused contribution than neutral files.
Note that developers with high centrality can work with

many people, but still work on one small part of the system.
Being a central developer means being central in terms of
people and not necessarily central in terms of the system.
Contribution networks, on the other hand, are structured
around the system.

SHIN ET AL.: EVALUATING COMPLEXITY, CODE CHURN, AND DEVELOPER ACTIVITY METRICS AS INDICATORS OF SOFTWARE... 775

TABLE 2
Definitions of Code Churn Metrics

TABLE 3
Meaning of Developer Activity Metrics

Table 3 provides the meaning of the contribution
network metrics.

3.2 Evaluation of Hypotheses for Discriminative
Power

To evaluate the discriminative power of the metrics, we
test the null hypothesis that the means of the metric for
neutral files and vulnerable files are equal. Since our data
set is skewed and has unequal variance (See Fig. 3 in
Section 4), we used the Welch t-test [22]. The Welch t-test is
a modified t-test to compare the means of two samples and
is known to provide good performance for skewed
distributions with unequal variance. To see the association
direction (i.e., positively or negatively correlated), we
compared the means and medians of the measures of
CCD metrics for the vulnerable and neutral files. Our
hypotheses for discriminative power are considered to be
supported when the results from Welch’s tests are
statistically significant at the p < 0:05 level (p < 0:0018
with a Bonferroni correction for 28 hypotheses tests) and
when the associations are in the direction prescribed in the
hypotheses defined in Section 3.1. In addition to the
significance, we present the magnitude of the differences
in measures between vulnerable files and neutral files for
representative metrics using boxplots.

3.3 Evaluation of Hypotheses for Predictability

We hypothesize that a subset of CCD metrics can predict
vulnerable files at reasonable prediction performance,
specifically 70 percent PD and 25 percent PF. Since there
are no universally applicable standards for the threshold of
high prediction performance, we use these average values
found from the fault prediction literature [7], [23], acknowl-
edging that the desirable level of PD and PF depends on
varying domains and business goals. We hypothesize that:
HComplexity PHComplexity P : A model with a subset of complexity metrics can

predict vulnerable files.
HCodeChurnPHCodeChurnP : A model with a subset of code churn metrics can

predict vulnerable files.
HDeveloper PHDeveloper P : A model with a subset of developer activity

metrics can predict vulnerable files.
HCCD PHCCD P : A model with a subset of combined CCD metrics can

predict vulnerable files.
Note that we select the subset of the metrics using the

information gain ranking method instead of testing every
subset of the metrics (see Section 3.5) because prediction
performance from a few selected metrics is known to be as
good as using a large number of metrics [7].

Additionally, we investigate whether the individual
metrics can predict vulnerable files.
QIndividual PQIndividual P : Can a model with individual CCD metrics

predict vulnerable files?

3.4 Measuring Inspection Reduction

Practitioners must consider how effective the prediction
model is in reducing the effort for code inspection even when
reasonable PD and PF are achieved. Even though we use PD
and PF as the criteria to test our hypotheses on predictability,
we further investigate the amount of inspection and reduc-
tion in inspection by using the CCD metrics, which is related
to cost and effort, to describe the practicality of using CCD
metrics. We use the number of files and the lines of code to

inspect as partial and relative estimators of the inspection
effort. Such measures have been used as cost estimators in
prior studies [24], [25]. In our definition, overall inspection is
reduced if the percentage of lines of code or the percentage of
files to inspect is smaller than the percentage of faults
identified in those files [24], [25]. For example, if we randomly
choose files to inspect, we need to inspect 80 percent of the
total files to obtain 80 percent PD. If a prediction model
provides 80 percent PD with less than 80 percent of the total
files, the model reduced the cost for inspections compared to
a random file selection. The two cost measurements are
formally defined below.

The File Inspection (FI) ratio is the ratio of files predicted
as vulnerable (that is, the number of files to inspect) to the
total number of files for the reported PD:

FI ¼ ðTP þ FP Þ=ðTP þ TN þ FP þ FNÞ:

For example, PD ¼ 80% and FI ¼ 20% mean that within
the 20 percent of files inspected based on the prediction
results, 80 percent of vulnerable files can be found.

The LOC Inspection (LI) ratio is the ratio of lines of code to
inspect to the total lines of code for the predicted
vulnerabilities. First, we define lines of code in the files
that were true positives, as TPLOC , similarly with TNLOC ,
FPLOC , and FNLOC . Then, LI is defined below:

LI ¼ ðTPLOC þ FPLOCÞ=ðTPLOC þ TNLOC

þ FPLOC þ FNLOCÞ:

While FI and LI estimate how much effort is involved, we
need measures to provide how much effort is reduced. We
define two cost-reduction measurements.

The File Inspection Reduction (FIR) is the ratio of the
reduced number of files to inspect by using the model with
CCD metrics compared to a random selection to achieve the
same PD:

FIR ¼ ðPD� FIÞ=PD:

The LOC Inspection Reduction (LIR) is the ratio of reduced
lines of code to inspect by using a prediction model
compared to a random selection to achieve the same
Predicted Vulnerability (PV):

LIR ¼ ðPV � LIÞ=PV :

where PV is defined below.
The Predicted Vulnerability ratio is the ratio of the number

of vulnerabilities in the files predicted as vulnerable to the
total number of vulnerabilities. First, we define the number
of vulnerabilities in the files that were true positives as
TPVuln, similarly with TNVuln, FPV uln, and FNVuln. Then,
PV is defined below:

PV ¼ TPV u ln=ðTPVu ln þ FNVu lnÞ:

3.5 Prediction Models and Experimental Design

We used logistic regression to predict vulnerable files.
Logistic regression computes the probability of occurrence
of an outcome event from given independent variables by
mapping the linear combination of independent variables to
the probability of outcome using the log of odds ratio
(logit). A file is classified as vulnerable when the outcome

776 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 6, NOVEMBER/DECEMBER 2011

probability is greater than 0.5. We also tried four other
classification techniques, including J48 decision tree [26],
Random forest [27], Naive Bayes [26], and Bayesian
network [26], that have been effective for fault prediction.
Among those, J48, Random forest, and Bayesian network
provided similar results to logistic regression, while Naive
Bayes provided higher PD with higher FI than other
techniques. Lessmann et al. [28] also reported that no
significant difference in prediction performance was found
between the 17 classification techniques they investigated.
Therefore, we only present the results from logistic
regression in this paper.

To validate a model’s predictability, we performed next-
release validation for Mozilla Firefox, where we had
34 releases and 10� 10 cross-validation [26] for the RHEL4
kernel where we only had a single release. For next-release
validation, data from the most recent three previous releases
were used to train against the next release (i.e., train on
releases R3 to R1 to test against release R). Using only recent
releases was to accommodate for process change, technol-
ogy change, and developer turnovers. For 10� 10 cross-
validation, we randomly split the data set into 10 folds and
used one fold for testing and the remaining folds for
training, rotating each fold as the test fold. Each fold was
stratified to properly distribute vulnerable files to both
training and the test data set. The entire process was then
repeated 10 times to account for possible sampling bias in
random splits. Overall, 100 predictions were performed for
10� 10 cross-validation and the results were averaged.

Using many metrics in a model does not always
improve the prediction performance since metrics can
provide redundant information [7]. We found this issue to
be the case in our study. Therefore, we selected only three
variables, using two variable selection methods: the
information gain ranking method and the correlation-based
greedy feature selection method [26]. Both methods
provided similar prediction performance. However, the
set of chosen variables by the two selection methods were
different. We present the results using the information gain
ranking method in this study.

We performed the prediction on both the raw and log
transformed data. For logistic regression, PD was improved
at the sacrifice of precision after log transformation. We
present results using log transformation in this paper.

Our data are heavily unbalanced between majority class
(neutral files) and minority class (vulnerable files). Prior
studies have shown that the performance is improved (or at
least not degraded) by “balancing” the data [23], [29].
Balancing the data can be achieved by duplicating the
minority class data (oversampling) or removing randomly
chosen majority class data (undersampling) until the
numbers of data instances in the majority class and the
minority class become equal [23]. We used undersampling
in this study since undersampling provided better results
than using the unbalanced data and reduced the time for
evaluation.

Figs. 1 and 2 provide the pseudocode of our experi-
mental design explained above for next-release validation
and cross-validation. The whole process of validation is
repeated 10 times to account for possible sampling bias due
to random removal of data instances. The 10 times of
repetition also account for the bias due to random splits in
cross-validation. In Figs. 1 and 2, performance represents the
set of evaluation criteria, cost-reduction measurements, and
their relevant measurements defined in Sections 2.3 and 3.4.
For next-release validation, the input is three prior releases
for training a model and one release for testing. For cross-
validation, the input is the whole data set.

We used the Weka 3.74 with default options for
prediction models and variable selection except for limiting
the number of variables to be selected to three for multi-
variate predictions.

4 CASE STUDY 1: MOZILLA FIREFOX

Our first case study is Mozilla Firefox, a widely used open-
source web browser. Mozilla Firefox had 34 releases at the
time of data collection developed over four years. Each
release consists of over 10,000 files and over two million
lines of source code.

4.1 Data Collection

To measure the number vulnerabilities fixed in a file, we
counted the number of bug reports that include the details
on vulnerabilities and on how the vulnerabilities have been

SHIN ET AL.: EVALUATING COMPLEXITY, CODE CHURN, AND DEVELOPER ACTIVITY METRICS AS INDICATORS OF SOFTWARE... 777

Fig. 1. Pseudocode for next-release validation.

4. http://www.cs.waikato.ac.nz/ml/weka.

fixed for the file. We collected vulnerability information
from Mozilla Foundation Security Advisories (MFSAs).5

Each MFSA includes bug IDs that are linked to the Bugzilla6

bug tracking system. Mozilla developers also add bug IDs
to the log of the CVS version control system7 when they
check in files to the CVS after the vulnerabilities have been
fixed. We searched the bug IDs from the CVS log to find the
files that have been changed to fix vulnerabilities, similar to
the approach found in other studies [30]. The number of
MFSAs for Firefox was 197 as of 2 August 2008. The
vulnerability fixes for the MFSAs were reported in 560 bug
reports. Among them, 468 bug IDs were identified from the
CVS log. Although some of the files were fixed for
regression, all those files were also fixed for vulnerabilities.
Therefore, we counted those files as vulnerable.

To collect complexity metrics, we used Understand C++,8

a commercial metrics collection tool. We limited our analysis
to C/C++ and their header files to obtain complexity

metrics, excluding other file types such as script files and

make files. We obtained code churn and developer activity

metrics from the CVS version control system.
At the time of data collection, Firefox 1.0 and Firefox

2.0.0.16 were the first and the last releases that had

vulnerability reports. The gap between Firefox releases

ranged from one to two months. Since each release had

only a few vulnerabilities (not enough to perform analysis

at each Firefox release), we combined the number of

vulnerabilities for three consecutive releases, and will

refer to those releases as a combined release, denoted by

R1 through R11 in this paper. For each release, we used

the most recent three combined releases (RN3 to RN1) to

predict vulnerable files in RN. We collected metrics for

11 combined releases. Table 4 provides the project statistics

for the 11 combined releases.

4.2 Discriminative Power Test and Univariate
Prediction Results

Table 5 shows the results of hypotheses testing for
discriminative power and the univariate prediction using
logistic regression for individual metrics from release R4,

778 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 6, NOVEMBER/DECEMBER 2011

Fig. 2. Pseudocode for cross-validation.

TABLE 4
Project Statistics for Mozilla Firefox

5. http://www.mozilla.org/security/announce/.
6. http://www.bugzilla.org/.
7. https://developer.mozilla.org/en/Mozilla_Source_Code_Via_CVS.
8. http://www.scitools.com.

the first test data set that uses the most three recent
releases to train a prediction model. In Table 5, the plus
sign in the Association column indicates that the vulner-
able files had a higher measure than neutral files.
DNAvgDegree was the only sign that did not completely
agree with its hypothesis. We discuss the reason in
Section 6. Twenty-seven of the 28 metrics showed a
statistically significant difference between vulnerable and
neutral files using the Welch t-test after a Bonferroni
correction as shown in Table 5. We also compared the
mean and median of each measurement for vulnerable
and neutral files to find the association direction (positive
or negative). Fig. 3 shows the boxplots of comparisons of
log scaled measures between vulnerable and neutral files
for the three representative metrics from each type of
CCD metrics: CountLineCode, NumChanges, and Num-
Devs. The medians of the three metrics for the vulnerable
files were higher than the ones for the neutral files, as we
hypothesized.

In Table 5, the means of PD and PF are averaged over
10 repetitions of predictions for R4 according to the
algorithm provided in Fig. 1 and presented with standard
deviations. We test whether individual metrics can predict

vulnerable files at over 70 percent PD with less than

25 percent PF as described in Section 3.3. NðQPÞ represents

the number of predictions that satisfy our criteria in the

80 predictions (10 repetitions for each of the eight combined

releases). NumChanges and CNCloseness satisfied our

criteria in all 80 predictions. CountLineCodeDecl, Lines-

Changed, and NumDevs satisfied our criteria in over half of

the predictions. Most metrics provided very small varia-

tions between predictions except for CommentDensity,

Linesnew, and DNMinBetweenness. We provide N(QP)

instead of averaging the prediction results across all

releases because averaging the results for different data

sets can mislead the interpretation of the results from each

data set [31].
Note that a single metric can provide such a high PD and

a low PF. We further investigate the predictability of CCD

metrics when they are used together in a model in the

following section.

4.3 Multivariate Prediction Results

Although metrics can have low predictability individually,

combining metrics into a model can result in better

SHIN ET AL.: EVALUATING COMPLEXITY, CODE CHURN, AND DEVELOPER ACTIVITY METRICS AS INDICATORS OF SOFTWARE... 779

TABLE 5
Results of Discriminative Power Test and Univariate Prediction Mozilla Firefox

predictability [32]. Therefore, we created four types of
models using complexity, code churn, developer activity,
and combination of the CCD metrics. From each set of the
metrics, three variables were selected as we explained in
Section 3.5.

Fig. 4 shows PD, PF, FI, LI, FIR, and LIR across releases
where the results from each release were averaged over the

results from the 10 repetitions of next-release validation
using logistic regression. All the models with code churn,
developer activity, and combined CCD metrics provided
similar results across releases; PD was between 68 and
88 percent and PF was between 17 and 26 percent; FI ratio
was between 17 and 26 percent resulting in 66 to 80 percent
reduction in the files to inspect; Line Inspection (LI) Ratio was

780 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 6, NOVEMBER/DECEMBER 2011

Fig. 4. Prediction results for Mozilla Firefox across releases.

Fig. 3. Comparison of measures for vulnerable and neutral files.

between 49 and 65 percent resulting in 16 to 42 percent of
reduction in lines of code to inspect. The models using
complexity metrics provided 76 to 86 percent PD and 22 to
34 percent PF. FI for the models using complexity metrics
was between 22 and 34 percent resulting in 61 to 72 percent
reduction in file inspection. LI for the models using
complexity metrics was much higher than LI for the other
models (74 to 85 percent), resulting in only 7 percent
reduction in code inspection at best. In the worst case,
3 percent more code required to inspect than the percentage
of lines of code chosen by random selection. Note that PF
and FI showed almost identical performance for all models.
We discuss the similarity between PF and FI in Section 6.

The three types of models generally provided consistent
PD except for R5 and R10. The models using complexity
metrics provided lower PD than other models, but
provided consistent results even in R5 and R10. Instead,
PF from the models using complexity metrics suddenly
increased in R10. We conjecture that the sudden decrease in
performance for R10 is because the number of vulnerable
files in R10 suddenly increases when the model was trained
with recent two releases (R8 and R9) with relatively few
vulnerabilities, and the model trained from the past trend
did not work properly. However, we were not able to find
out any particular reason for the sudden decreases in
performance for R5. All the prediction results from the three
types of models gradually improved as the system matured,
but the results from models using complexity metrics
stayed constant or degraded.

Table 6 provides detailed results for release R4,
including standard deviations. The models with code
churn metrics and combined CCD metrics satisfied our
prediction criteria in over 90 percent of predictions out of
80 predictions (10 repetitions for each of the eight
combined releases). All of the models satisfied our criteria
in over 50 percent of the 80 predictions. Standard
deviations in PD and PF were less than 3 in all models
for release R4. Interestingly, no multivariate models were
noticeably better than some of the best univariate models.

The amount of files to inspect reduced by 68 to 72 percent
depending on the models for R4. The amount of lines of code
to inspect reduced by 31 to 34 percent with code churn,
developer activity, and combined CCD metrics, and only
6 percent with complexity metrics for release R4.

5 CASE STUDY 2: RED HAT ENTERPRISE LINUX

KERNEL

Our second case study was performed on the Linux kernel
as it was distributed in the Red Hat Enterprise Linux 4
(RHEL4) operating system. The RHEL4 kernel consists of
13,568 C files with over three million lines of code. The
details of the project, data collection, and prediction results
are described in this section.

5.1 Data Collection

Gathering security data involved tracing through the
development artifacts related to each vulnerability reported
in the Linux kernel. We collected our vulnerability data
from the Red Hat Bugzilla database and the Red Hat
package management system (RPM). Since some vulner-
ability patches affect only certain releases, we examined
each defect report manually to ensure that developers had
decided that patch was, in fact, required. Instead of
scanning developer commit logs for defect IDs, we used
the RPM system to determine the exact patch that was
issued to fix each of the 258 known vulnerabilities. Since we
are only interested in vulnerabilities that existed at the time
of release, we did not include vulnerabilities introduced by
postrelease patches (a.k.a. “regressions”) in our data set. For
the few vulnerabilities that did not have all of the relevant
artifacts (e.g., defect reports, patches), we consulted the
director of the RHSR team to correct the data and the
artifacts. We collected vulnerabilities reported from Febru-
ary 2005 through July 2008.

To obtain code churn and developer activity data, we used
the Linux kernel source repository.9 The RHEL4 operating
system is based on kernel version 2.6.9, so we used all of the
version control data from kernel version 2.6.0 to 2.6.9, which
were approximately 15 months of development and main-
tenance. Table 7 provides the project statistics.

5.2 Discriminative Power Test and Univariate
Prediction Results

Table 8 provides the results of hypotheses tests for discrimi-
nate power and the results of the univariate prediction for
individual metrics. Twenty-seven of the 28 metrics showed a
statistically significant difference between vulnerable and
neutral files using the Welch t-test after Bonferroni correction

SHIN ET AL.: EVALUATING COMPLEXITY, CODE CHURN, AND DEVELOPER ACTIVITY METRICS AS INDICATORS OF SOFTWARE... 781

TABLE 6
Results of Multivariate Prediction for Mozilla Firefox

TABLE 7
Project Statistics for the RHEL4 Kernel

9. http://git.kernel.org/.

except for CommentDensity. The association directions for
DNAvgDegree and DNAvgBetweenness did not agree with
their hypotheses. We discuss the reason in Section 6.

In vulnerability prediction, only NumDevs provided
over 70 percent PD with less than 25 percent PF in over
half of the 100 predictions for 10� 10 cross-validation.
RHEL4 had greater standard deviations in PD and PF than
Mozilla Firefox.

5.3 Multivariate Prediction Results

Table 9 provides the results for the multivariate predictions
by 10� 10 cross-validation using logistic regression. The

predictions were performed using the three variables
selected by the information gain ranking method. The
models using code churn, developer activity, and combined
CCD metrics satisfied our prediction criteria in over
50 percent of the 100 runs of cross-validation. However,
none of the predictions using complexity metrics satisfied
our prediction criteria. When we changed the threshold to
0.4 for binary classification, the models using complexity
metrics provided 77 percent PD and 29 percent PF and 15 of
the 100 predictions satisfied our prediction criteria.

The reduction in file inspection compared to a random
file selection was between 51 and 71 percent. The reduction

782 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 6, NOVEMBER/DECEMBER 2011

TABLE 8
Results of Discriminative Power Test and Univariate Prediction for the RHEL4 Kernel

TABLE 9
Results of Multivariate Prediction for the RHEL4 Kernel

in lines of code inspection was over 28 percent for code
churn, developer activity, and combined CCD metrics and
only 7 percent for complexity metrics.

6 SUMMARY OF TWO CASE STUDIES AND

DISCUSSION

Table 10 provides the summary of our hypotheses testing.
The hypotheses for discriminative power were supported by
at least 24 of the 28 metrics for both projects, except for
CommentDensity and DNAvgDegree for Firefox and Coun-
tLinePreprocessor, DNAvgDegree, and DNAvgBetween-
ness for RHEL4. Among these, CountLinePreprocessor
and CommentDensity were not discriminative of neutral
and vulnerable files. DNAvgDegree and DNAvgBetween-
ness disagreed with our hypotheses in the direction of
association. While DNMinDegree was negatively correlated
with vulnerabilities and supported our hypothesis, DNAvg-
Degree was positively correlated in both projects. This
means that files are more likely to be vulnerable if they are
changed by developers who work on many other files with
other developers on average, but when all of the developers
are central, the file is less likely to be vulnerable. For
DNAvgBetweeenness, we were not able to find any clear
reason for the hypothesis to not be supported.

Overall, 80 predictions were performed for the eight
releases (R4-R11) of Firefox with 10 repetitions to account
for sampling bias and 100 predictions for RHEL4 for 10�
10 cross-validation. In the univariate predictions, five of
the 28 metrics supported the hypotheses in 50 percent of
the total predictions for Firefox and one of the 28 metrics
for RHEL4. Considering only the small number of metrics
satisfied by the prediction criteria in univariate prediction,
relying on a single metric is a dangerous practice. In
multivariate predictions, the models using code churn,
developer activity, and combined CCD metrics supported
the hypotheses in over 50 percent of the total predictions
for both projects. Even though the models using complex-
ity metrics supported the hypotheses in over 50 percent of
the total predictions for Firefox, none of the predictions

were successful for RHEL4. Considering this result
together with the surprisingly low (even negative) inspec-
tion cost reduction seen in Fig. 4 of Section 4, although
lines of code are an effective cost measurement that
depends on situation [25], the effectiveness of complexity
metrics as indicators of vulnerabilities is weak for the
complexity metrics we collected.

Precision from all the models for both projects was
strikingly low, with less than five as a result of large
numbers of false positives. This result is especially interest-
ing because almost all of the individual metrics had strong
discriminative power according to the Welch t-test. This
discrepancy can be explained from the boxplots in Fig. 3 of
Section 4, where the mean values in the individual metrics
show clear difference, but the considerable numbers of
neutral files are still in the expected range of vulnerable
files, leading to a large number of false positives. Organiza-
tions can improve P by raising the threshold for binary
classification to reduce false positives. However, PD can
become lower in that case as PD and P tend to trade off each
other. Whether a model that provides high PD and low P is
better than a model that provides high P and low PD is
arguable. An organization may prefer to detect many
vulnerabilities because it has a large amount of security
resources and security expertise. On the other hand, other
organizations may prefer a model that provides high P that
reduces the waste of effort even with low PD.

Preference for high PD and lowP requires some caution in
terms of cost effectiveness. From the results in Tables 6 and 9,
organizations are guided to inspect only less than 26 percent
of files to find over around 80 percent of vulnerable files in
most models. However, since the projects have a large
amount of files, the number of files to inspect is still large.
For example, Firefox release R4 has around 11,000 files and
the model with combined CCD metrics provided 24 percent
FI identifying 2,640 files to inspect. If security inspection
requires one person-day per file, over seven full years would
be spent for one security engineer to inspect the 2,640 files. If
the files to inspect are reduced to 10 percent of the predicted
files (264 files) by further manual prioritization, the overall
inspection would take essentially a year for one security

SHIN ET AL.: EVALUATING COMPLEXITY, CODE CHURN, AND DEVELOPER ACTIVITY METRICS AS INDICATORS OF SOFTWARE... 783

TABLE 10
Summary of Hypotheses Testing

engineer only to find a further reduced set of vulnerabilities.
In that case, pursuing high P and low PD might be a more
cost-effective approach than pursing high PD and low P .
However, because the inspection time can greatly vary
depending on the ability and the number of security
engineers involved, organizations should use this illustration
and our prediction results only to make an informed decision.

Among the metrics we investigated, history metrics such
as code churn and developer activity metrics provided
higher prediction performance than the complexity. There-
fore, historical development information is a favorable
source for metrics and using historical information is
recommended whenever possible. However, our result is
limited to the metrics that we collected. Other complexity
metrics may provide better results.

We also observed sudden changes in prediction perfor-
mance in a few releases of Firefox where we used next-
release validation. This result cannot be observed with
cross-validation. Therefore, our study reveals the impor-
tance of next-release validation to validate metrics for
vulnerability prediction whenever possible.

For both projects, PF and FI are almost equal. We believe
the reason for this was that the percentage of files with
vulnerabilities is very low (< 1.4 percent) and P is also very
low. The low percentage of vulnerable files means that
the total number of files (TP þ TN þ FP þ FN) is almost the
same as the number of nonvulnerable files (FP þ TN). The
low P means that the number of positive predictions
(TP þ FP) is very close to FP. Therefore, FI computed by
ðTP þ FP Þ=ðTP þ TN þ FP þ FNÞ and PF computed by
FP=ðFP þ TNÞ are almost equal. Knowing this fact
provides us a useful hint to guess the number files to
inspect when both the percentage of vulnerable files and P
are very low.

Interestingly, NumDevs was effective in the vulnerabil-
ity prediction in our study while another study [33]
observed that NumDevs did not improve the prediction
performance significantly. The two major differences
between the studies are 1) their study was closed source
and ours was open source and 2) they were predicting
faults and not vulnerabilities.

Further study on the difference in open and closed-source
projects and on the difference between fault and vulner-
ability prediction may further improve our understanding
on faults and vulnerabilities on various types of projects and
better guide code inspection and testing efforts. In a
preliminary study comparing fault prediction and vulner-
ability prediction for Firefox 2.0, we trained a model for
predicting vulnerabilities and a model for predicting faults,
both using complexity, code churn, and fault history metrics
[34]. The fault prediction provided 18 percent lower PD and
38 percent higher P than vulnerability prediction. The study
also showed that the prediction performance was largely
affected by the number of reported faulty or vulnerable files.
Since only 13 percent of faulty files were reported as
vulnerable, further effort is required to characterize the
difference between faults and vulnerabilities and to find
better way to predict vulnerable code locations.

7 THREATS TO VALIDITY

Since our data are based on known vulnerabilities, our
analysis does not account for latent (undiscovered)

vulnerabilities. Additionally, only fixed vulnerabilities are
publicly reported in detail by organizations to avoid the
possible attacks from malicious users; unfixed vulnerabil-
ities are usually not publicly available. However, con-
sidering the wide use of both projects, we believe that the
currently reported vulnerabilities are not too limited to
jeopardize our results.

We combined every three releases and predicted
vulnerabilities for the next three releases for Mozilla Firefox.
Using this study design, the predictions will be performed
on every third release. However, considering the short time
periods between releases (one or two months), we consider
that the code and process history information between the
three releases within a combined release is relatively similar
and those releases share many similar vulnerabilities. This
decision was made to increase the percentage of vulner-
abilities in each release because the percentage of vulner-
abilities for the subject projects was too low to train the
prediction models. In fact, once enough training data are
cumulated during a few initial releases, one could predict
vulnerabilities in actual releases rather than in combined
releases. Alternatively, we could use vulnerability history
as a part of metrics together with CCD metrics, as was used
in [33], instead of combining releases. We plan to extend
our study to accommodate both of the approaches. For
Mozilla Firefox, not all of the bug IDs for vulnerability fixes
were identified from the CVS log, which could lead to the
lower prediction performance.

Actual security inspections and testing are not perfect,
so our results are optimistic in predicting exactly how
many vulnerable files will be found by security inspection
and testing.

As with all empirical studies, our results are limited to
the two projects we studied. To generalize our observations
from this study to other projects in various languages, sizes,
domains, and development processes, further studies
should be performed.

8 RELATED WORK

This section introduces prior studies on the software
vulnerability prediction and usages of CCD metrics in
fault prediction.

8.1 Vulnerability Prediction

Neuhaus et al. [30] predicted vulnerabilities on the entire
Mozilla open-source project (not specific to Firefox) by
analyzing the import (header file inclusion) and function
call relationship between components. In this study, a
component is defined as a C/C++ file and its header file of
the same name. They analyzed the pattern of frequently used
header files and function calls in vulnerable components and
used the occurrence of the patterns as predictors of
vulnerabilities. Their model using import and function call
metrics provided 45 percent PD and 70 percent precision, and
estimated 82 percent of the known vulnerabilities in the top
30 percent components predicted as vulnerable. Our model
with CCD metrics provided higher PD (over 85 percent) but
lower precision (less than 3 percent) than their work and
detected 89 percent of vulnerabilities (PV) in 24 percent of
files (FI) for Mozilla Firefox. We also validated the models

784 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 6, NOVEMBER/DECEMBER 2011

across releases to simulate actual use of a vulnerability
prediction in organizations, while their study performed
cross-validation.

Gegick et al. [35] modeled vulnerabilities using the
regression tree model technique with source lines of code,
alert density from a statistic analysis tool, and code churn
information. They performed a case study on 25 components
in a commercial telecommunications software system with
1.2 million lines of code. Their model identified 100 percent
of the vulnerable components with an 8 percent false
positive rate at best. However, the model predicted
vulnerabilities only at the component level and cannot
direct developers to more specific vulnerable code locations.

Shin and Williams [36], [37] investigated whether the
code level complexity metrics, such as cyclomatic complex-
ity, can be used as indicators of vulnerabilities at function
level. The authors performed a case study on the Mozilla
JavaScript Engine written in C/C++. Their results show that
the correlations between complexity metrics and vulner-
abilities are weak (Spearman r ¼ 0:30 at best) but statisti-
cally significant. Interestingly, the complexity measures for
vulnerable functions were higher than the ones for faulty
functions. This observation encourages us to build vulner-
ability prediction models, even in the presence of faults,
using complexity metrics. Results of the vulnerability
prediction using logistic regression showed very high
accuracy (over 90 percent) and low false positive rates (less
than 2 percent), but the false negative rate was very high
(over 79 percent). Our study extends these two prior studies
by using additional complexity metrics such as fan-in and
fan-out, and processes history metrics including code churn
and developer activity metrics on two large-size projects.

Walden et al. [38] analyzed the association between the
security resource indicator (SRI) and vulnerabilities on
14 open-source PHP web applications. The SRI is measured
as a sum of binary values depending on the existence of the
four resources in development organizations: a security
URL, a security e-mail address, a vulnerability list for their
products, and secure development guidelines. SRI is useful
to compare security levels between organizations, but does
not indicate vulnerable code locations. Additionally, they
measured the correlation between three complexity metrics
and vulnerabilities. The correlations were very different
depending on the projects, which inhibits our ability to
generalize the applicability of complexity metrics as an
indicator of vulnerabilities. Since the projects were written
in PHP and have a different domain than ours, their results
cannot be generalized to ours.

8.2 Fault Prediction with Complexity, Code Churn,
and Developer Metrics

Basili et al. [5] showed the usefulness of object oriented (OO)
design metrics to predict fault proneness in a study
performed on eight medium-sized information manage-
ment systems. The logistic regression model with OO design
metrics detected 88 percent of faulty classes and correctly
predicted 60 percent of classes as faulty. Briand et al. [6] also
used OO design metrics to predict defects and their logistic
regression model classified fault-prone classes at over
80 percent of precision and found over 90 percent of faulty
classes. Nagappan et al. [39] found that sets of complexity

metrics are correlated with postrelease defects using five
major Microsoft product components, including Internet
Explorer 6. Menzies et al. [7] explored three data mining
modeling techniques, OneR, J48, and naive Bayes, using
code metrics to predict defects in MDP, a repository for
NASA data set. Their model using naive Bayes was able to
predict defects with 71 percent PD and 25 percent PF.

Nagappan and Ball [15] investigated the usefulness of
code churn information on Windows Server 2003 to
estimate postrelease failures. The Pearson correlation and
the Spearman rank correlation between estimated failures
and actual postrelease failures were r ¼ 0:889 and r ¼ 0:929,
respectively, for the best model. Ostrand et al. [9] used code
churn information together with other metrics including
lines of source code, file age, file type, and prior fault
history. They found that 83 percent of faults were in the top
20 percent of files ranked in the order of predicted faults
using negative binomial regression. Nagappan et al. [8], [40]
also performed empirical case studies on the fault predic-
tion with Windows XP and Windows Server 2003 using
code churn metrics and code dependency within and
between modules. Both studies used a multiple linear
regression model on principal components and the Spear-
man rank correlations between actual postrelease failures
and estimated failures were r ¼ 0:64 and r ¼ 0:68 in the best
cases, respectively.

We use two concepts to measure developer activity:
developer networks and contribution networks. The concept
of a developer network has come from several sources,
including [16], [41]. Gonzales-Barahona et al. [41] were the
first to propose the idea of creating developer networks as
models of collaboration from source repositories to differ-
entiate and characterize projects. Meneely et al. [16] applied
social network analysis to the developer network in a
telecommunications product to predict failures in files. They
found 58 percent of the failures in 20 percent of the files
where a perfect prioritization would have found 61 percent.
Pinzger et al. [21] were the first to propose the contribution
network as a quantification of the direct and indirect
contribution of developers on specific resources of the
project. Pinzger et al. found that files that were contributed
to by many developers, especially by developers who were
making many different contributions themselves, were
found to be more failure prone than files developed in
relative isolation. Other efforts exist [33], [42], [43] to
quantify developer activity in projects, mostly via counting
the number of distinct developers who changed a file as we
did in our study. The difference between [33] and ours was
discussed in Section 6.

9 CONCLUSIONS

The goal of this study was to guide security inspection and
testing by analyzing if complexity, code churn, and
developer activity metrics can indicate vulnerable files.
Specifically, we evaluated if CCD metrics can discriminate
between vulnerable and neutral files, and predict vulner-
abilities. At least 24 of the 28 metrics supported the
hypotheses for discriminative power between vulnerable
and neutral files for both projects. A few univariate models
and the models using development history based metrics
such as code churn, developer activity, and combined CCD

SHIN ET AL.: EVALUATING COMPLEXITY, CODE CHURN, AND DEVELOPER ACTIVITY METRICS AS INDICATORS OF SOFTWARE... 785

metrics predicted vulnerable files with high PD and low PF
for both projects. However, the models with complexity
metrics alone provided the weakest prediction perfor-
mance, indicating that metrics available from development
history are stronger indicators of vulnerabilities than code
complexity metrics we collected in this study.

Our results indicate that code churn, developer activity,
and combined CCD metrics can potentially reduce the
vulnerability inspection effort compared to a random
selection of files. However, considering the large size of
the two projects, the quantity of files and the lines of code to
inspect or test based on the prediction results are still large.
While a thorough inspection of every potentially vulnerable
file is not always feasible, our results show that using CCD
metrics to predict files can provide valuable guidance to
security inspection and testing efforts by reducing code to
inspect or test.

Our contribution in this study is that we provided
empirical evidence that CCD metrics are effective in
discriminating and predicting vulnerable files and in
reducing the number of files and the lines of code for
inspection. Our results were statistically significant despite
the presence of faults that could weaken the performance of
a vulnerability prediction model.

While our results show that predictive modeling can
reduce the amount of code to inspect, much work needs to
be done in applying models like ours to the security
inspection process. Examining the underlying causes behind
the correlations found in this paper would assist even
further in guiding security inspection and testing efforts.

ACKNOWLEDGMENTS

This work is supported in part by US National Science
Foundation (NSF) Grant No. 0716176, CAREER Grant
No. 0346903, and the US Army Research Office (ARO)
under grant W911NF-08-1-0105 managed by NCSU Secure
Open Systems Initiative (SOSI). The authors thank the
Mozilla team who clarified the procedure for version
control and vulnerability fixes. They thank Mark Cox, the
director of the RHSR team, for verifying their Red Hat data.
They thank the reviewers for their valuable and thorough
comments. They also thank the NCSU Software Engineer-
ing Realsearch group (past and present members) for their
helpful suggestions on the paper.

REFERENCES

[1] I.V. Krsul, “Software Vulnerability Analysis,” PhD dissertation,
Purdue Univ., 1998.

[2] B. Cashell, W.D. Jackson, M. Jickling, and B. Web, “CRS Report for
Congress: The Economic Impact of Cyber-Attacks,” Congressional
Research Service, Apr. 2004.

[3] G. McGraw, Software Security: Building Security In. Addison-
Wesley, 2006.

[4] N. Fenton, M. Neil, W. Marsh, P. Hearty, D. Marquez, P. Krause,
and R. Mishra, “Predicting Software Defects in Varying Develop-
ment Lifecycles Using Bayesian Nets,” Information and Software
Technology, vol. 49, no. 1, pp. 32-43, 2007.

[5] V.R. Basili, L.C. Briand, and W.L. Melo, “A Validation of Object-
Oriented Design Metrics as Quality Indicators,” IEEE Trans.
Software Eng., vol. 22, no. 10, pp. 751-761, Oct. 1996.

[6] L.C. Briand, J. Wüst, J.W. Daly, and D.V. Porter, “Exploring the
Relationships between Design Measures and Software Quality in
Object-Oriented Systems,” J. Systems and Software, vol. 51, no. 3,
pp. 245-273, 2000.

[7] T. Menzies, J. Greenwald, and A. Frank, “Data Mining Static Code
Attributes to Learn Defect Predictors,” IEEE Trans. Software Eng.,
vol. 33, no. 1, pp. 2-13, Jan. 2007.

[8] N. Nagappan and T. Ball, “Using Software Dependencies and
Churn Metrics to Predict Field Failures: An Empirical Case
Study,” Proc. First Int’l Symp. Empirical Software Eng. and
Measurement, pp. 364-373, Sept. 2007.

[9] T.J. Ostrand, E.J. Weyuker, and R.M. Bell, “Predicting the Location
and Number of Faults in Large Software Systems,” IEEE Trans.
Software Eng., vol. 31, no. 4, pp. 340-355, Apr. 2005.

[10] T.M. Khoshgoftaar, E.B. Allen, K.S. Kalaichelvan, and N. Goel,
“Early Quality Prediction: A Case Study in Telecommunications,”
IEEE Software, vol. 13, no. 1, pp. 65-71, Jan. 1996.

[11] IEEE, “IEEE Standard for a Software Quality Metrics Methodol-
ogy,” IEEE Std 1061-1998 (R2004), IEEE CS, 2005.

[12] U. Brandes and T. Erlebach, Network Analysis: Methodological
Foundations. Springer, 2005.

[13] M. Girvan and M.E.J. Newman, “Community Structure in Social
and Biological Networks,” Proc. Nat’l Academy of Sciences USA,
vol. 99, no. 12, pp. 7821-7826, 2002.

[14] T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald,
“Problems with Precision: A Response to “Comments on ’Data
Mining Static Code Attributes to Learn Defect Predictors’”,” IEEE
Trans. Software Eng., vol. 33, no. 9, pp. 637-640, Sept. 2007.

[15] N. Nagappan and T. Ball, “Use of Relative Code Churn Measures
to Predict System Defect Density,” Proc. 27th Int’l Conf. Software
Eng., pp. 284-292, May 2005.

[16] A. Meneely, L. Williams, W. Snipes, and J. Osborne, “Predicting
Failures with Developer Networks and Social Network Analysis,”
Proc. 16th ACM SIGSOFT Int’l Symp. Foundations of Software Eng.,
pp. 13-23, Nov. 2008.

[17] B. Schneier, Beyond Fear: Thinking Sensibly about Security in an
Uncertain World. Springer-Verlag, 2003.

[18] T.J. McCabe, “A Complexity Measure,” IEEE Trans. Software Eng.,
vol. 2, no. 4, pp. 308-320, Dec. 1976.

[19] T.L. Graves, A.F. Karr, J.S. Marron, and H. Siy, “Predicting Fault
Incidence Using Software Change History,” IEEE Trans. Software
Eng., vol. 26, no. 7, pp. 653-661, July 2000.

[20] A.H. Watson and T.J. McCabe, Structured Testing: A Testing
Methodology Using the Cyclomatic Complexity Metric, vol. 500,
no. 235, Nat’l Inst. of Standards and Technology, Sept. 1996.

[21] M. Pinzger, N. Nagappan, and B. Murphy, “Can Developer-
Module Networks Predict Failures?” Proc. Int’l Symp. Foundations
in Software Eng., pp. 2-12, Nov. 2008.

[22] M.W. Fagerland and L. Sandvik, “Performance of Five Two-
Sample Location Tests for Skewed Distributions with Unequal
Variances,” Contemporary Clinical Trials, vol. 30, pp. 490-496, 2009.

[23] T. Menzies, B. Turhan, A. Bener, G. Gay, B. Cukic, and Y. Jiang,
“Implications of Ceiling Effects in Defect Predictors,” Proc. Fourth
Int’l Workshop Predictor Models in Software Eng., pp. 47-54, May
2008.

[24] E. Arisholm and L.C. Briand, “Predicting Fault-Prone Compo-
nents in a Java Legacy System,” Proc. ACM/IEEE Int’l Symp.
Empirical Software Eng., pp. 8-17, Sept. 2006.

[25] T.J. Ostrand, E.J. Weyuker, and R.M. Bell, “Automating Algo-
rithms for the Identification of Fault-Prone Files,” Proc. Int’l Symp.
Software Testing and Analysis, pp. 219-227, July 2007.

[26] I.H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques. Morgan Kaufmann Publishers, 2005.

[27] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1,
pp. 5-32, 2001.

[28] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
Classification Models for Software Defect Prediction: A Proposed
Framework and Novel Findings,” IEEE Trans. Software Eng., vol. 34,
no. 4, pp. 485-496, July/Aug. 2008.

[29] Y. Kamei, A. Monden, S. Matsumoto, T. Kakimoto, and K.
Matsumoto, “The Effects of Over and Under Sampling on Fault-
Prone Module Detection,” Proc. First Int’l Symp. Empirical Software
Eng. and Measurement, pp. 196-204, Sept. 2007.

[30] S. Neuhaus, T. Zimmermann, and A. Zeller, “Predicting Vulner-
able Software Components,” Proc. 14th ACM Conf. Computer and
Comm. Security, pp. 529-540, Oct./Nov. 2007.

[31] J. Dem�sar, “Statistical Comparisons of Classifiers over Multiple
Data Sets,” J. Machine Learning Research, vol. 7, pp. 1-30, 2006.

[32] I. Guyon and A. Elisseeff, “An Introduction to Variable and
Feature Selection,” J. Machine Learning Research, vol. 3, pp. 1157-
1182, 2003.

786 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 6, NOVEMBER/DECEMBER 2011

[33] E.J. Weyuker, T.J. Ostrand, and R.M. Bell, “Do Too Many Cooks
Spoil the Broth? Using the Number of Developers to Enhance
Defect Prediction Models,” Empirical Software Eng., vol. 13, no. 5,
pp. 539-559, 2008.

[34] Y. Shin and L. Williams, “Can Fault Prediction Models and
Metrics Be Used for Vulnerability Prediction?” Technical Report-
2010-6, North Carolina State Univ., Mar. 2010.

[35] M. Gegick, L. Williams, J. Osborne, and M. Vouk, “Prioritizing
Software Security Fortification through Code-Level Metrics,” Proc.
Fourth ACM Workshop Quality of Protection, pp. 31-38, Oct. 2008.

[36] Y. Shin and L. Williams, “Is Complexity Really the Enemy of
Software Security?” Proc. Fourth ACM Workshop Quality of
Protection, pp. 47-50, Oct. 2008.

[37] Y. Shin and L. Williams, “An Empirical Model to Predict Security
Vulnerabilities Using Code Complexity Metrics,” Proc. Int’l Symp.
Empirical Software Eng. and Measurement, pp. 315-317, 2008.

[38] J. Walden, M. Doyle, G.A. Welch, and M. Whelan, “Security of
Open Source Web Applications,” Proc. Int’l Workshop Security
Measurements and Metrics, Oct. 2009.

[39] N. Nagappan, T. Ball, and A. Zeller, “Mining Metrics to Predict
Component Failures,” Proc. 28th Int’l Conf. Software Eng., pp. 452-
461, May 2006.

[40] N. Nagappan, T. Ball, and B. Murphy, “Using Historical In-
Process and Product Metrics for Early Estimation of Software
Failures,” Proc. 17th Int’l Symp. Software Reliability Eng., pp. 62-74,
Nov. 2006.

[41] J.M. Gonzales-Barahona, L. Lopez-Fernandez, and G. Robles,
“Applying Social Network Analysis to the Information in CVS
Repositories,” Proc. Int’l Workshop Mining Software Repositories,
May 2004.

[42] J.P. Hudepohl, W. Jones, and B. Lague, “EMERALD: A Case Study
in Enhancing Software Reliability,” Proc. Int’l Symp. Software
Reliability Eng., pp. 85-91, Nov. 1997.

[43] N. Nagappan, B. Murphy, and V.R. Basili, “The Influence of
Organizational Structure on Software Quality: An Empirical Case
Study,” Proc. Int’l Conf. Software Eng., pp. 521-530, May 2008.

Yonghee Shin received the BS degree from
Sookmyung Women’s University in Korea and
the MS degree from Texas A&M University. She
received the PhD degree in computer science
from North Carolina State University (NCSU)
under the supervision of Dr. Laurie Williams.
She is currently working as a postdoctoral
researcher at DePaul University. Her research
interests are in software engineering focusing on
software metrics, software reliability and secur-

ity, empirical software engineering, requirements traceability, and
software testing. She worked for Daewoo telecommunications and
Samsung SDS in Korea for eight years before returning to academia.

Andrew Meneely received the dual BA degree
in computer science and mathematics from
Calvin College in 2006 and the MS degree
from North Carolina State University (NCSU)
in 2008. He is currently working toward the
PhD degree in the Computer Science Depart-
ment at NCSU under the supervision of Dr.
Laurie Williams. His research interests include
empirical software engineering, software se-
curity, and developer collaboration.

Laurie Williams received the BS degree in
industrial engineering from Lehigh University,
the MBA degree from the Duke University Fuqua
School of Business, and the PhD degree in
computer science from the University of Utah.
She is an associate professor in the Computer
Science Department at North Carolina State
University (NCSU). Her research focuses on
agile software development practices and pro-
cesses, software reliability, software testing and

analysis, software security, open-source software development, and
broadening participation and increasing retention in computer science.
She is the director of the North Carolina State University Laboratory for
Collaborative System Development and the Center for Open Software
Engineering, and an area representative for the Secure Open Systems
Initiative. She is the technical codirector of the Center for Advanced
Computing and Communication (CACC). She worked for IBM Corpora-
tion for nine years in Raleigh, North Carolina, and Research Triangle
Park, North Carolina, before returning to academia. She is a member of
the IEEE.

Jason A. Osborne received the BS degree in
mathematics from the University of California
Santa Barbara and the PhD degree in statistics
from Northwestern University. He is an associ-
ate professor in the Department of Statistics at
North Carolina State University. Most of his
effort goes toward providing internal statistics
consulting to the university and his research is
driven by problems that arise from that work.
Examples include estimation of linear Boolean

models for particle flow, estimation of population size in software
reliability, and heterogeneity of variance models for gene expression
experiments.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SHIN ET AL.: EVALUATING COMPLEXITY, CODE CHURN, AND DEVELOPER ACTIVITY METRICS AS INDICATORS OF SOFTWARE... 787

