10. Usable Access Control
ENEE 757 | CMSC 818V

Prof. Tudor Dumitraș
Assistant Professor, ECE
University of Maryland, College Park

http://ter.ps/757
https://www.facebook.com/SDSAtUMD

Today's Lecture

• Where we’ve been
 – Passwords
 – Biometrics
 – Kerberos
 – Authorization logic

• Where we’re going today
 – Usability issues in access control

• Where we’re going next
 – Security of Internet protocols
Security and Usability

- Software systems interact with humans
 - Administrators, end users

- Humans are participants in the security protocols
 - Trusted participants => human failures can compromise the system’s security!
 - Security features are no good if humans can’t use them or turn them off
 - Assignment from Lecture 6: have you enabled 2-factor authentication in Gmail?
 - A system isn’t secure if users always make mistakes
 - Example: choosing weak passwords

- In practice, a system cannot be secure unless it is usable

Example: Access Control Lists

UNIX permissions:
- rwx
- rwx
- rwx

AFS permissions
- owner
- group
- other

What are my effective permissions? Who else has access?
The Confused Deputy Problem

• Say I want to give Wei access to the reviews for today’s reading assignment
 – I must set up permissions so that Wei can access the reviews file and the folder where it is located
 – What other files can he access?
 • Can he read confidential information about other students?
 • Can he insert a backdoor in my script to make it look that has submitted a homework even though he did not?

• In this case, the AFS reference monitor is a “confused deputy”
 – I wanted to give Wei access to a single file
 – But the ACL permission model allows him to do additional things
 – I need to think carefully about what permissions I grant proactively
 • This is a usability issue!

2003 Senate Judiciary Committee Data Breach

• Republican clerk discovers that he can access the home directories of Democratic staffers
 – Reports, memos, etc. make their way to Republican staff and press

• Home directories set up with open permissions by confused system administrator
 – Was not instructed on setting the correct permissions
 – Assumed that access was restricted by some other means
Many Other Examples of Incorrect Permissions

Students suspended after seeing topless picture of teacher on school-issued iPad

What College Admissions Don't Like Seeing On Facebook: Vulgarity, Drinking, 'Illegal Activities'

Boss Allegedly Downloaded Nude Photos From Employee's Cell Phone, Showed Them Around The Office

How to Make User Interfaces Usable?

500 OOPS: child died

OK
Eight Golden Rules of Interface Design

[Ben Shneiderman]

1. Strive for consistency
 - Prompts, commands, actions
2. Enable frequent users to use shortcuts
 - Experts desire to increase the pace of interaction
3. Offer informative feedback
 - What does “child died” mean to user who never took an OS class?
4. Design dialog to yield closure
 - Confirm outcome of sequence of actions
5. Offer simple error handling
 - Design system so that user cannot make errors
6. Permit easy reversal of actions
 - Undo capability makes user more comfortable with the system
 - How to undo a security breach?
7. Support internal locus of control
 - Users should be initiators of actions rather than responders
8. Reduce short-term memory load
 - Keep displays simple, consolidate multiple pages, reduce window motion

Usability Problems for ACL Interfaces

Typically present a list of permission rules for users and groups

- **Scale**
 - Only one rule at a time is visible

- **Hierarchies**
 - Effective permissions may depend on the permissions of the parent folder

- **Groups**
 - Group membership information is not visible

- **Rule conflicts**
 - When rules interact, it isn’t clear what the outcome will be
The Expandable Grid Interface

[Reeder, Bauer, Cranor, Reiter, Vaniea CHI 2008, CHI 2011]

- Shows effective policy instead of policy rules
- Shows both user hierarchies (groups) and file hierarchies (folders)
- Shows entire policy on one screen

Tag Based Policy

- Determine access policies to semantic groups of files (specified by tags), rather than individual files and folders
- Alice lets Bob view files with type=photo and album=vacation_photos
 - Minimize policy mismatch: intended vs. specified
 - Allow fine-grained policy
 - Users prefer tags to folders (think iTunes)
 - File hierarchies vs. tags (semantic naming)
Logic-Based Access Control

Alice

Bob open(vacation_photos)

Prove Bob says open(vacation_photos) → Alice says open(vacation_photos)

Need Bob speaksfor Alice or similar credential

Options presented to Alice:

- Grant Bob credential to access VacationPhotos
- Add Bob to group CloseFriends who already have access
- Give Bob same rights as Charlie, who has access

Proof of Bob says open(vacation_photos) → Alice says open(vacation_photos)

Proof of Alice says open(vacation_photos)

Logic-Based Access Control – cont’d

- Provides high assurance of correctness

- Meaningful audit trail

- Allows fine-grained control, flexible policy
 - Users can create temporary access credentials
 - Useful for controlling access to physical resources, e.g. doors
 - Provide temporary access to email without revealing information that could be used at a later time or to access a different resource
 - Such as passwords
 - Can create complex access control credentials
 - Example: any three colleagues may access the resource when acting together, but at least three must cooperate to gain access
Application Example: The Grey Access Control System
[Bauer et al., ISC’05]

- Access control system for virtual and physical resources (e.g. doors)
- Deployed in CMU’s Collaborative Innovation Center
 - Approximately 40 Grey-capable doors and 30+ users at the moment
 - Could also log into workstations using Grey-compatible Windows XP and Linux login modules
 - Access-control module for web servers
- Used distributed theorem prover
 - Additional requirements
 - System design led to new requirements
 - Interactive credential creation (to react to access requests)

Application Example: The Perspective File System
[Salmon, Schlosser, Cranor, Ganger, FAST’09]

- Distributed file system aimed at home storage management
 - Aimed at non-technical users
 - Semantic groups (tags)
 - Peer-to-peer architecture (no master storage server)
- Key concept: view (semantic query + device)
 - Files matching the query are stored on the device
 - Allows users to manipulate file replicas
 - Using expandable grid -like interface
 - Access control
 - To grant access, allow the requester to store a replica on his device
 - Done reactively
 - File replication also provides fault tolerance
 - System computes replication degree automatically
How to Determine If A System Is Usable?

- Quantitative study
 - You have numbers (timing data, ratings of awesomeness)

- Qualitative study
 - You have non-numerical data (thoughts, opinions, types of errors)

Data to Collect In A Study

- Independent vs. dependent variables
- Performance (time, success rate, errors)
- Opinions and attitudes

 Please respond to the following statements:
 This user interface was difficult to understand
 1- Strongly disagree 2- Disagree 3- Neutral 4- Agree 5- Strongly agree

 This tool was fun to use
 1- Strongly disagree 2- Disagree 3- Neutral 4- Agree 5- Strongly agree

- Audio recording, screen capture, video, mouse movements, keystrokes
- Formative (initial) vs. summative (validate)
Even More Data To Collect

- Demographics
 - Age, gender, technical background, income, education, occupation, location, disabilities, first language, privacy attitudes, etc.

- Open-ended questions

Study Designs

- Between subjects
 - Each participant tests 1 version of the system
 - You compare the participant groups
 - Groups should be similar (verify!)
 - Avoid systematic bias introduced by gender, age, experience level, etc.

- Within subjects
 - Every participant tests everything
 - Very important to randomize order!
 - Avoid uncontrolled factors that are functions of time, place or experimental units
 - Fewer participants

- The data analysis depends on the study design
Sources

• Various slides from Lorrie Cranor, Lujo Bauer and Michelle Mazurek

Logistics

• On Monday, we are starting the Network Security module

• Survey for improving the course content and format in the future
 – Log into Elms at http://elms.umd.edu
 – CMSC818V > Quizzes
 • Elms calls this a “quiz” but it’s not graded
 • Your responses are anonymized
 – Please answer all 8 questions
Review of Lecture

• What did we learn?
 - Usability challenges for access control lists
 - Potential solutions: expandable grid, semantic tags, logic-based access control
 - System examples: Grey, Perspective
 - Rules for interface design and for user studies

• Paper discussion: “Exploring Reactive Access Control”
 - Discussion lead: Wei
 - Scribe: Ziyun

• What’s next?
 - Security of Internet protocols