
SurroundWeb: Mitigating Privacy Concerns
in a 3D Web Browser

John Vilk
University of Massachusetts, Amherst

Alexander Moshchuk
Google

David Molnar, Benjamin Livshits, Eyal Ofek
Microsoft Research

Chris Rossbach
VMWare Research

Helen J. Wang, Ran Gal
Microsoft Research

Abstract—Immersive experiences that mix digital
and real-world objects are becoming reality, but they
raise serious privacy concerns as they require real-time
sensor input. These experiences are already present
on smartphones and game consoles via Kinect, and
will eventually emerge on the web platform. However,
browsers do not expose the display interfaces needed
to render immersive experiences. Previous security
research focuses on controlling application access to
sensor input alone, and do not deal with display inter-
faces. Recent research in human computer interactions
has explored a variety of high-level rendering interfaces
for immersive experiences, but these interfaces reveal
sensitive data to the application. Bringing immersive
experiences to the web requires a high-level interface
that mitigates privacy concerns.

This paper presents SurroundWeb, the first 3D web
browser, which provides the novel functionality of ren-
dering web content onto a room while tackling many
of the inherent privacy challenges. Following the prin-
ciple of least privilege, we propose three abstractions
for immersive rendering: 1) the room skeleton lets
applications place content in response to the phys-
ical dimensions and locations of renderable surfaces
in a room; 2) the detection sandbox lets applications
declaratively place content near recognized objects in
the room without revealing if the object is present;
and 3) satellite screens let applications display content
across devices registered with SurroundWeb. Through
user surveys, we validate that these abstractions limit
the amount of revealed information to an acceptable
degree. In addition, we show that a wide range of
immersive experiences can be implemented with ac-
ceptable performance.

Index Terms—augmented reality; JavaScript; web
browser; projection mapping

I. Introduction

Immersive experiences mix digital and real-world ob-
jects to create rich computing experiences. These experi-
ences can take many forms, and span a wide variety of
sensor and display technologies. Games using the Kinect
for Xbox can sense the user’s body position, then show
an avatar that mimics the user’s movements. Smartphone
translation applications, such as Word Lens, perform real-
time translations in the video stream from phone cameras.
A projector paired with a Kinect can enhance a military
shooter game with a grenade that “bounces” out of the

television screen and onto the floor [13]. Head mounted
displays such as Google Glass, Epson Moverio, and Meta
SpaceGlasses have dropped dramatically in price in the
last five years and point the way toward affordable main-
stream platforms that enable immersive experiences.

Toward a 3D web: In this paper, we set out to build
a 3D web browser that lets web pages and applications
project content onto physical surfaces in a room. While
this is a novel and somewhat futuristic idea, it is possible
to implement using modern sensors such as the Kinect.
However, designing such a browser poses a plethora of
privacy challenges. For example, current immersive experi-
ences build custom rendering support on top of raw sensor
data, which could contain sensitive data such as medical
documents, credit card numbers, and faces of children
should they be in view of the sensor. This paper is an
exploration of how to reconcile 3D browser functionality
with privacy concerns. In addition to this paper, we pro-
duced an informative video that we encourage readers to
watch to familiarize themselves with this scenario: http:
//research.microsoft.com/apps/video/?id=212669.

Tension between functionality and privacy: There is
a clear tension between functionality and privacy: a 3D
browser needs to expose high-level immersive rendering
interfaces without revealing sensitive information to the
application. Traditional web pages and applications are
sandboxed within the browser; the browser interprets their
HTML and CSS to determine page layout. Unfortunately,
as prior experience with CSS demonstrates, these seem-
ingly innocuous declarative forms of describing web con-
tent are fraught with privacy issues, such as surprising
CSS-based attacks that use history sniffing [30] and even
more subtle ones that rely on scrollbars [16] and stateless
fingerprinting [1].

In this work we discovered that a 3D browser needs
to expose new rendering abstractions that let web ap-
plications project content into the room, while limiting
the amount of revealed information to acceptable levels.
Previous security research focuses on controlling applica-
tion access to sensor data through filtering, access control,
and sandboxing, but this research does not touch upon

2015 IEEE Symposium on Security and Privacy

© 2015, John Vilk. Under license to IEEE.

DOI 10.1109/SP.2015.33

431

2015 IEEE Symposium on Security and Privacy

© 2015, John Vilk. Under license to IEEE.

DOI 10.1109/SP.2015.33

431

the complementary rendering interfaces that a 3D web
browser requires [11, 12, 15]. Recent HCI research describes
high-level interfaces for immersive rendering, but these
approaches reveal sensitive data to the application [7, 13,
14].

SurroundWeb: In this paper, we present
SurroundWeb, a 3D web browser that lets web
applications display web content around a physical room
in a manner that follows the principle of least privilege.
We give applications access to three high-level interfaces
that support a wide variety of existing and proposed
immersive experiences while limiting the amount of
information revealed to acceptable levels. First, the room
skeleton exposes the location, size, and input capabilities
of flat rectangular surfaces in the room, and a mechanism
for associating web content with each. Applications can
use this interface to make intelligent layout decisions
according to the physical properties of the room. Second,
the detection sandbox lets applications declaratively place
content relative to objects in the room, without revealing
the presence or locations of these objects. Third, satellite
screens let applications display content across devices
registered with SurroundWeb.

A. Contributions

This paper makes the following contributions:

• We implement SurroundWeb, a novel 3D web
browser built on top of Internet Explorer. Sur-
roundWeb lets web pages display content across
multiple surfaces in a room, run across multiple
phones and tablets, and to take natural user inputs.

• To resolve the tension between privacy and func-
tionality, we propose three novel abstractions: room
skeleton, detection sandbox, and satellite screens.

• We define the notions of detection privacy, rendering
privacy, and interaction privacy as key properties
for privacy in immersive applications, and show how
SurroundWeb provides these properties.

• We evaluate the privacy and performance of Sur-
roundWeb. To evaluate privacy, we survey users
recruited through a professional survey provider and
ask them about the information revealed by Sur-
roundWeb compared to legacy approaches.1 We
discover that SurroundWeb has acceptable perfor-
mance through benchmarking the rendering and lay-
out speed of the room skeleton and detection sandbox.

B. Paper Organization

The rest of this paper is organized as follows. In Sec-
tion II, we discuss the threat model, and provide an
overview of SurroundWeb. Section III describes our
abstractions for immersive rendering. Section IV describes

1Prior to running our surveys, we reviewed our questions, the data
we proposed to collect, and our choice of survey provider with our
institution’s group responsible for protecting the privacy and safety
of human subjects.

Fig. 1: Architectural diagram of SurroundWeb. Items below
the thick line are considered trusted, and items with solid
borders are off-the-shelf components.

key privacy properties for immersive applications, and
how SurroundWeb’s abstractions provide these prop-
erties. Section V presents the implementation of Sur-
roundWeb, and Section VI contains an evaluation of our
design decisions and an assessment of the performance of
our prototype. Section VII discusses the limitations of our
approach alongside future work, and Section VIII describes
related work. Finally, Section IX concludes.

II. Overview

In this work, we focus on the scenario where the com-
puter, its operating system, the sensor hardware, and
SurroundWeb itself are trusted, but SurroundWeb is
executing an untrusted third-party web page or applica-
tion. The SurroundWeb environment is identical to the
browser sandbox used in regular browsers, except it has
been augmented with SurroundWeb interfaces. As a
result, the web application can only access sensor data
and display devices indirectly through trusted APIs that
we describe in this paper.

Figure 1 displays SurroundWeb’s system diagram,
with trusted components below the thick line and off-
the-shelf components with solid borders. SurroundWeb
consists of two main parts: the SurroundWeb API,
which extends the browser API with immersive rendering
support, and the SurroundWeb Renderer, which is re-
sponsible for interacting with sensors and display devices.
Like in a regular web browser, web pages have no direct
access to native resources (including sensors and displays),
and are restricted to the interfaces furnished to them
through JavaScript, HTML, and CSS.

Just like regular CSS, SurroundWeb supports both
absolute and relative placement of web content within
a room. For SurroundWeb, the notion of placement

432432

CSS SurroundWeb

Placement Example Placement Example

Absolute #picture {position: absolute; top:400px;} Room-location-aware
<segment screen="4">

</segment>

Content is placed at an absolute location, relative to the content’s
parent element. The example places a picture 400 pixels below its
parent element.

Content is placed in an absolute location in the room. The example
places picture.jpg on screen 4, which corresponds to a surface in
the room.

Relative #picture {position: relative; right: 50px;} Object-relative #picture {left-of: "chair";}

Content is placed at a location relative to its normal position in
the document. Here, a picture is shifted 50 pixels to the right.

Content is placed relative to a recognized object in the room. Here,
a picture is placed to the left of a chair.

Fig. 2: SurroundWeb supports positioning web content in the room in a way that is analogous to CSS positioning.

(a) Car racing news site. (b) Virtual windows (c) Road maps (d) Projected
awareness IM

Fig. 3: Four web applications enabled by SurroundWeb, shown with multiple projectors and an HDTV.

needs to be adapted to the context of 3D rendering.
Figure 2 describes how SurroundWeb provides room-
level positioning that is analogous to CSS positioning. Just
like in the case of regular CSS, control over placement
given to the web page or application opens the door to
possible privacy violations. Liang et al. describe how CSS
features like customizable scrollbars and media queries can
be used to learn information about the user’s browser and,
in some cases, to sniff information about browsing histories
with the help of sophisticated timing attacks [16].

III. SurroundWeb Abstractions

We augment the browser with two privacy-preserving
immersive rendering interfaces: the room skeleton for
room-location-aware rendering tasks, and the detection
sandbox for object-relative rendering tasks. We also dis-
cuss satellite screens, which are an extension to the room
skeleton that let applications display across devices. We
introduce these abstractions with the help of example
applications, described in Figures 3 and 4, which clarify
their intent and utility.

A. The Room Skeleton

The room skeleton reveals the location and dimensions
of all flat renderable surfaces in the room to the application
as JavaScript objects, and exposes an API for displaying
HTML content on each. We call these renderable surfaces
screens. SurroundWeb handles rendering and projecting
the content into the physical room. Using this interface,

applications can perform room-location-aware rendering.
Figure 5 visualizes the data that the room skeleton pro-
vides to the application.

Room Setup: In a static room, SurroundWeb can
construct the room skeleton in a one-time setup phase,
and can reuse it until the room changes. First, the setup
process uses a depth camera to locate flat surfaces in
the room that are large enough to host content. Next, it
discovers all display devices that are available and deter-
mines which of them can show content on the detected
surfaces. The process for doing this differs depending on
the display device. Head-mounted displays can support
rendering content on arbitrary surfaces, but projectors
are limited to the area they project onto. For projectors,
monitors, and televisions, SurroundWeb maps device
display coordinates to room coordinates; this process can
be automated using a video camera. Finally, the setup pro-
cess discovers which input events are supported for which
displays. For example, a touchscreen monitor supports
touch events, and depth cameras can be used to support
touch events on projected flat surfaces [25].

Runtime: At runtime, the application receives only the
set of screens in the room. Each screen has a resolution,
a measure of pixel density (points-per-inch), a relative
location to other screens, and a list of input events that can
be accepted by the screen. For example, these input events
include “none,”“mouse,” or “touch.” Applications can use
this information to dynamically adapt how it presents its

433433

Application Requires Description

SurroundPoint Room Skeleton Each screen in the room becomes a rendering surface for a room-wide presentation (see
Figure 6).

Car Racing News Site Room Skeleton Live video feed displays on a central monitor, with racing results projected around it (see
Figure 3a).

Virtual Windows Room Skeleton ”Virtual windows” render on surfaces around the room that display scenery from distant
places (see Figure 3b).

Road Maps Room Skeleton Active map area displays on a central screen, with surrounding area projected around it
(see Figure 3c).

Projected Awareness IM [3] Room Skeleton Instant messages display on a central screen, with frequent contacts projected above (see
Figure 3d). This is an example of Focus+Context from UI research [2].

Karaoke Room Skeleton Song lyrics appear above a central screen, with music videos playing around the room (see
Figure 10).

Advertisements Detection Sandbox Advertisements can register content to display near particular room objects detected by the
detection sandbox without knowing their locations or presence.

Calorie Informer Detection Sandbox The Calorie Informer displays calorie count and serving information by recognized food
products without knowing what products the user has.

SmartGlass [20] Satellite Screens Xbox SmartGlass turns a smartphone or tablet into a second screen; a web page can use
satellite screens to turn a smartphone or tablet into an additional screen.

Multiplayer Poker Satellite Screens Each user views their cards on a satellite screen on a smartphone or tablet, with the public
state of the game displayed on a surface in the room.

Fig. 4: Web applications and immersive experiences that are possible with SurroundWeb.

Raw Data Room Skeleton Detection Sandbox

Fig. 5: Our room skeleton and detection sandbox abstractions reveal significantly less information than raw sensor data. Here,
we visualize the information that these interfaces provide to the application. The detection sandbox reveals nothing, as the
application provides content to be rendered near objects, but is not informed if the content is rendered or if the object is present.

content in response to the capabilities of the room.
The application can associate HTML content with a

screen to display content in the room. SurroundWeb
uses a standard off-the-shelf browser renderer to render the
content, and then displays it in the room according to in-
formation discovered at setup time. If the screen supports
input events, the application can use existing standard web
APIs to register event listeners on the HTML content.

Example 1 (SurroundPoint) SurroundPoint is a full-
room presentation application pictured in Figure 6. While
traditional presentation software is limited to a single
screen, SurroundPoint can display information around the
entire room. Each slide in a SurroundPoint presentation
has “main” content to present on a primary display, plus
optional additional content. By querying the room skele-
ton, SurroundPoint adapts the presentation to different
room layouts.

Consider the case where the room has only a sin-
gle 1080p monitor and no projectors, such as running on
a laptop or in a conference room. Here, the room skeleton
contains only one screen: a single 1920×1080 rectangle.

Fig. 6: The SurroundPoint presentation application uses the
room skeleton to render an immersive presentation with least
privilege. This image displays SurroundPoint running in our
SurroundWeb prototype.

Based on this information, SurroundPoint knows that it
should show only the “main” content.

In contrast, consider the room shown in Figure 5.

434434

This room contains multiple projectable screens, exposed
through the room skeleton. SurroundPoint can detect that
there is a monitor plus additional peripheral screens that
can be used for showing additional content. �

B. The Detection Sandbox

Advances in object detection make it possible to quickly
and relatively accurately determine the presence and loca-
tion of many objects or people in a room. Object detec-
tion enables object-relative rendering, where an application
specifies that content should be rendered by an object in
the room. For example, an application can detect if the
user is holding a bottle of medicine, then show instructions
for safely using the medicine as an “annotation” to the
bottle. However, object detection is a privacy challenge be-
cause the presence of objects, such as particular medicines,
can reveal sensitive information about a user’s life. This
creates a tension between privacy and functionality.

Our detection sandbox provides least privilege for
object-relative rendering. All object recognition code runs
as part of trusted code in SurroundWeb. Applications
register HTML content up front with the detection sand-
box using a system of rendering constraints that can
reference physical objects.

After the application loads, the detection sandbox im-
mediately renders all registered content, regardless of
whether or not it will be shown in the room. In doing
so, we prevent the application from using tracking pix-
els to determine the presence of an object [29]. Then,
SurroundWeb checks registered content against a list of
objects detected. If there is a match, the detection sandbox
solves the rendering constraints to determine a rendering
location, and places the content in the room.

Constraint solving occurs asynchronously on a separate
thread from the web application, preventing the appli-
cation from directly timing constraint solving to infer
whether or not an object is present. In addition, to prevent
the application from determining the presence of an object,
the detection sandbox suppresses user input events to the
registered content and does not notify the application if
content is displayed in the room. In Section V, we show
how applications specify rendering constraints via CSS and
discuss the FLARE constraint solver [28].

Example 2 (Object-contextual ads) An application
can register an ad to display if an energy drink can is
present. When the can is placed in view of a camera in the
room, the detection sandbox detects that the can is present
and also detects that the application has registered content
to display if an energy drink is present. The detection
sandbox then displays the content, which in this case is
an ad encouraging the user to drink tea instead. The
application, however, never learns if the content displays
or if the can is present.

With our detection sandbox, we cannot support users
clicking on ads, because the input event would leak the

presence of the object to the application. However, we be-
lieve that we can leverage the sizeable amount of previous
work on privacy-preserving ad delivery to make interaction
possible in the future [9, 32]. We discuss this idea in more
detail in Section VII. �

C. Satellite Screens

In our discussion of the room skeleton above, we talked
about exposing fixed, flat surfaces present in a room as
virtual screens for content. Today, however, many people
have personal mobile devices, such as smartphones or
tablets. To accommodate these devices, we extend the
room skeleton with remote displays that we call satellite
screens.

Satellite screens let applications build multi-player ex-
periences without needing to explicitly tackle creating a
distributed system. By navigating to a URL of a cloud
service, phones, tablets, or anything with a web browser
can register a display with the room skeleton of a par-
ticular SurroundWeb instance. JavaScript running on
the cloud service discovers the device’s screen size and
input capabilities, then communicates these to the room
skeleton. The room skeleton surfaces each device to the
application as a new screen, which can be rendered to like
any other surface in the room. When a user closes the
web page, the cloud service notifies the room skeleton to
remove the screen from the room skeleton.

Example 3 (Private displays for poker) Satellite
screens enable applications that need private displays. For
example, a poker application might use a shared high-
resolution display to show the public state of the game.
As players join personal phones or tablets as satellite
screens, the application shows each player’s hand on her
own device. Players can also make bets by pressing input
buttons on their own device. �

IV. Privacy Properties

Our abstractions provide three privacy properties: de-
tection privacy, rendering privacy, and interaction privacy.
We explain each in detail, elaborating on how we provide
them in the design of our abstractions. We then discuss
important limitations and how they may be addressed.

A. Detection Privacy

Property: Detection privacy means that an application
can customize its layout based on the presence of an object
in the room, but the application never learns whether
the object is present or not. Without detection privacy,
applications could scan a room and look for items that
reveal sensitive information about a user’s lifestyle.

For example, an e-commerce application could scan a
room to detect valuable items, make an estimate of the
user’s net worth, and then adjust the prices it offers
to the user accordingly. For another example, an appli-
cation could use optical character recognition to “read”
documents left in a room, potentially learning sensitive

435435

information such as social security numbers, credit card
numbers, or other financial data.

Because the presence of these objects is sensitive, these
privacy threats apply even if the application has access to
a high-level API for detecting objects and their properties,
instead of raw video and depth streams [11]. At the same
time, as we argued above, continuous object recognition
enables new experiences. Therefore, detection privacy is
an important goal for balancing privacy and functionality
in immersive room experiences.

Mechanism: The detection sandbox provides detection
privacy. Our threat model for detection privacy is that
applications are allowed to register arbitrary content in
the detection sandbox. This registration takes the form
of rendering constraints specified relative to a physical
object’s position, which tell the detection sandbox where
to display the registered content. The rendering process is
handled by trusted code in SurroundWeb, which inter-
nally renders content regardless of the object’s presence to
defeat tracking pixels. SurroundWeb also blocks input
events to this content. As a result, the application never
learns whether an object is present or not, no matter what
is placed in the detection sandbox. However, our approach
places limitations on applications, both fundamental to the
concept of the detection sandbox and as artifacts of our
current approach. We discuss these in detail in Section VII.

B. Rendering Privacy

Property: Rendering privacy means that an application
can render content into a room, but it learns no infor-
mation about the room beyond an explicitly specified
set of properties needed to render. Without rendering
privacy, applications would have access to additional in-
cidental information, which may be sensitive in nature.
For example, many existing immersive room applications
process raw camera data directly to determine where to
render content. The raw camera feed can contain large
amounts of incidental sensitive information, such the faces
of children or documents in front of the camera. However,
the application needs access to a subset of this data so it
can intelligently determine where to place virtual objects
in the physical room. Therefore, rendering privacy is an
important goal for balancing privacy and functionality in
immersive room experiences.

Mechanism: The challenge in rendering privacy is cre-
ating an abstraction that follows the principle of least
privilege for rendering, which we accomplish through the
room skeleton. Our threat model for rendering privacy is
that applications are allowed to query the room skeleton
to discover screens, their capabilities, and their relative
locations, as we described above. Unlike with the detection
sandbox, we explicitly allow the web server to learn the
information in the room skeleton. The rendering privacy
guarantee is different from the detection private guarantee,
because in this case we explicitly leak a specific set of in-
formation to the application, while with detection privacy

we leak no information about the presence or absence of
objects. User surveys in Section VI show that revealing
this information is acceptable to users.

C. Interaction Privacy

Property: Interaction privacy means that an application
can receive natural user inputs from users, but it does
not see other information such as the user’s appearance
or how many people are present. Interaction privacy is
important because sensing interactions usually requires
sensing people directly. For example, without a system
that supports interaction privacy, an application that uses
gesture controls could potentially see a user while she
is naked or see faces of people in a room. This kind of
information is even more sensitive than the objects in the
room. Therefore, interaction privacy is an important goal
for balancing privacy and functionality in immersive room
experiences.

Mechanism: We provide interaction privacy through a
combination of two mechanisms. First, trusted code in
SurroundWeb runs all natural user interaction detection
code, such as gesture detection. Just as with the detection
sandbox, applications never talk directly to gesture detec-
tion code. This means that applications cannot directly
access sensitive information about the user.

Second, we map natural user gestures to existing UI
events, such as mouse events. We perform this remapping
to enable interactions with applications even if those ap-
plications have not been specifically enhanced for natural
gesture interaction. These applications are never explicitly
informed that they are interacting with a user through
gesture detection, as opposed to through a mouse and
keyboard. Our choice to focus on remapping gestures to
existing UI events does limit applications. In Section VII
we discuss how this could be relaxed while maintaining
our privacy properties.

V. Implementation

Excluding external dependencies, our SurroundWeb
prototype is written in 10K lines of C#, and 1.5K lines
of JavaScript. We describe how we implement the core
SurroundWeb abstractions from Section III, and how we
expose the abstractions to web applications in a natural
manner. We discuss how SurroundWeb extends CSP to
let web sites safely embed content from other origins using
iframes. We walk the reader through writing the frontend
to a karaoke web application, which illustrates how easy
it is to write a SurroundWeb application, and describe
a variety of items we have built using our prototype.

A. Abstraction Implementations

Our SurroundWeb prototype works with instru-
mented rooms, each of which contains multiple projec-
tors and Kinect sensors. SurroundWeb uses the Kinect
sensors to scan the geometry of the room, then uses the
projectors to display application content at appropriate

436436

places in the room. Figure 1 displays an architectural
diagram of the prototype.

Content rendering: The prototype uses the C# Web-

Browser component to render HTML content in Internet
Explorer. The prototype maps the rendered content to
room locations, which are mapped back to display device
coordinates. The prototype displays the content at the
resulting display coordinates.

Room skeleton: The room skeleton exposes the sizes and
relative locations of flat surfaces in the physical room that
are able to display content. Our prototype constructs the
room skeleton offline using KinectFusion [22]. Since Kinect
depth data is very noisy, the prototype applies custom
filters to the data stream that smooth the data to make
it simpler to identify flat surfaces. Once the prototype
detects the flat surfaces, it maps each back to display
device coordinates.

Detection sandbox: The detection sandbox lets appli-
cations place content relative to recognized objects in the
room without leaking the presence of those objects to the
application. Our prototype detection sandbox consists of
two core components: object detection to detect and locate
objects in the physical room, and constraint solving to
determine where to place web content in the room.

To detect objects, our prototype runs object classifiers
on continuous depth and video feeds from Kinect cameras.
While detecting arbitrary objects is a difficult computer
vision problem, existing experiences use QR-like identifiers
to recognize objects, which can be read using consumer-
grade cameras. In addition, while our prototype is limited
to vision-based object detection, object detection can be
accomplished through other means, such as through RFID
tags or sensors located in objects. After an object is
detected, the prototype checks the current web page for
registered content, then updates its rendering of the room.

SurroundWeb compiles the location of detected ob-
jects and application-specified object-relative content lo-
cations into 3D constraints. These constraints are fed into
the FLARE constraint solver, which finds appropriate
room coordinates for the content [28]. SurroundWeb
uses these coordinates to render content appropriately in
the room.

Satellite screens: We host a SurroundWeb satellite
screen service in Microsoft Azure. Users point their phone,
tablet, or other device with a browser to a specific URL
associated with the running SurroundWeb instance.
The front end runs JavaScript that discovers the browser’s
capabilities, then sets a cookie in the browser containing
a screen unique identifier and finally registers this new
screen with a service backend. The screen appears in the
room skeleton as a new renderable surface with no location
information, and the Azure service proxies user input to
SurroundWeb.

Natural user interaction: The prototype uses the
Kinect SDK to detect people and gestures [19]. Figure 7

Fig. 7: SurroundWebmaps natural gestures to mouse events.
Here, the user uses a standard “push” gesture to tell Sur-
roundWeb to inject a click event into the web application.

Property Description

getAll() (Static) Returns an array of all of screens in the room.

id A unique string identifier for this screen.
ppi The number of pixels per inch.
height Height of the screen in pixels.
width Width of the screen in pixels.
capabilities List of JavaScript events supported on this screen.
location Location of the screen in the room as an object literal,

with fields ul (upper-left) and lr (lower-right) each
containing an object literal with x, y, and z fields.

Fig. 8: Properties of each screen object, which are exposed
through JavaScript.

shows a photograph of SurroundWeb detecting that the
user is performing a pushing gesture over a particular part
of the wall. After a gesture is detected, SurroundWeb
maps the gesture to a generic mouse or keyboard event,
then injects that event into the running web page.

B. API Design

The prototype exposes the room skeleton, satellite
screens, and detection sandbox to web pages through
extensions to HTML, CSS, and JavaScript. We briefly
describe these extensions below.

Room skeleton: To display content on a screen in the
room skeleton, the application must first identify which
screen it wants to use. The application queries for available
screens by calling Screen.getAll(). Figure 8 displays all
of the properties available on each Screen object. Then, it
must encapsulate the web content in a <segment> HTML
tag, which is a new tag that we add to the web platform.
The segment tag must have a screen property with the
relevant screen’s id value assigned. Once this is done, the
content will appear in the room on the specified screen.

// Display tweet on first screen in room skeleton.
$(’#tweet ’).attr(’screen ’, Screen.getAll ()[0].id);

<segment id="tweet"><div class="tweet">
@TypeScriptLang: TypeScript 1.4 now available! Now

with union types , type aliases , better inference ,
and more ES6 support!

</div ></segment >

437437

Constraint Description

left-of Place the segment to the left of the object.

right-of Place the segment to the right of the object.

above Place the segment above the object.

below Place the segment below the object.

valign Vertically align the segment with the object relative
to the plane perpendicular to the ground.

halign Horizontally align the segment with the object rela-
tive to the ground.

Fig. 9: Our prototype lets applications specify object-relative
layout constraints on content via new CSS properties. These
can be applied to segment HTML elements, which we add to
the web platform. Each property takes a list of object names.

Satellite screens: The process for displaying content on
a satellite screen is identical to displaying content on a
screen in the room skeleton. Satellite screens appear in
the list of screens returned through Screen.getAll(), so
applications simply associate their id with the segment it
wishes to display on each.

Detection sandbox: Our prototype augments CSS to
support object-relative content positioning in the room.2

Web applications encapsulate the web content in a <seg-

ment> tag, and specify object-relative CSS constraints on
the tag. We describe the constraints that our prototype
supports in Figure 9, which translate into FLARE 3D
constraints in a straightforward manner [28].

// Advertise lightbulb prices near a lamp in the room.
#lightbulb -prices { left -of: "lamp" }

<segment id="lightbulb -prices"><div class="prices">
GE 60-Watt Incandescent Light Bulbs: 4 for $6.49 @

Amazon.com
</div ></segment >

C. Embedding Web Content

We now discuss how to handle embedding of content
from different origins inside of a web page running in
SurroundWeb. In this discussion, we use the same web
site principal as defined in the same-origin policy (SOP)
for SurroundWeb web pages, which is labeled by a web
site’s origin: the 3-tuple 〈protocol, domainname, port〉.

In an effort to be backward-compatible and to preserve
concepts that are familiar to the developer, we extend the
security model present on the web today: SurroundWeb
web pages can embed content from other origins, such
as scripts and images, and can use Content Security Pol-
icy (CSP) to restrict which origins it can embed particular
types of content from. Like in the web today, scripts em-
bedded from other origins will have full access to the web
page’s Document Object Model (DOM), which includes all
browser APIs, SurroundWeb interfaces, and segments
defined by the web page.

We preserve this property for compatibility reasons,
as many current web sites and JavaScript libraries rely

2Since we are unable to modify Internet Explorer’s CSS engine, our
prototype implementation exposes constraints through equivalent
HTML attributes on segment elements.

Fig. 10: The Karaoke application uses the room skeleton
to make room layout decisions. The application dynamically
decides to show a video on the high resolution TV. Lyrics and
photos go on projected screens, and related videos are projected
on the table.

on the ability to load popular scripts, such as jQuery,
from Content Distribution Networks (CDNs). Since Sur-
roundWeb extends HTML, JavaScript, and CSS, these
existing libraries for web sites will still have utility in
SurroundWeb.

Web pages can use the iframe tag to safely embed
content from untrusted origins without granting them
access to SurroundWeb’s interfaces. In the current web,
a frame has a separate DOM from the embedding site. If
the frame is from a different origin than the embedding
site, then the embedded origin and the embedding origin
cannot access each other’s DOM. We extend CSP to allow
web pages to control whether or not particular origins
can access the SurroundWeb interfaces from within a
frame. If a web page denies an embedded origin access
to these interfaces, then the iframe will render as it
does today: to a fixed-size rectangle that the embedding
origin can control the placement of. If the web page allows
an embedded origin access to these interfaces, then the
iframe will be able to render content in the room skeleton
and detection sandbox.

D. Walkthrough: Karaoke Application

To illustrate how a web page can be developed using
SurroundWeb, we will walk through a sample Karaoke
application, shown in Figure 10.

This web page renders karaoke lyrics above a central
screen, with a video on the central screen and pictures
around the screen. Related songs are rendered on a table.
The web page contains the following HTML:

<segment id="lyrics"><!--Lyrics HTML --></segment >
<segment id="video"><!--Video HTML --></segment >
<segment id="related">

<!--Related songs HTML --></segment >

The web page must scan the room skeleton to assign the
segments specified in the HTML to relevant screens.
1) Using JavaScript, the web page locates the vertical
screen with the highest resolution, which will contain the
video:

438438

<html ><head >
<script type="text/javascript">

// Wait for HTML to load before running code.
window.onload = function () {

var screens = Screen.getAll (), bigVScn , maxPpi = 0;
function isVertical(scn) {

var scnLoc=scn.location ,ul=scnLoc.ul,lr=scnLoc.lr,
zDelta = Math.abs(ul.z - lr.z),
xDelta = Math.abs(ul.x - lr.x),
yDelta = Math.abs(ul.y - lr.y);

return zDelta > xDelta || zDelta > yDelta;
}
// Find the highest resolution vertical screen
screens.forEach(function(scn) {

if (isVertical(scn) && scn.ppi > maxPpi)
bigVScn = scn;

maxPpi = bigVScn.ppi;
});
// Assign video to screen.
document.getElementById(’video ’)

.setAttribute(’screen ’, bigVScn.id);

var aboveScn , bigLoc = bigVScn.location;
screens.forEach(function(scn) {

if (! isVertical(scn) || scn === bigVScn) return;
var scnLoc=scn.location ,ul=scnLoc.ul,lr=scnLoc.lr;
if (lr.z > bigLoc.ul.z) {

// scn is above bigVScn
if (aboveScn) {

// Is scn closer to bigVScn than aboveScn?
if (aboveScn.location.lr.z > lr.z)

aboveScn = scn;
}
else aboveScn = scn;

}
});

// Assign lyrics to screen.
document.getElementById(’lyrics ’)

.setAttribute(’screen ’, aboveScn.id);

var bigHScn , maxArea = 0;
screens.forEach(function(scn) {

var area = scn.height*scn.width;
if (! isVertical(scn) && area > maxArea) {

maxArea = area; bigHScn = scn;
}

});
// Assign related videos to screen.
document.getElementById(’related ’)

.setAttribute(’screen ’, aboveScn.id);

// Assign random related media to other screens.
screens.forEach(function(scn) {

if(scn !== aboveScn &&scn!= bigHScn &&scn!= bigVScn)
renderMedia(scn);

});
function renderMedia(scn) {

var newSgm = document.createElement(’segment ’);
newSgm.setAttribute(’screen ’, scn.id);
newSgm.appendChild(constructRandomMedia ());
document.body.appendChild(newSgm);

}
};

</script ></head >
<body >

<segment id="lyrics"><!--Lyrics HTML --></segment >
<segment id="video"><!--Video HTML --></segment >
<segment id="related" ><!--Related songs HTML -->

</segment >
</body ></html >

Fig. 11: The complete SurroundWeb code for the Karaoke Application.

var screens = Screen.getAll (), bigVScn , maxPpi = 0;
function isVertical(scn) {

var scnLoc=scn.location ,ul=scnLoc.ul,lr=scnLoc.lr,
zDelta = Math.abs(ul.z - lr.z),
xDelta = Math.abs(ul.x - lr.x),
yDelta = Math.abs(ul.y - lr.y);

return zDelta > xDelta || zDelta > yDelta;
}
// Find the highest resolution vertical screen
screens.forEach(function(scn) {

if (isVertical(scn) && scn.ppi > maxPpi)
bigVScn = scn;

maxPpi = bigVScn.ppi;
});
// Assign video to screen.
document.getElementById(’video ’)

.setAttribute(’screen ’, bigVScn.id);

2) The web page determines the closest vertical screen
above the main screen, and renders the karaoke lyrics to
it. In the code below, z is the distance from the floor:

var aboveScn , bigLoc = bigVScn.location;
screens.forEach(function(scn) {

if (! isVertical(scn) || scn === bigVScn) return;
var scnLoc=scn.location ,ul=scnLoc.ul,lr=scnLoc.lr;
if (lr.z > bigLoc.ul.z) {

// scn is above bigVScn
if (aboveScn) {

// Is scn closer to bigVScn than aboveScn?
if (aboveScn.location.lr.z > lr.z)

aboveScn = scn;
}
else aboveScn = scn;

}
});
// Assign lyrics to screen.
document.getElementById(’lyrics ’)

.setAttribute(’screen ’, aboveScn.id);

3) For the listing of related videos, the application locates
the largest horizontal screen in the room:

var bigHScn , maxArea = 0;
screens.forEach(function(scn) {

var area = scn.height*scn.width;
if (! isVertical(scn) && area > maxArea) {

maxArea = area; bigHScn = scn;
}

});
// Assign related videos to screen.
document.getElementById(’related ’)

.setAttribute(’screen ’, aboveScn.id);

4) Finally, the application assigns random media to render
on other screens:

screens.forEach(function(scn) {
if(scn !== aboveScn &&scn!= bigHScn &&scn!= bigVScn)

renderMedia(scn);
});
function renderMedia(scn) {

var newSgm = document.createElement(’segment ’);
newSgm.setAttribute(’screen ’, scn.id);
newSgm.appendChild(constructRandomMedia ());
document.body.appendChild(newSgm);

}

Now that the rendering code has finished, the karaoke
application can update each screen in the same manner
that a vanilla web site updates individual HTML elements
on the page. Figure 11 shows all of the rendering code put
together. Should the chosen configuration be suboptimal

439439

Fig. 12: Using our adaptation library, a 3D-cube demo runs
across multiple surfaces in our SurroundWeb prototype after
a simple one-line change. While the demo believes it is drawing
a 3D scene to a single HTML5 canvas, it is actually drawing
the scene across three SurroundWeb screens.

for the user, the Karaoke application can provide controls
that allow the user to dynamically choose the rendering
location of the segments.

E. Application Showcase

Using the SurroundWeb prototype, we implemented
room-wide presentation software, a soda can object detec-
tor, and a JavaScript library that adapts existing HTML5
canvas applications to work across screens in the room
skeleton.

Room-wide presentations: SurroundPoint is a room-
wide presentation application where each slide can span
multiple surfaces in the room. A SurroundPoint presenta-
tion can be seen in Figure 6. Each slide contains “main”
content, and a set of optional additional content. By
querying the room skeleton, SurroundPoint adapts the
presentation to different environments. We used Surround-
Point to deliver multiple presentations to the press [21, 31].

Soda can detector: We implemented a soda can detector
that supports detecting different types of soft drink cans
using a nearest-neighbor classifier based on color image
histograms. When the classifier detects a soda can, the
detector alerts the detection sandbox, which updates the
rendering of the room. Note that object detectors are
considered to be a trusted part of SurroundWeb, and
web pages do not directly interact with them.

Adapting existing web content: Since SurroundWeb
merely adds additional features to the web platform, exist-
ing web sites already function in SurroundWeb, but they
are limited to a single screen. To ease the transition into
a multi-screen layout, we wrote a JavaScript library called
JumboTron that automatically adapts applications that
use the HTML5 canvas element to render across multiple
surfaces in the room. The library detects screens in the
room skeleton that are close together, and creates distinct
canvas elements for each screen. It then binds the canvas
elements together in a JumboTron object, which emulates
the canvas interface. The application interacts with the
JumboTron object, which proxies the input to the relevant

sub-canvases. Figure 12 displays a three.js demo that
required a one-line change to use our library and render
across surfaces.

VI. Evaluation

The focus of this evaluation is two-fold. We want to
evaluate whether our abstractions deliver adequate privacy
guarantees, which we do via a user study, and whether the
performance of SurroundWeb is acceptable.

A. Privacy

To evaluate the privacy of our abstractions, we con-
ducted two surveys of random US Internet users using
the Instant.ly survey service [33]. Below are the research
questions we were trying to address via surveys and the
answers we discovered experimentally.

• RQ1: Is the information revealed by specific ab-
stractions considered less sensitive than raw data?
(Yes) We asked this question to evaluate whether our
abstractions in fact mitigate privacy concerns.

• RQ2: Do user privacy preferences change depend-
ing on the application asking for data? (Yes) We
asked this question to evaluate whether follow-on
work should support different abstractions or different
permissions for different web pages.

• RQ3: Is there a difference in user perceived sensitivity
between giving the relative locations of flat surfaces
vs. just stating the dimensions of flat surfaces? (No)
We asked this question because we were not sure
whether to include relative locations in the room
skeleton; the answer justified including them because
it increased functionality without changing perceived
sensitivity of data given to the application.

We did not ask any questions that required participants to
supply us with personally identifiable information. Prior to
running our surveys, we reviewed our questions, the data
we proposed to collect, and our choice of survey provider
with our institution’s group responsible for protecting the
privacy and safety of human subjects.

Room skeleton sensitivity: The first survey measures
user privacy attitudes toward the information that the
room skeleton reveals to applications. The survey began
with a briefing, summarizing the capabilities commonly
available to immersive experiences. Next, we showed users
two pictures: a color picture of a room, and a visualization
of the data exposed from that room in the room skeleton.
Figure 14 displays these pictures. The survey asked the
following question: Only consider the information explictly
displayed in the two images. Which image contains more
information that you consider “private”? We also asked
respondents to justify their answer in a free-text field.
Finding 1: Out of 50 respondents, 78% claimed that
they felt that the raw data was more sensitive than the
information that the room skeleton exposes to web pages.
However, we noticed from the written justifications that
some people did not understand the survey and answered

440440

(a) Large flat
surfaces: size
(height and width)
and orientation
(standing up/laying
down)

(b) Location of
large flat surfaces

(c) Head position

(d) Hand positions (e) Body position (f) Face

(g) Raw image

Fig. 13: Survey participants chose which data should be given
to three hypothetical applications by choosing zero or more of
the above options.

Fig. 14: Excerpt from our room skeleton sensitivity survey. We
asked users which image contains more information that they
consider private; 87.5% believe the raw image contains more
private information.

randomly. Others mistakenly chose the information they
felt was most sensitive. After filtering out the random
respondents and accounting for those who misinterpreted
the question, 87.5% claimed that they felt the raw data
was more sensitive than the information in the room
skeleton. This supports our choice of data to reveal in the
room skeleton.

Application-specific surveys: Our second survey ex-
plores a broader set of possible data that could be released
to applications in the context of different application sce-
narios. We presented 50 survey-takers with three different
application descriptions: a “911 Assist” application that
detects falls and calls 911, a “Dance Game” that asks users
to mimic dance moves, and a “Media Player” that plays
videos. We asked them which information they would feel
comfortable sharing with each application. Participants
chose from the visualizations of different data available
to SurroundWeb shown in Figure 13. Participants could
choose all, some, or none of the choices as information they
would be comfortable revealing to the application. Then,
we asked participants to justify their answer in a free-text
field. From this survey, we have the following findings:
Finding 2: Users have different privacy preferences for
different applications. For example, when asked about a
hypothetical 911 Assist app, one person stated, “It seems
like it would only be used in an emergency and only
communicated to emergency personnel”, and another said
“Any info that would help with 911 is worth giving”. Users
were more skeptical of releasing information to the dance
game; one user stated,“A dance game would not need more
information than the general outline or placements of the
body”. In some cases respondents thought creatively about
how an application could use additional information; one
respondent suggested that the Video Player application
could adjust the projection of the video to “where you
are watching”. These support a design that supports fine-
grained permission levels for individual applications, which
we view as future work.
Finding 3: Users did not distinguish between the sensitiv-
ity of screen sizes and room geometry. Screen sizes includes
the number, orientation, and size of screens, but does not
include their positions in the room. Room geometry refers
to the information revealed through our room skeleton
abstraction. Before conducting our surveys, we hypothe-
sized (RQ3) that users would find room geometry to be
more sensitive than screen sizes. In fact, our data does
not confirm this hypothesis. In response to this finding, we
decided that the room skeleton would expose the room’s
geometry.

B. Performance

Room skeleton performance: SurroundWeb per-
forms a one-time scan of a room to extract planes suitable
for projection, using a Kinect depth camera. Figure 15
shows the results of scanning three fairly typical rooms we
chose. No room took longer than 70 seconds to scan, which
is reasonable for a one-time setup cost.

Detection sandbox constraint solving time: Sur-
roundWeb uses a constraint solver to determine the
position of segments that web sites register with the detec-
tion sandbox in the room without leaking the presence or
location of an object to the web application. The speed
of the constraint solver is therefore important for web

441441

Room type Scanning Time (s) # Planes Found

Living room # 1 30 19
Office 70 7
Living room #2 17 13

Fig. 15: Scanning times, in seconds, and results for three
representative rooms.

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100

Co
ns

tr
ai

nt
 so

lv
in

g
tim

e
(s

ec
)

Number of segments

Fig. 16: Solver performance as the number of segments reg-
istered with the detection sandbox increases. The error bars
indicate 95% confidence intervals.

applications that use the detection sandbox. Note that
constraint solving occurs on its own thread, so applications
have no way of measuring this information. We considered
two scenarios for benchmarking the performance of the
constraint solver.

• We considered the scenario where the web appli-
cation registers only constraints of the form “show
this segment near a specific object.” Figure 16 shows
how solving time increases for this scenario as the
number of registered content segments in a single web
application grows. While we expect pages to have
many fewer than 100 segments registered with the
detection sandbox, the main point of this experiment
is that constraint solving time scales linearly as the
number of segments grow.

• Next, we considered the scenario where the web page
uses the solver for a more complicated layout. We
tested a scene with 12 detected objects and 8 con-
tent segments. We created a “stress” script with 30
constraints, including constraints for non-overlap in
area between segments, forcing segments to have
specified relative positions, specified distance bounds
between segments in 3D space, and constraints on the
line of sight to each segment. The constraints were
solved in less than 4 seconds on one core of an Intel
Core i7 2.2 GHz processor.

In both cases, only segments that use constraints incur
latency. Note that since the constraint solver operates on
its own thread, the constraint solver does not delay the
display of content rendered via the room skeleton.

0

10

20

30

40

50

60

70

0 20 40 60 80 100

Fr
am

es
 p

er
 se

co
nd

 (F
PS

)

Number of 192x108 screens

0

10

20

30

40

50

60

70

540x480 810x640 1440x720 1920x1080
Fr

am
es

 p
er

 se
co

nd
 (F

PS
)

Screen size

Fig. 17: On the left, maximum rendering frame rate as the
number of same-size screens increases. On the right, the maxi-
mum rendering frame rate of a single screen as its size increases.
Error bars indicate 95% confidence intervals.

Rendering performance: We ran a benchmark that
measures how fast our prototype can alter the contents of
HTML5 canvas elements mapped to individual screens.
Figure 17 displays the results. In the left configuration,
the benchmark measures the frame rate as it increases
the number of 192×108 screens. To stress the novel pieces
of the SurroundWeb rendering pipeline, we must ren-
der across multiple screens. For a single screen, Sur-
roundWeb simply uses the embedded Trident rendering
engine from Internet Explorer.

In the right configuration, the benchmark measures the
frame rate as it increases the size of a single screen. When
there are 25 or fewer screens and screens with resolution
up to 1,440×720, the prototype maintains an acceptable
frame rate above 30 FPS. These numbers could be im-
proved by tighter integration into the rendering pipeline of
a web browser. At present, our prototype must copy each
frame multiple times and across language boundaries, as
our prototype is written in C# but we embed a native
WebBrowser control. Despite these limitations, our proto-
type achieves reasonable frame rates.

442442

VII. Limitations and Future Work

Detection, Rendering, and Interaction privacy presented
in Section IV are variations on a theme: enabling least
privilege for immersive room experiences. In each case,
we provide an abstraction that supports immersive expe-
riences while revealing minimal information. We discuss
limitations to the privacy properties provided by our
abstractions and limitations to our abstraction implemen-
tations in SurroundWeb, along with other future work.

Social engineering: Applications can ask users to explic-
itly tell them if an object is present in the room or send
information about the room to the site. These attacks are
not prevented by our abstractions, but they also could be
carried out by existing applications.

Browser fingerprinting: Browser fingerprinting allows a
web page to uniquely identify a user based on the instance
of her browser. Our interfaces add new information to the
web browser that could be used to fingerprint the user,
such as the location and sizes of screens in the room.
We note that browser fingerprinting is far from a solved
problem, with recent work showing that even seemingly
robust countermeasures fail to prevent fingerprinting in
standard browsers [1, 24]. We also do not solve the browser
fingerprinting problem.

Clickjacking: Clickjacking is the problem of a malicious
site overlaying UI elements on the elements of another site,
causing the malicious site to intercept clicks intended for
the other site [10]. As a result, the browser takes an un-
expected action on behalf of the user, such as authorizing
a web site to access the user’s information.

SurroundWeb forbids segments to overlap, guarantee-
ing that a user’s input on a screen is received by the visible
segment. This property allows web sites to grant iframes
access to the SurroundWeb API with the assurance that
the iframe cannot intercept screen input events intended
for the embedding site.

However, because SurroundWeb extends the existing
web model, it is possible that a web site has embedded a
malicious script that uses existing web APIs to create an
overlay within the segment. Thus, SurroundWeb does
not solve the clickjacking problem as it is currently faced
on the web. That said, we also do not make the clickjacking
problem worse, and we do not believe our abstractions
introduce new ways to perform clickjacking.

Side channels: The web platform allows introspection on
documents, and different web browsers have subtly differ-
ent interpretations of web APIs. Malicious JavaScript can
use these differences and introspection to learn sensitive
information about the user’s session. One key example is
history sniffing, where JavaScript code from malicious web
applications was able to determine if a URL had been
visited by querying the color of a link once rendered.
While on recent browsers this property is not directly
accessible to JavaScript, recent work has found multiple

interactive side channels which leak whether a URL has
been visited [16, 36].

Because SurroundWeb extends the web platform, side
channels that exist on the current web are still present
in SurroundWeb. For the detection sandbox, we avoid
these side channels by having a separate trusted renderer
place object-relative content registered by applications.
Application interactions with the detection sandbox are
strictly one-way; the application hands content and con-
straints to the detection sandbox, and has no way to query
the content to determine its room location, or determine if
the content is displayed in the room at all. The detection
sandbox renders content immediately, regardless of if it
appears in the room or not, to prevent the application
from using tracking pixels or Web Bugs to determine if
content is displayed [29]. Furthermore, applications receive
no input from content placed in the detection sandbox. In
this way we isolate the content in the detection sandbox
and mitigate potential side channels that could potentially
reveal to the application whether the content is present
and, if so, where.

There may also be new side channels that reveal sensi-
tive information about the room. For example, although
constraint solving occurs on its own thread, performance
may be different in the presence or absence of an object
in the room. For another example, our mapping from
natural gestures to mouse events may reveal that the user
is interacting with gestures or other information about
the user. Characterizing and defending against such side
channels is future work.

Extending the detection sandbox: In our prototype,
the detection sandbox allows only for registering content to
be displayed when specific objects are detected. We could
extend this to enable matching the color of an element
to the color of a nearby object. As a further step, web
applications might specify portions of a page or entire
pages that are allowed to have access to object recognition
events, in exchange for complete isolation from the web
server.

These approaches would require careful consideration
of how to prevent leaking information about the presence
of an object through JavaScript introspection on element
properties or other side channels. We could use informa-
tion flow control to prevent sensitive information from
affecting data sent back to web servers, but implement-
ing sound information flow tracking for all of JavaScript
and its natively-implemented browser environment with-
out unduly impacting performance presents a formidable
challenge.

The current detection sandbox is limited to trusted
object classifiers, preventing applications from providing
application-specific object classifiers. The detection sand-
box could be extended to support untrusted object classi-
fiers through native sandboxing [27]. These untrusted clas-
sifiers would be provided with raw sensor data, and would
be able to alert the detection sandbox when they detect

443443

objects, but would not be able to leak any information
outside of the sandbox.

Our detection sandbox does appear to rule out server-
side computation dependent on object presence, barring a
sandboxed and trusted server component. For example,
cloud-based object recognition may require sandboxed
code on the server.

Supporting clickable object-relative ads: Because our
sandbox prevents user inputs from reaching registered
content, in our prototype users can see object-dependent
ads but cannot click on these ads. Previous work on
privacy-preserving ads has suggested locally aggregating
user clicks or using anonymizing relay services to fetch
additional ad content [9]. We could use these approaches
to create privacy-friendly yet interactive object-dependent
ads.

VIII. Related Work

SurroundWeb bridges the gap between emerging re-
search in HCI on augmented reality rendering abstrac-
tions and research in security on preserving user privacy
in augmented reality settings. Table 18 summarizes the
capabilities that these research systems surface compared
with SurroundWeb.

A. Regulating Access to Sensor Data

Existing research in security focuses explicitly on reg-
ulating sensor data provided to untrusted applications;
none provide any capabilities for rendering content in an
augmented reality environment. This research is orthog-
onal to SurroundWeb, and could be applied to expose
rich sensor data to 3D web pages in a privacy-preserving
manner.

Darkly [12] performs privacy transforms on sensor in-
puts using computer vision algorithms (such as blurring,
extracting edges, or picking out important features) to
prevent applications from extracting private information
from sensor data. For sensitive information, Darkly pro-
vides the application with opaque references that it can
pass to trusted library routines, and allows the application
to apply basic numerical calculations to the data. Darkly
also provides a trusted GUI component, but applications
are unable to introspect on the GUI’s contents, which is
an important feature on the web. In addition, Darkly does
not view the presence of input events on the trusted GUI
as sensitive, whereas SurroundWeb must necessarily
block input events to content registered with the detection
sandbox to prevent the application from learning which
objects are in the room.

As a separate approach to the same problem, previous
work introduced the recognizer abstraction to provide
applications with the appropriate permissions access to
higher-level data constructed from sensor data by trusted
code in the OS [5, 11]. SurroundWeb itself uses a trusted
recognizer to map natural user input to existing web
events. πBox takes a third approach to this problem, and

sandboxes code that interacts with sensitive sensor infor-
mation [15]. SurroundWeb’s detection sandbox, which
uses a constraint-based layout system, could be extended
to support full-fledged sandboxed layout decisions that
make use of sensitive sensor information.

B. High-level Rendering Abstractions

On the other hand, recent research in HCI has created
useful abstractions for rendering content in an augmented
reality environment, but they are either limited in func-
tionality or reveal potentially sensitive information to the
application. Many of these abstractions can be reimple-
mented completely or partially in SurroundWeb to pre-
serve user privacy. Illumiroom uses projectors combined
with a standard TV screen to create gaming experiences
that “spill out” of the TV and into the room, but to do
this the application has access to the raw sensor feed [13].
SurroundWeb can create a similar experience using its
room skeleton abstraction.

Panelrama lets web pages intelligently split their content
across local devices using a “Panel” abstraction, but it
makes layout decisions using only static device prop-
erties, such as screen size, rather than data available
through sensors, such as room location [37]. In addition,
because Panelrama does not depend on support in the
web browser, application developers must explicitly man-
age state synchronization across multiple communicating
pages, each with their own DOM tree. In contrast, with
SurroundWeb the developer writes a single page with
all elements in the same DOM tree. Panelrama could be
reimplemented on top of SurroundWeb’s room skeleton
and satellite screens, and extended to incorporate room
location into its layout algorithm.

Layar uses tags in printed material and GPS coordinates
to superimpose interactive content relative to a tagged
object or location in a mobile phone’s camera feed [14].
Unlike with SurroundWeb’s detection sandbox, access-
ing Layar content reveals to the application that the user
either possesses the tagged object, or that the user is near
a tagged physical location. The Argon mobile browser
extends HTML to let web applications place content at
particular GPS locations, which the user can view through
her mobile phone [7]. Like with Layar, viewing and loading
this content reveals to the application that the user is
near a tagged GPS location. SurroundWeb avoids this
side channel by immediately loading and rendering any
content registered with the detection sandbox, regardless
of whether or not it will be displayed in the room.

C. Access Control

Recent work on world-driven access control restricts sen-
sor input to applications in response to the environment,
e.g. it can be used to disable access to the camera when in a
bathroom [26]. Mazurek et al. surveyed 33 users about how
they think about controlling access to data provided by a
variety of devices, and discovered that many user’s mental

444444

Field Related work Application Sensor Input Rendering Support
Unrestricted Filtered Sandboxed Object Presence Multi-device Room-location-aware Object-relative

Security SurroundWeb � � � � �
Darkly [12] �
OS-level Recognizers [11] �
World-driven ACL [26] �
πBox [15] �

HCI Illumiroom [13] � �
Panelrama [37] �
Layar [14] � �
Argon [7] � �

Fig. 18: Summary of related work in security and HCI. Emerging research in security focuses solely on restricting application
access to sensitive sensor data, while HCI research generally focuses on application rendering capabilities without considering
their privacy implications. SurroundWeb bridges the gap between these two bodies of research.

models of access control are incorrect [18]. Vaniea et al.
performed an experiment to determine how users notice
and fix access-control permission errors depending on
where the access-control policy is spatially located on a
website [34].

D. Browser Privacy

Previous research in web security has unearthed a va-
riety of privacy issues in existing web browsers. While a
great deal of focus has been on stateful user tracking via
cookies and policies such as DoNotTrack, there are some
inherent additional issues with browser design that may
compromise privacy.

Most notably, a variety of methods exist for history
sniffing, which allow web sites to learn about users’ visits
to other sites. Weinberg et al. describe an interactive side
channel that leak whether a URL has been visited [36].
Liang et al. discovered a novel CSS timing attack for
sniffing browser history [16].

Nikiforakis et al. [23] propose a way to combat browser-
based stateless fingerprinting by applying randomization
policies. These are evaluated to minimize page breakage
they might cause. This approach is proposed as a com-
plement to the private browsing mode designed to protect
against stateful fingerprinting.

Other security research discusses browser fingerprinting,
which allows a web page to uniquely identify a user based
on the instance of the browser. The work of Mayer [17]
and Eckersley [6] presents large-scale studies that show
the possibility of effective stateless web tracking via only
the attributes of a user’s browsing environment. These
studies prompted some follow-up efforts [8, 35] to build
better fingerprinting libraries. Yen et al. [38] performed a
fingerprinting study by analyzing month-long logs of Bing
and Hotmail and showed that the combination of the User-
agent HTTP header with a client’s IP address were enough
to track approximately 80% of the hosts in their dataset.

Chapman and Evans show how side channels in web
applications can be detected with a black box approach;
future work could apply this technique to search for de-
tection sandbox side channels [4].

IX. Conclusion

This paper presents SurroundWeb, the first 3D web
browser that enables web applications to project web con-
tent into a room in a manner that follows the principle of
least privilege. We described three rendering abstractions
for the web platform that support a wide variety of ex-
isting and proposed immersive experiences while limiting
the amount of information revealed to acceptable levels.
The room skeleton lets applications place web content on
renderable surfaces in the room. The detection sandbox
lets applications declaratively place web content relative
to objects in the room without revealing any object’s
location or presence. Satellite screens let applications dis-
play content across multiple devices. We defined detection
privacy, rendering privacy, and interaction privacy as
key properties for privacy in immersive applications, and
demonstrate that our interfaces provide these properties.
Finally, we validated that our two abstractions reveal an
acceptable amount of information to applications through
user surveys, and demonstrated that our prototype imple-
mentation has acceptable performance.

Acknowledgements

We thank Lydia Chilton for suggesting the terms “room
skeleton” and “detection sandbox.” We thank Janice Tsai
for help with survey design and human protection review.
We thank Doug Burger, Hvroje Benko, Shuo Chen, Lydia
Chilton, Jaron Lanier, Dan Liebling, Blair MacIntyre,
James Mickens, Meredith Ringel Morris, Lior Shapira,
Scott Saponas, Margus Veanes, and Andy Wilson for
helpful discussions and feedback. We also thank the anony-
mous reviewers for their useful feedback, which greatly
improved this paper.

References

[1] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Gürses,
F. Piessens, and B. Preneel. FPDetective: Dusting the Web for
Fingerprinters. In Proceedings of the Conference on Computer
& Communications Security, 2013.

[2] P. Baudisch, N. Good, and P. Stewart. Focus plus context
screens: Combining display technology with visualization tech-
niques. In Proceedings of the Symposium on User Interface
Software and Technology, 2001.

445445

[3] J. Birnholtz, L. Reynolds, E. Luxenberg, C. Gutwin, and
M. Mustafa. Awareness beyond the desktop: exploring attention
and distraction with a projected peripheral-vision display. In
Proceedings of Graphics Interface, 2010.

[4] P. Chapman and D. Evans. Automated black-box detection of
side-channel vulnerabilities in web applications. In Proceedings
of the Conference on Computer and Communications Security,
2011.

[5] L. D’Antoni, A. M. Dunn, S. Jana, T. Kohno, B. Livshits,
D. Molnar, A. Moshchuk, E. Ofek, F. Roesner, S. Saponas,
M. Veanes, and H. J. Wang. Operating System Support for
Augmented Reality Applications. In Workshop on Hot Topics
in Operating Systems, 2013.

[6] P. Eckersley. How Unique Is Your Browser? In Proceedings of
the Privacy Enhancing Technologies Symposium, 2010.

[7] B. M. et al. Argon Mobile Web Browser, 2013. https:
//research.cc.gatech.edu/kharma/.

[8] E. Flood and J. Karlsson. Browser Fingerprinting. Master of
Science Thesis, Chalmers Univesity of Technology, 2012.

[9] S. Guha, B. Cheng, and P. Francis. Privad: Practical Privacy
in Online Advertising. In Proceedings of the Symposium on
Networked Systems Design and Implementation, 2011.

[10] R. Hansen and J. Grossman. Clickjacking. http://www.
sectheory.com/clickjacking.htm.

[11] S. Jana, D. Molnar, A. Moshchuk, A. Dunn, B. Livshits, H. J.
Wang, and E. Ofek. Enabling fine-grained permissions for
augmented reality applications with recognizers. In Proceedings
of the USENIX Security Symposium, 2013.

[12] S. Jana, A. Narayanan, and V. Shmatikov. A Scanner Darkly:
Privacy for Perceptual Applications. In Proceedings of the IEEE
Symposium on Security and Privacy, 2013.

[13] B. R. Jones, H. Benko, E. Ofek, and A. D. Wilson. IllumiRoom:
Peripheral Projected Illusions for Interactive Experiences. In
Proceedings of the Conference on Human Factors in Computing
Systems, 2013.

[14] Layar. Layar Solutions, 2015. https://www.layar.com/
solutions/.

[15] S. Lee, E. L. Wong, D. Goel, M. Dahlin, and V. Shmatikov. Box:
A Platform for Privacy-Preserving Apps. In Proceedings of the
Symposium on Networked Systems Design and Implementation,
2013.

[16] B. Liang, W. You, L. Liu, W. Shi, and M. Heiderich. Scriptless
timing attacks on web browser privacy. In Proceedings of the
IEEE/IFIP International Conference on Dependable Systems
and Networks, 2014.

[17] J. R. Mayer. Any person... a pamphleteer. Senior Thesis,
Stanford University, 2009.

[18] M. L. Mazurek, J. P. Arsenault, J. Bresee, N. Gupta, I. Ion,
C. Johns, D. Lee, Y. Liang, J. Olsen, B. Salmon, R. Shay,
K. Vaniea, L. Bauer, L. F. Cranor, G. R. Ganger, and M. K.
Reiter. Access Control for Home Data Sharing: Attitudes, Needs
and Practices. In Proceedings of the Conference on Human
Factors in Computing Systems, 2010.

[19] Microsoft Corporation. Kinect for Windows SDK, 2013. http:
//www.microsoft.com/en-us/kinectforwindows/.

[20] Microsoft Corporation. Xbox SmartGlass, 2014. http://www.
xbox.com/en-US/SMARTGLASS.

[21] D. Molnar, E. Ofek, and Microsoft Corporation. SurroundWeb:
Spreading the Web to Multiple Screens. http://research.
microsoft.com/apps/video/?id=212669.

[22] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgib-
bon. KinectFusion: Real-time dense surface mapping and track-
ing. In Proceedings of the IEEE International Symposium on
Mixed and Augmented Reality, 2011.

[23] N. Nikiforakis, W. Joosen, and B. Livshits. PriVaricator:
Deceiving Fingerprinters with Little White Lies. In Proceedings
of the International World Wide Web Conference, 2015.

[24] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel,
F. Piessens, and G. Vigna. Cookieless Monster: Exploring the
Ecosystem of Web-based Device Fingerprinting. In Proceedings
of the IEEE Symposium on Security and Privacy, 2013.

[25] K. Parrish. Kinect for Windows, Ubi Turns Any Surface into
Touch Screen, 2013. http://www.tomshardware.com/news/

kinect-ubi-touch-screen-windows-8-projector,23887.
html.

[26] F. Roesner, D. Molnar, A. Moshchuk, T. Kohno, and H. J.
Wang. World-Driven Access Control. In Proceedings of the
Conference on Computer and Communications Security, 2014.

[27] D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko, K. Schimpf,
B. Yee, and B. Chen. Adapting Software Fault Isolation to Con-
temporary CPU Architectures. In Proceedings of the USENIX
Security Symposium, 2010.

[28] L. Shapira, R. Gal, E. Ofek, and P. Kohli. FLARE: Fast
Layout for Augmented Reality Applications. In Proceedings of
the IEEE International Symposium on Mixed and Augmented
Reality, 2014.

[29] R. M. Smith. The Web Bug FAQ, 1999. https://w2.eff.org/
Privacy/Marketing/web_bug.html.

[30] S. Stamm. Plugging the CSS History Leak, 2010. http://mzl.
la/1mzshEY.

[31] R. Taylor. Internet everywhere? How the web could be
on every surface of a room. http://www.bbc.com/news/
technology-27243375.

[32] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and
S. Barocas. Adnostic: Privacy Preserving Targeted Advertising.
In Proceedings of the Network and Distributed System Security
Symposium, 2010.

[33] uSample. Instant.ly survey creator, 2013. http://instant.ly.
[34] K. Vaniea, L. Bauer, L. F. Cranor, and M. K. Reiter. Out of

sight, out of mind: Effects of displaying access-control infor-
mation near the item it controls. In Proceedings of the IEEE
Conference on Privacy, Security and Trust, 2012.

[35] V. Vasilyev. fingerprintjs library. https://github.com/Valve/
fingerprintjs, 2013.

[36] Z. Weinberg, E. Y. Chen, P. R. Jayaraman, and C. Jackson. I
Still Know What You Visited Last Summer. In Proceedings of
the IEEE Symposium on Security and Privacy, 2011.

[37] J. Yang and D. Wigdor. Panelrama: Enabling easy specification
of cross-device web applications. In Proceedings of the Confer-
ence on Human Factors in Computing Systems, 2014.

[38] T.-F. Yen, Y. Xie, F. Yu, R. P. Yu, and M. Abadi. Host
Fingerprinting and Tracking on the Web: Privacy and Security
Implications. In Proceedings of the Network and Distributed
System Security Symposium, 2012.

446446

