
Economics of Information Security

S ecurity professionals expend an enormous
amount of effort every year on finding, publish-
ing, and fixing security vulnerabilities in software
products. For example, the ICAT (http://icat.

nist.gov) vulnerability metabase added 1,307 vulnerabili-
ties in 2002, and Microsoft Internet Explorer 5.5 alone
had 39 published vulnerabilities that year. In September
2003, the Full Disclosure mailing list (http://lists.netsys.
com/mailman/listinfo/full-disclosure), dedicated to the
discussion of security holes, had more than 1,600 postings.
Given all of this effort, we should expect to see a clearly
useful and measurable result. 

The basic value proposition of vulnerability finding
is simple: It’s better for good guys to find and fix vulnerabilities
than for bad guys to find and exploit them. If good guys find
a vulnerability and make a fix available, the number of
intrusions—and hence the cost of intrusions—resulting
from that vulnerability is less than if bad guys had dis-
covered it. Moreover, fewer vulnerabilities will be avail-
able for bad guys to find. 

This article aims to measure the effect of vulnerability
finding. Any attempt to measure this kind of effect is in-
herently rough, depending as it does on imperfect data
and several simplifying assumptions. Because I’m looking
for evidence of usefulness, where possible, I bias such as-
sumptions in favor of a positive result—explicitly calling
out those assumptions biased in the opposite direction.
Thus, the analysis in this article represents the best-case
scenario, consistent with the data and my ability to ana-
lyze it, for the vulnerability finding’s usefulness. 

The life cycle of a vulnerability 
To assess vulnerability finding’s value, it’s necessary to ex-

amine the events
surrounding discov-
ery and disclosure. Several authors, including Hilary
Browne and colleagues1 and Bruce Schneier2 have con-
sidered a vulnerability’s life cycle. In this article I use the
following model, which is rather similar to Browne’s. 

• Introduction—the vulnerability is released as part of the
software.

• Discovery—someone finds the vulnerability.
• Private exploitation—the discoverer or a small group

known to the discoverer exploits the vulnerability.
• Disclosure—the vulnerability’s description is published.
• Public exploitation—the general community of blackhats

exploits the vulnerability.
• Fix release—the vendor releases a patch or upgrade that

closes the vulnerability.

These events don’t necessarily occur in this order. In
particular, disclosure and fix release often occur together,
especially when the manufacturer discovers a vulnerabil-
ity and releases the announcement along with a patch.
I’m most interested in two potential scenarios: whitehat
discovery (WHD) and blackhat discovery (BHD). 

Whitehat discovery 
In the WHD scenario, the vulnerability is discovered by a
researcher with no interest in exploiting it. The re-
searcher notifies the vendor (often the discoverer is the
vendor’s employee) and the vendor releases an advisory
along with a fix. Of course, it’s possible to release the ad-
visory before the fix, but this is no longer common prac-
tice. In the rest of this article, I’ll assume that fixes and
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public disclosures occur at the same time. In this scenario,
the entire world (with the exception of the discoverer and
vendor) finds out about the vulnerability at the same
time. There is no private exploitation phase. Public ex-
ploitation begins at the time of disclosure. 

The solid red line in Figure 1 shows the cost of at-
tacks in the WHD case. Because attackers don’t know
of the vulnerability before the vendor discloses it, no
intrusions occur up to disclosure time. At disclosure
time the public exploitation phase begins and we start
to see intrusions. The intrusion rate increases as at-
tackers learn how to exploit the vulnerability. Eventu-
ally, people fix their machines or attackers lose interest
in the vulnerability—perhaps due to decreasing num-
bers of vulnerable machines—and the number of in-
trusions decreases. 

Blackhat discovery
In the BHD scenario, the vulnerability is first discovered
by someone with an interest in exploiting it. The discov-
erer exploits the vulnerability and potentially tells some
associates, who also exploit it. Thus, during the private
disclosure period, a limited pool of in-the-know attack-
ers can exploit the vulnerability, but the population at
large cannot and the vendor and users are unaware of it.

Some time after the initial discovery, someone in the
public community discovers the vulnerability. A person
might find it independently, but more likely an aware op-
erator will find it when an attacker uses the vulnerability
to exploit the operator’s system. At this point, the finder
notifies the vendor and the process described in the previ-
ous section begins. 

The red dotted line in Figure 1 shows the likely out-
come of this scenario. The primary difference between
it and the WHD scenario is the nonzero rate of ex-
ploitation in the period between discovery and disclo-
sure. How large that rate is remains an open question.
In Figure 1, it’s shown as quite small compared to the
public exploitation phase. This seems likely to be the
case because many whitehat security researchers are
connected to the blackhat community; any large-scale
exploitation would likely be discovered quickly. No
good data on this topic exists, but some observers have
estimated that the average time from discovery to
leak/disclosure is around a month (as Michal Zalewski
noted in a 22 September 2003 posting to the Full-
Disclosure mailing list, available at http://lists.netsys.
com/pipermail/full-disclosure/2003-September/
010673.html). After the bug is publicly disclosed, the
WHD and BHD cost curves quickly join up as it be-
comes publicly known. 

WHD vs. BHD 
Figure 1 compares the costs due to intrusion in the two
scenarios. In my model, the additional cost in the BHD

scenario results from the private exploitation period, rep-
resented by the area between the dashed and solid lines in
Figure 1. (I’m ignoring the effect of growth or shrinkage
in the number of deployed copies of the package, as well
as the effect of time-value discounting.)

It seems obvious that, given the choice, the WHD
scenario would be preferable to the BHD scenario be-
cause it eliminates the private exploitation period. As a
first approximation, we assume that except for this differ-
ence, the WHD and BHD scenarios are identical. Thus,
the cost advantage of WHD over BHD is the cost in-
curred during the private exploitation phase. If we de-
note the cost of private exploitation as Cpriv and the cost of
public exploitation as Cpub, the cost of intrusions in the
WHD scenario is CWHD = Cpub, and the cost of intrusions
in the BHD scenario is CBHD = Cpriv + Cpub. The advan-
tage of WHD is CBHD � CWHD = Cpriv.

Obviously, this approximation is imperfect and
probably overestimates the cost difference. Administra-
tors tend to be more diligent about patching if they
know that a vulnerability is being actively exploited;
thus, the total number of vulnerable systems will de-
cline more quickly in the BHD scenario, and the peak
rate of disclosure will be correspondingly lower. Simi-
larly, some of the early exploiters immediately after dis-
closure are likely part of the private exploitation com-
munity, which means that disclosure probably will not
produce as large a rise in initial exploitation in the
BHD case as in the WHD. Conservatively, I ignore
these effects. 

Cost-benefit 
analysis of disclosure 
Imagine you’re a researcher and are the first person to dis-
cover a vulnerability in a widely used piece of software.
You can keep quiet or disclose the vulnerability to the

Figure 1. Vulnerability disclosure cost curve. The primary difference
between the whitehat and blackhat scenarios illustrated here is the
rate of exploitation between discovery and disclosure.
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vendor. If you notify the vendor, the WHD scenario will
follow. If you don’t notify the vendor, a blackhat might
independently discover the vulnerability, thus initiating
the BHD scenario. However, there’s also a chance that no
one will rediscover the vulnerability at all or that another
whitehat will rediscover it. In the first case, the cost of dis-
closure will never be incurred. In the second, it will be in-
curred later.

To assess whether disclosure is a good thing, we can
estimate the probability that a blackhat will rediscover
the vulnerability. Consider a worst-case model: assume
all potential rediscovery is by blackhats and denote the
probability of rediscovery as pr . Consistent with my
practice, this simplifying assumption introduces a bias in
favor of disclosure. The only way in which failure to dis-
close does harm is if a blackhat rediscovers the vulnera-
bility. Thus, assuming that vulnerabilities are always
rediscovered by blackhats overestimates the damage
done by rediscovery and therefore the advantage of dis-
closure. Using standard decision theory,3,4 we get the
choice matrix in Table 1. 

Working through the math, we find that choosing to
disclose reduces the expected cost of intrusions only if pr

(Cpriv + Cpub) > Cpub. To justify disclosing, then, the ex-
pected cost of excess intrusions in the case of BHD must
be large enough to outweigh the known cost of intru-
sions incurred by disclosing in the first place.

From finding-rate to pr
To attack this problem, I make one further simplifying
assumption: that vulnerability discovery is a stochastic
process. If a reasonable number of vulnerabilities exist
in a piece of software, we don’t expect that they’ll be
discovered in any particular order, but rather that any
given extant vulnerability is equally likely to be discov-
ered next. This assumption isn’t favorable to the
hypothesis that vulnerability finding is useful. If, for in-
stance, vulnerabilities were always found in a given
order, a vulnerability that isn’t immediately disclosed
would likely soon be found by another researcher.
However, this simplification is probably approximately
correct (because different researchers will probe differ-
ent sections of any given program, the vulnerabilities
they find should be mostly independent) and is neces-
sary for our analysis. Using this assumption, we can use
the overall rate of vulnerability discovery to estimate pr. 

Consider a piece of software containing Vall vulnera-

bilities. Over the software’s lifespan, some subset of the
vulnerabilities Vfound will be discovered. Thus, the likeli-
hood that any given vulnerability will be discovered dur-
ing the software’s life is 

p
discovery

= 

Similarly, if we choose a recently discovered vulnera-
bility, the chance of its rediscovery has as its upper bound
the chance of discovery: 

p
r
� p

discovery
=

Accordingly, if we know the total number of vulner-
abilities in the software and the rate at which they’re
found, we can estimate the probability that someone
will rediscover a vulnerability in a given time period.
The problem therefore becomes to determine these
two parameters. 

Measuring the 
vulnerability discovery rate
I measure the rate of vulnerability discovery directly from
the empirical data. Using that data and standard software
reliability techniques I also derive an estimate for the
number of vulnerabilities. 

The procedure involves fitting a reliability model to
the empirical data on vulnerability discovery rate, thus
deriving the total number of vulnerabilities. The model
also gives us the projected vulnerability-finding rate over
time and, therefore, the probability of vulnerability dis-
covery at any given time.

It’s important to be specific about what I mean by a
“piece of software.” Software undergoes multiple re-
leases in which vulnerabilities are fixed and other
vulnerabilities are introduced. Our focus is individual
software releases. For example, when FreeBSD 4.7 was
shipped, it had a fixed number of vulnerabilities. Dur-
ing the software’s life, some of those vulnerabilities were
discovered and patched. If we assume that those patches
never introduce new vulnerabilities—which, again, fa-
vors the argument for disclosure—the software’s overall
quality gradually increases. We’re interested in the rate
of that process. 

In this context, we define system reliability as the
number of failures (vulnerabilities) observed during a
given time period. Thus, if a system is becoming more
reliable, it’s experiencing fewer failures. The literature
on modeling software reliability is extensive and
numerous models exist. For simplicity, most models as-
sume that all failures are equally serious. We’re primar-
ily interested in models that show increasing reliability,
because only those models predict a finite number of
vulnerabilities. (If reliability doesn’t increase, the pro-
jected number of vulnerabilities is effectively infinite
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DECISION NOT REDISCOVERED (1 � pr) REDISCOVERED (pr)

Disclose Cpub Cpub

Not disclose 0 Cpub + Cpriv

Table 1. Disclose/don’t disclose decision matrix. 
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and the probability of rediscovery in any given time pe-
riod must be low.)

The Goel-Okumoto Nonhomogenous Poisson
Process model is the simplest such model.5 The G-O
model assumes that the number of vulnerabilities discov-
ered in a single product per unit time M(t) follows a Pois-
son process. The expected value of the Poisson process is
proportional to the number of undiscovered vulnerabili-
ties at t. The result is that the expected value curve follows
an exponential decay curve of the form rate = Nbe�bt,
where N is the total number of vulnerabilities in the
product and b is a rate constant. As more vulnerabilities
are found, the product becomes progressively more reli-
able and the rate of discovery slows. 

To measure the actual rate of vulnerability discov-
ery, I used the ICAT vulnerability metabase. The US
National Institute of Standards and Technologies
makes the entire ICAT database available for public
download and analysis, making it suitable for my pur-
poses. I based my analysis on the 19 May 2003 edition
of ICAT. I downloaded the database and processed it
with a variety of Perl scripts. I performed all statistical
analysis with R (see www.R-project.org for a descrip-
tion of R). 

Do programs 
improve over time? 
The obvious question is, “At what rate are vulnerabilities
found in a given program?” For example, consider Mi-
crosoft Windows NT 4.0, released in August 1996. NT
4.0 had a fixed set of vulnerabilities—some already pre-
sent in earlier revisions, but most introduced in that
release. We can ask: How many of those vulnerabilities
are found as a function of time? Because this question
gives us a fixed starting point, this approach is susceptible
to right censoring (bugs that persist past the end of the
study period), but not left censoring (bugs found before
the beginning of the study period). 

However, the approach has two major problems: 

• Because the same vulnerabilities appear in multiple
programs and multiple versions, it’s impossible to ana-
lyze every program as if it were an independent unit. 

• No individual program is likely to have a high num-

ber of vulnerabilities, which gives us low statistical
power.

To keep the amount of interaction to a minimum, I
focus on four program/version pairs (two open source
and two closed source) as listed in Table 2. I chose these
pairs to minimize interaction but to still provide enough
data to analyze. For example, because they’re closely re-
lated, I chose only one of the Windows and Internet Ex-
plorer group, despite the large number of vulnerabilities
in both programs. 

I measured age as the program’s age, not the vulnera-
bility’s age. Thus, if a vulnerability was introduced in So-
laris 2.5 but is still in Solaris 2.5.1, I’m concerned only
with the time after the release of Solaris 2.5.1. If the bug-
finding process is not memoryless, the results will be
biased so that bug finding appears more effective than it
actually is, because investigators have already had time to
work on the bugs present in earlier versions. Conserva-
tively, I ignore this effect. 

Figure 2 shows the vulnerability discovery rate for
each program as a function of age. The left panels show
the number of vulnerabilities found in any given period
of a program’s life (grouped by quarter). Visually, there are
no apparent downward trends in finding rates for Win-
dows NT 4.0 (the peak at quarter 14 appears to be the
result of end-of-year cleanup at ICAT or Common Vul-
nerabilities and Exposures [CVE]), Solaris 2.5.1, and only
a very weak one (if any) for FreeBSD. There is, however,
a decided trend for Red Hat 6.2.

Moving beyond visual analysis, we can apply several
statistical tests to look for trends. The simplest proce-
dure is to attempt a linear fit to the data. Alternately, we
can assume that the data fits a G-O model and fit an ex-
ponential using nonlinear least squares. Table 3 shows
the results of these regressions. Neither fit reveals a sig-
nificant trend for the first three programs—the data for
Windows NT 4.0 is so irregular that the nonlinear least-
squares fit for the exponential failed entirely with a sin-
gular gradient. The extremely large standard errors and
p values indicate the lack of any clear trend. We see a sig-
nificant result for both fits for Red Hat 6.2, which
shows the type of exponential decay we would expect
from a G-O process. 

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 17

VENDOR PROGRAM VERSION NO. OF VULNERABILITIES RELEASE DATE

Microsoft Windows NT 4.0 111 August 1996

Sun Solaris 2.5.1 109 May 1996

FreeBSD FreeBSD 4.0 43 March 2000

RedHat Linux 6.2 58 March 2000

Table 2. Programs for analysis. 
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Figure 2. Vulnerability discovery rate by programs as a function of age: (a) Windows NT 4.0, (b) Solaris 2.5.1, (c) FreeBSD,
and (d) Redhat 6.2. 
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An alternative approach is to use the Laplace factor
trend test,6 shown in the right-hand panels of Figure 2.
The top and bottom dotted lines indicate the 95-percent
significance values for increasing and decreasing rates of
vulnerability finding. The Laplace factor indicates only a
statistically significant increase in reliability at the very end
of the first three data sets. Because of the censoring at the
end of the data set, we cannot consider this increase reli-
able. Again, there is a significant trend with Red Hat 6.2.

Out of the four programs shown, only one shows a sig-
nificant trend. Though suggestive, this trend could also be
due to confounding factors other than bug depletion. In
particular, Red Hat 7.0 was released six months after Red
Hat 6.2, potentially leading to reduced interest in finding
bugs in Red Hat 6.2. The available data do not allow us to
test this hypothesis. Based on this data, we cannot defini-
tively reject the hypothesis that the rate of vulnerability
finding in programs is constant over time, and we certainly
cannot confirm that it decreases as the program ages. 

Examining individual programs is only one way to
examine the data. I’ve also attempted to analyze the
data by examining the number of vulnerabilities that
were introduced in a given time period, with similarly
inconclusive results. More details, including detailed
methodology, sources of error, and sensitivity analysis,
are available in the full version of this article.7

I see several likely avenues for future research. First, ob-
taining more precise measurements for a larger group

of vulnerabilities to confirm the rate measurements
would be valuable. Second, it would be useful to start
with a known but undisclosed group of security vulnera-
bilities and measure their rate of rediscovery, thus giving
us a direct measurement of rediscovery rate. Andy Chou
and colleagues8 have done this for bugs in general. How-
ever, because vulnerabilities rarely manifest themselves in
normal operating environments and therefore can be
hard to find, their data is not directly usable in this con-
text. Finally, having better measurements of the number
and cost of intrusions due to undisclosed vulnerabilities
would be useful.
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LINEAR FIT EXPONENTIAL FIT
PROGRAM SLOPE STANDARD ERROR p � STANDARD ERROR p

Windows NT 4.0 .0586 .107 .589 n/a n/a n/a

Solaris 2.5.1 �.0783 .0565 .177 48.0 35.3 .185

FreeBSD 4.0 �.286 .245 .268 14.7 16.7 .399

RedHat 6.2 �.846 .157 <.001 4.72 .706 <.001

Table 3. Regression results for program cohort data. 


