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HACKING WITHOUT HUMANS

The Mayhem Cyber Reasoning System
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Mayhem, one of the first generation of autonomous computer security bots that finds and fixes 

vulnerabilities without human intervention, won the DARPA Cyber Grand Challenge in August 2016. 

In this article, we detail Mayhem’s creation and look forward to a future where autonomous bots will 

radically improve computer system security.

We are losing the battle against criminals who break 
into our computer systems. The reason: we rely 

only on humans to find new vulnerabilities and fix them. 
What if, however, we did not need to rely on human effort 
alone to find vulnerabilities? What if we could build intel-
ligent computer bots that can find and fix vulnerabilities? 
And what if these intelligent bots could reduce the time to 
identify and remediate a vulnerability from human time 
scales—days, months, or years—to computer time scales 
of milliseconds?

The art of securing computer systems and processes 
against malicious actors has a broad frontier. DARPA’s 
Cyber Grand Challenge (CGC) explored a new technol-
ogy on the forefront of cybersecurity: the cyber reason-
ing system (CRS). A CRS is a fully autonomous system 
that takes complete responsibility for defending a set of 
software services. CRSs competing in the Cyber Grand 
Challenge demonstrated techniques in all core cyberse-
curity areas, including automatically developing firewall 
rules to stop attack traffic, analyzing programs to find bugs 
before an attacker, and patching vulnerabilities in com-
piled programs without any access to source code. Soft-
ware defenses that might take human analysts hours, days, 
or weeks to develop and test were all deployed at machine 
speeds, on the order of tens of seconds, with no humans in 

the loop. This first generation of CRSs offers hope for an 
automatic first line of defense against attacks conducted 
using novel exploits on large scales at machine speeds, in 
addition to greatly tightening a defender’s response time 
to other, more typical attacks.

We are the authors, designers, and developers of 
Mayhem, the winning CRS in the Cyber Grand Challenge, 
and this article discusses the design and implementation 
of Mayhem, lessons learned while preparing for the chal-
lenge, and our key takeaways from the competition.

DARPA’s Cyber Grand Challenge
The CGC was a competitive, symmetric game played 
by seven fully autonomous CRSs and moderated by a 
“referee” scoring system. Here, we provide a brief over-
view of the game mechanics as well as the main ways in 
which CRS systems could attack and defend. We refer the 
interested reader to a presentation by the program man-
ager1 for a more comprehensive presentation of CGC.

Game Structure
The CGC was structured similarly to a networked 
“capture-the-flag” competition. Players raced to find, 
exploit, and fix software bugs in their services in an adver-
sarial environment in real time. The competition started 
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when the network was brought up. Each CRS was respon-
sible for a networked server running an identical set of 
vulnerable software services. The referee served up previ-
ously unknown vulnerable software throughout the game.

The referee brokered all communications during the 
game. Each CRS was on a different and isolated network 
so that CRSs could not communicate with each other. In 
addition, a CRS did not have direct control over the server 
running the vulnerable software services and could only 
interface with that server through the referee.

To score points (or avoid losing them), players had to 
perform three main tasks during the competition. First, 
they had to protect their software from adversaries by 
finding and patching vulnerabilities. Second, they needed 
to keep their software available, functional, and efficient. 
Third, they needed to exploit vulnerabilities in their adver-
saries’ software.

Players scored points by keeping their services run-
ning and exploiting the software of other teams, and lost 
points by damaging their own software or having their sys-
tems exploited. All exploit attempts were routed through 
the referee and mixed in with the referee’s tests, which 
checked that patches to the defended software had not 
broken its functionality or performance. At the end of 
each five-minute round, the referee calculated the scores 
for all the players based on which services they kept run-
ning, how performant and functional those services were, 
and whose services were exploited by whom.

All CGC services were run on the DECREE architec-
ture: a Linux variant with seven system calls and a cus-
tom executable format very similar to the binary format 
commonly used in Linux. This kept the scope of the engi-
neering effort within the reach of small teams, while also 
keeping the platform close enough to Linux for tools to 
require straightforward engineering to extend to produc-
tion systems. It also limited the damage teams could do to 
each other via exploitation.

Attacking
To attack a service, a CRS had to submit to the referee a 
program, called an exploit, that proved the existence of a 
security-critical software vulnerability in the target ser-
vice. The submitted “proof of vulnerability” (PoV) pro-
gram had to either gain code execution within the target 
service—which, in the real world, corresponds to taking 
over a server running that service—or manipulate the 
target service into leaking privileged data, a less versatile 
attack than hijacking a server but, as demonstrated by 
the infamous 2014 Heartbleed bug, a potentially serious 
vulnerability. Attacks against a particular service could 
be conducted up to 10 times per five-minute round. This 
meant that attacks did not need to be perfectly reliable, 
but an unreliable attack thrown many times increased 
the chances that the target would notice, patch their 

service, and reflect your exploit. Consequently, reliable 
and stealthy exploits were encouraged by the structure of 
the competition.

Defending
Each CRS had two independent methods to defend each 
of its services: intrusion detection and binary patching. To 
use the competition’s intrusion detection system, CRSs 
had to write firewall rules in a language similar to the 
Snort Intrusion Detection System (IDS) rule language 
and submit them to the referee, which then deployed 
them in front of a given service. We did not use the IDS 
functionality, as its performance impact on the protected 
services was difficult to predict. Instead our defense relied 
entirely on binary patching—finding vulnerabilities in the 
services themselves and fixing them at the machine-code 
level. Typically, when vendors release a security patch, 
they make modifications to the program’s source and 
recompile. We did not have the luxury of source, and con-
sequently patching correctly was quite challenging.

A pivotal aspect of the CGC was that deployed firewall 
rules and patches were harshly penalized for disrupting the 
operation of services. This could occur either by misiden-
tifying legitimate network traffic as an attack, introduc-
ing a bug into the service that caused it to malfunction, or 
degrading the performance of the service. The correctness 
and performance of a service were reflected by an “availabil-
ity score” calculated by the CGC referee. Availability scores 
began to drop steeply at 5 percent overhead compared to an 
unpatched service with no firewall rules. Despite this high 
bar, after optimizing our patches for performance, most of 
the patches we deployed suffered negligible performance 
penalty: out of the seven patches that were scored by the 
referee, our average overhead was 2.64 percent for time and 
0.98 percent for memory. All had perfect functionality.

In addition, to represent the cost of distributing 
a patch across a defended network, whenever a CRS 
deployed a patch or a network filter for a service, the 
referee took that CRS’s copy of that service down for 
a round, effectively giving a 0 availability score for one 
round every time you patched. This made deploying a 
buggy patch very expensive—you lost a round of points 
when you deployed it, lost points every round that it was 
deployed, and then lost another round of points when 
you deployed a replacement patch.

These tradeoffs are not unique to the Cyber Grand 
Challenge. Network administrators commonly forgo 
applying security patches until they know the patches will 
not disrupt vital services. Vendors are careful to mention 
in security announcements how severe software vulner-
abilities are as well as whether the bugs are known to be 
exploited in the wild so that their customers can decide 
how detrimental not patching would be. Today, this data 
is gathered by humans, but an automated solution able to 
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optimize service availability without sacrificing security 
would be immensely valuable.

Scoring
Because the scoring algorithm drove many of our design 
decisions, we briefly describe it here. For each service, 
the score was calculated each round for a given CRS as 
follows:

Score � Availability � Security � Evaluation

Availability is the measure of performance and func-
tionality described above, security is 1 if any adversary 
proved a vulnerability in this CRS’s instance of the ser-
vice during this round and 2 otherwise, and evaluation 

is 
x

N
+
−

1
1

 where x is the number of competitors suc-

cessfully attacked on this service by the CRS, and N is the 
number of CRSs participating (which was seven).

The score for a given round is the sum of all the ser-
vices’ scores. Similarly, the total score of a CRS is the sum 
of its scores over all the rounds.

Mayhem Defense
Mayhem confirms and patches software flaws differently 
from a human developer or security analyst. When ana-
lyzing a service, Mayhem confirms a software flaw only 
when a test case that causes the service to crash or other-
wise exhibit potentially exploitable behavior is available. 
Mayhem has no access to the original source code or the 
specification of the application (while both are typically 
available to the developer). Mayhem only knows how a 
service actually behaves and that services should not crash 
or be exploitable. Thus, patches deployed by Mayhem aim 
to render identified software flaws unexploitable.

Mayhem patches are based on runtime property 
checking. For every identified flaw, Mayhem inserts intro-
spective checks into programs, similar to assertions that a 
developer might add. These checks verify runtime prop-
erties that are exceedingly likely to be true for a correctly 
operating C or C�� program, and not likely to be true 
for a CGC service that is being exploited. Specifically, a 
Mayhem patched service verifies at various points that 
it would not access memory at, or branch to, invalid or 
unusual addresses. Failing a check leads to safe termina-
tion of the service, preventing exploits from successfully 
completing.

Although these checks could be placed in thousands 
of locations throughout a service’s code, too many such 
assertions reduces performance. Mayhem places checks 
along any code paths that it found crashing test cases 
for, and also at a few heuristically identified points. 
Furthermore, Mayhem uses formal methods to elide 
checks that are proven unnecessary.

Mayhem is also capable of defending its services using 
several established exploit mitigation techniques: stack 
canaries, address randomization, data execution preven-
tion, and a simple tag-based control flow integrity (CFI) 
scheme. When utilized by a compiler, these mitigations can 
obviate entire classes of exploits, while rarely interfering 
with correct program behavior. Unfortunately, although 
introducing these mitigations into compiled services after 
the fact is possible, the added code may affect performance 
and/or functionality. Mayhem relies on its test case genera-
tion capabilities to verify that the inserted mitigations do 
not break the performance or functionality of services and 
to fall back to less comprehensive mitigation techniques 
when the performance overhead is unacceptable.

Binary patching is difficult. Even after deciding which 
checks and mitigations to insert where, Mayhem has to 
insert the patches and generate a functional, performant 
binary. Lacking source code, Mayhem patches services by 
directly editing the assembled processor instructions within 
the program. This is a nontrivial task because simply insert-
ing instructions into the middle of a program would break 
the various fixed addresses and relative offsets with which 
a program refers to itself. This is similar to how inserting 
pages into a printed book would render the page numbers 
in the index and table of contents inaccurate, but much 
more critical and much harder to fix. In the next section, 
we discuss the core approaches Mayhem follows for tack-
ling the practical issues of binary patching.

Binary Patching Techniques
Mayhem has two techniques for inserting patches (see 
Figure 1). Its preferred method, full-function rewriting 
(FFR), approaches the above challenge directly. FFR 
inserts patches into the middle of the program, and then 
attempts to repair the issues this causes by adjusting all 
addresses and offsets within the program accordingly. 
This is a tricky process, and our methods were not per-
fect: we relied fully on static analysis, which resulted in 
malfunctioning patched services on 0.57 percent of our 
test binaries. To ensure maximum reliability, we tested 
our methods daily on binaries released by the organizers 
and compiled across a variety of optimization levels dur-
ing development, for a total of 293 test binaries. In addi-
tion, during the competition Mayhem was careful to not 
deploy FFR-patched binaries until it had verified that they 
functioned as intended on the referee’s network traffic and 
generated test cases.

The other patching technique Mayhem employs is 
more conservative. Injection multipatching (IMP) avoids 
comprehensive modifications to programs by not insert-
ing patches into the middle of a program. Instead, IMP 
substitutes a branch instruction into the program at 
each location to be patched. These branch instructions 
jump into a custom section appended to the end of the 
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program, which contains the instructions implementing 
the patch—along with any instructions displaced by the 
branch. To continue the book metaphor, this is like over-
writing a sentence with “See Appendix A.” IMP is more 
reliable than FFR because it leaves the majority of the pro-
gram untouched, but the extra jumps to the added section 
increase the performance overhead of patched services.

Network Intrusion Detection
Mayhem did not use the network intrusion prevention 
system available to CRSs. Signature-based defenses like 
network filtering have trouble generalizing to defend 
against polymorphic exploit variants, and they might 
spuriously trigger on inputs that do not pose a threat to 
the service. Furthermore, they can inform other teams 
about the nature of the identified flaw. Mayhem’s patches 
are much less susceptible to these failure modes, because 
they catch attacks as they exploit critical software flaws, do 
not interfere with normal service operation, and include 
obfuscation.

Mayhem Offense
Mayhem’s offensive capabilities are based on generating 
test cases that demonstrate flaws in a target service. While 
humans tend to discover exploitable vulnerabilities by 
first identifying potentially flawed sections of code and 
then figuring out how to trigger that flaw, Mayhem needs 
to “see” a flaw occur before it can identify or attempt to 
exploit it. Mayhem makes up for this deficiency by gener-
ating and analyzing thousands of inputs per second, each 
of which could trigger a vulnerability.

Mayhem generates these test cases using a combina-
tion of gray box fuzzing and white box symbolic execu-
tion techniques. Other competing teams also combined  
the two.2

Symbolic Execution
Symbolic execution3 is a method for reasoning about 
the behavior of a program by building logical formulae 
that represent the program. The inputs to the program 
are treated as variables, and any value computed by the  
program—such as return values, or branch conditionals 
that affect choices the program makes—is represented as 
a function on these input variables. Using an SMT solver, 
these functions may be solved for a desired output value to 
calculate an input test case that ensures the program will 
reach a desired state.

Mayhem’s symbolic execution engine4 manipulates 
the branch conditionals within a program. By generat-
ing inputs that will result in the program having different  
values for the conditionals it computes, Mayhem forces 
the program to execute in a variety of different ways. This 
exercises different areas of code within a program under a 
variety of circumstances, exposing software flaws.

The specific strategy Mayhem uses to generate test 
cases is known as concolic execution. Starting from an 
arbitrary initial seed test case, Mayhem traces the con-
crete (nonsymbolic) execution of the target program on 
that test case, while simultaneously building symbolic 
formulae for values derived from the input. Every time 
Mayhem encounters a conditional branch, it uses the 
formula for the condition to produce a modified input 
test case that takes the other direction on the branch. 
We call this production of modified test cases forking. 
Mayhem also forks for values other than branch con-
ditionals, such as pointer values—this generates new 
test cases for which the program accesses memory dif-
ferently. As Mayhem traces the seed test case, it forks 
many times. After the program completes execution of 
the seed test case, Mayhem repeats the tracing process 
using the forked test cases as new seeds.

Figure 1. Injection multipatching (IMP) versus full-function rewriting (FFR) techniques. IMP clobbers some instructions to jump out to the 
patch body, located in a section at the end of the program. FFR inserts patches directly inline, but all program addresses are changed; many 
control flow instructions and code pointers must be updated accordingly.

0x1000: lea eax, [eax+edx+0x10]
0x1004: add DWORD PTR [edi], eax
0x1006: mov eax, DWORD PTR [eax+ecx]
0x1009: test eax, eax
0x100b: je 0x1105

0x1000: lea eax, [eax+edx+0x10]
0x1004: add DWORD PTR [edi], eax
0x1006: verify that[eax+ecx] is sane...
 . . .
0x10XX: mov eax, DWORD PTR [eax+ecx]
0x10XY: test eax, eax
0x10XZ: je 0x1XXX

0x1000: jmp 0x9000
0x1005: nop
0x1006: mov  eax, DWORD PTR [eax+ecx]
0X1009: test eax, eax
0x100b: je 0x1105

0x9000: lea eax, [eax+edx+0x10]
0x9004: add DWORD PTR [edi], eax
0x9006: verify that[eax+ecx] is sane...
 . . .
0x90XX: jmp 0x1006

Original code IMP patch FFR patch
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Repeatedly tracing all forked test cases as new seeds leads 
to exponential growth of the number of seeds, rapidly over-
whelming a system’s capability to process them all. This “path 
explosion problem” is not specific to concolic execution; it 
arises from the fact that even simple programs tend to have  
an exponentially large number of possible states to explore. 
Mayhem employed a novel technique called Veritesting,5 
which mitigates path explosion by merging similar seeds 
together; processing a single merged seed achieves explora-
tion equivalent to processing each of its constituent seeds.

During the CGC competition, our symbolic execu-
tion component found crashes for 62 of the 82 services, 
including five services that fuzzing did not crash.

Fuzzing
Our fuzzing was largely guided by the open source proj-
ect American Fuzzy Lop (AFL; http://lcamtuf.coredump 
.cx/afl). This tool was designed to do intelligent, fast fuzz-
ing using compile-time instrumentation to measure edge 
coverage in programs. Here, we describe some differences 
between AFL and our fuzzing.

As we did not have the source code for our target ser-
vices, Mayhem uses alternative techniques for gathering 
coverage information. The first technique uses our FFR 
patching infrastructure: we inserted a series of patches that 
implemented the necessary code coverage tracking and 
reporting mechanisms. Although this technique was com-
plicated and fragile, it allowed us to add many other useful 
features. For example, 32-bit comparisons were rewritten 
as four consecutive 8-bit comparisons to allow the fuzzer 
to make incremental progress with its random explora-
tion and mutation, without needing to randomly guess 
the correct 32-bit value. In addition, initialization done by 
the binary could be skipped and analysis could be deferred 
until the program began reading user input, greatly acceler-
ating fuzzing. In the end, FFR-assisted fuzzing allowed us 
to run the binary with negligible performance impact. In 
the rare event that FFR was not able to successfully patch 
the program, we fell back to a modified version of QEMU, 
as used by the AFL fuzzer. Although this was a safe option, 
it suffered a 100 to 900 percent performance hit.

During the qualifying event for the CGC, fuzzing 
helped us find bugs in 65 of the 131 binaries in 24 hours. 
Based on write-ups from other teams, this suggests that 
our fuzzer was far more effective than any fielded by any 
other team. Furthermore, continued improvements to 
our fuzzer between the qualifying and final events roughly 
doubled our bugs per hour; it found crashes in 92 of those 
131 binaries from the qualifying event in a 16-hour period 
just before the final event. During the final CGC event, 
fuzzing found crashes in 62 of the 82 services (five of 
which were not found by symbolic execution).

Both of these techniques—symbolic execution and 
fuzzing—make use of code coverage metrics, particularly 

edge coverage. Coverage-guided program exploration 
searches for test cases that reach parts of the target program 
that no other test case has reached before. By analyzing the 
frontier of test cases that achieved new coverage, more and 
more parts of the code will be explored over time. By using 
the same coverage metric for test case prioritization in our 
fuzzer and symbolic executor, we minimized the amount 
of work duplicated between the two components. Work-
ing together, the two systems found crashes for 67 of the 
82 services, just over 80 percent. Of the 57 crashes found 
by both components, symbolic execution found 27 before 
fuzzing, while fuzzing found 30 first.

Automatic Exploit Generation
After finding bugs, Mayhem had to exploit them. The 
Automatic Exploit Generation (AEG) component took 
in a CGC program (either an unpatched challenge binary 
or an opponent’s patched binary), an opponent’s network  
filter, and a crashing input and attempted to generate a 
PoV. To generate PoVs, we used a combination of black 
box and white box techniques. The black box AEG compo-
nent inferred the relation between the input string and the 
crashing state through input mutations, and then gener-
ated an input that demonstrated the desired condition for 
a PoV (EIP control or a leak of sensitive data). The white 
box AEG component symbolically executed the crashing 
path and attempted to satisfy the constraints necessary for 
exploitation. If the constraints were satisfiable, Mayhem 
used the solution to emit a PoV. In addition, those con-
straints might depend on the data sent by the service. For 
instance, a service might expect a client to replay a nonce 
it sent or to solve a simple mathematical CAPTCHA. In 
those scenarios, the PoV generated the input on the fly by 
querying an embedded SMT solver.

All generated PoVs were tested in the DECREE envi-
ronment to measure their reliability before deployment. 
At the end of the competition, Mayhem’s database con-
tained working PoVs for 18 services. This represents a 
lower bound on what we actually found, as our system 
deleted most (and sometimes all) PoVs for a challenge after 
that challenge was removed from the competition by the  
referee in order to free up disk space on the database node.

Mayhem Strategy
Strategy was an essential component. CRSs had to make 
strategic decisions throughout the game: Which bina-
ries to patch? Which patches to deploy? Which teams to 
attack, and with which exploits? Where should limited 
resources be spent?

A bad strategy could ruin the winning chances of an 
otherwise good CRS. A single bad decision could have 
disastrous consequences. Indeed, as all the services were 
running on a single host, deploying one patched binary 
(or network filter) consuming too many resources could 
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affect all the services in play. In fact, this scenario hap-
pened to at least two CRSs, and might have cost one team 
third place and $750,000.

Patch Scoring and Selection
To avoid deploying bad patches, we took maximum advan-
tage of the opportunities presented by the organizers to 
observe their scoring system and deduced which perfor-
mance metrics were being used where the documentation 
was ambiguous. We also developed a distributed testing 
platform, which replayed seeds from the network against 
both our patched binaries and the unpatched versions to 
calculate our overheads and verify that we retained func-
tionality. This allowed us to accurately predict how our 
patches would score before we deployed them, and we 
never fielded a functionality-breaking patch.

In addition to guaranteeing performance and func-
tionality, we also had to balance uncertain security against 
known performance. Whereas our crash-specific patches 
were performant, they did not protect against vulnerabili-
ties we had not yet found. Our binary hardening techniques 
could protect against unknown exploits, but they carried 
performance costs, and we often generated several variants 
with decreasing security before finding one with acceptable 
performance. In the end, we generated a priori estimates 
for the security scores of each type of patching and used 
these and our observed performance scores from testing to 
generate estimated scores for our patched binaries. When 
Mayhem decided to deploy a patch, it picked the one that 
it projected would score highest—a simple patch selection 
strategy, ignoring adversary behavior, but effective nonethe-
less. Given reasonably effective patches, choosing when to 
deploy was the critical part of the patching strategy.

Because the referee made deployed patches available 
to other CRSs during the competition, another option 
for patch selection, which we rejected, was “stealing” and 
redeploying other teams’ deployed patches. Although 
this might be tempting if another CRS clearly had stron-
ger patching capabilities, this exposes you to back doors, 
where an opponent could send your copy of his deployed 
patch a particular input and it could give him code execu-
tion. Because we added back doors to our patched bina-
ries, we believed any adversary capable of patching better 
than us would probably do the same. Automatic back door 
removal would have required deep analysis of an adver-
sary’s patches, which might have exposed us to exploita-
tion (as we discuss later), and so we did not consider it 
worth the risk. Because we never successfully exploited a 
back door against another team’s service, we believe other 
teams reached the same conclusions about patch stealing.

Patching Strategies
Deploying patched binaries in the CGC was risky. Aside 
from the possibility of degraded availability, the patching 

process incurred one full round of downtime. Leaving 
binaries unpatched was dangerous, but patching a binary 
that was never going to be exploited was a straight loss of 
points. Deploying a poorly performing patch might also 
have been better in the long run than being constantly 
exploited. To address these nuances, we examined many 
possible patching strategies before finalizing on one.

Several naive patching strategies presented themselves, 
the most obvious of which was “always deploy as soon 
as you’ve generated a crash-agnostic patch you think has 
reasonable performance.” Shellphish chose this strategy. 
Unfortunately, this strategy has some weaknesses. Patch-
ing everything as soon as possible led to large patching 
downtime penalties, and in several cases, Shellphish’s 
patches performed worse than expected, leading to further 
penalties. In addition, some binaries were never exploited, 
so leaving the unpatched service up was optimal—as this 
avoided any downtime penalty and any risk of breaking 
functionality or performance. Even if a service was even-
tually exploited, if you generated and selected a good 
patch beforehand and deployed it promptly when exploi-
tation began, you were only down one turn of exploitation 
points compared to the naive strategy. Detecting exploita-
tion, however, was nontrivial due to the limited informa-
tion available from the referee.

Although simple strategies are robust, we chose a com-
plex strategy based on a Bayesian classifier. This allowed us 
to make informed inferences about which services were 
being exploited by other teams using all the data available 
to us. We used information including our points per round, 
what sort of test cases we had uncovered from our own bug 
hunting, and whether we had seen traffic crashing each ser-
vice as observable values that were fed into a classification 
system with hard-coded initial Bayesian priors.

This system worked well for several reasons. Many of 
the relevant quantities to calculate the conditional prob-
abilities were directly observable from the game state,  
giving us good sensors on which to base our measure-
ments. We could also calculate many probability estimates 
in multiple independent ways and take the geometric 
average. This allowed us to turn several noisy probability 
estimates into a higher-accuracy estimate. Overall, this 
resulted in Mayhem being able to make many intelligent 
choices. For example, if teams attempted to trick our sys-
tem into believing that it was under attack by sending 
“fake” exploits that crashed our service but did not actu-
ally exploit services, Mayhem would start treating crash-
ing test cases as an unreliable indicator of being exploited 
(because our other sensors would not corroborate us 
getting exploited). This meant Mayhem could adapt to 
changing and unknown environments, which is a neces-
sity in adversarial settings. The downside to this was that 
Mayhem’s patching strategy was fundamentally reac-
tive. Although it might detect quickly that it was being 
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exploited, it would never patch a service before it believed 
that there was an exploit in the wild.

Once we had an estimate for the probability that a ser-
vice was being exploited, we compared it to a threshold to 
decide if we should deploy a patch. Rather than setting a 
fixed probability cutoff for when we should patch a ser-
vice, Mayhem instead dynamically adjusted this thresh-
old. This allowed us to adapt across a variety of possible 
strategic situations—if we observed that teams patching 
many or all services were doing well, we could become 
more aggressive in our patching to match them, but if we 
observed that high-scoring teams were conservative with 
their patching or that we were losing points for patching 
too aggressively, we could adjust this threshold.

Finally, once we determined that a service was prob-
ably under attack and we made the decision to patch, we 
evaluated the scores of our possible replacement binaries. 
In addition to our continuously updated performance 
estimates for our patches, we factored in estimates of how 
much longer the service would stay in the game and how 
badly a round of downtime would impact us (to avoid, 
for example, taking a round of downtime if the service 
was only expected to remain in play for one more round). 
After these calculations, if we decided that it would benefit 
our score to patch a service, we did so.

Anecdotally, we observed many cases in which 
Mayhem made “good decisions.” We tested Mayhem’s 
decision-making process through a number of practice 
CGC games and were often surprised by when it chose 
to patch or leave services unpatched. As humans we fre-
quently make decisions irrationally, treating “worrying” 
indicators such as a crash in one of our services as strong 
indications of exploitation, even when statistical evidence 
in the game suggests these indicators are untrustworthy.

Offensive Strategy
CRSs had to make many offensive decisions through-
out the competition. At each round and for each service 
in play, systems had to decide which teams to attack and 
which exploits to use. For instance, a CRS might not want 
to send an exploit to another system that is good at reflect-
ing exploits by extracting them from the network tap.

Strategy is a function of the objective function. The 
CGC was no exception, and our strategy was specifi-
cally tailored to the CGC scoring. In particular, the scor-
ing function penalized insecure binaries more than it 
rewarded successful attacks. Therefore, we concluded that 
the optimal offensive strategy was to send exploits, when 
available, to all teams at all times.

However, Mayhem still attempted to minimize reflec-
tion attacks by generating stealthy exploits. For instance, 
information disclosure attacks are harder to detect than a 
crashing input. Mayhem ranked exploits by stealthiness 
and submitted the stealthiest one.

Mayhem Autonomy  
and Counter-Autonomy
The CGC was a fully autonomous competition. No 
human intervention was allowed once the game started. 
The machines were entirely on their own, and the CRSs 
needed to maintain themselves for the duration of the 
competition in an adversarial environment.

One of our largest system resilience concerns was 
counter-autonomy, that is, adversaries sending us malicious 
input to disrupt the different components of our CRS  
(as opposed to exploiting the services provided by the  
referee). Here, we describe how Mayhem monitored itself 
to maintain uptime. We then discuss the different tech-
niques that could be used to disrupt the correct operation 
of an autonomous CRS. Finally, we go over countermea-
sures to adversaries with counter-autonomy capabilities.

Autonomy
During development, we quickly realized that Mayhem 
would encounter scenarios that could not be predicted, 
because the CGC would be our first time handling inputs 
from real and motivated adversaries. Therefore, we worked 
under the assumption that components would go down. 
To simulate unexpected failures and challenge Mayhem’s 
resiliency, we developed Chaos Monkey (https://github 
.com/Netflix/chaosmonkey).

Due to the full autonomy requirement, significant 
resources were spent on ensuring reliability and automatic 
recovery from failures. Our autonomy strategy relied on 
three main techniques: defensive programming, liveness 
monitoring, and redundancy.

We designed our components defensively. A signifi-
cant portion of Mayhem’s code consists of error handling, 
with a heavy use of timeouts to ensure progress. All com-
ponents run in infinite loops with cron jobs to bring them 
back up if they die. We also have cron jobs to kill leaked 
processes and delete leaked temporary files.

To improve autonomy, we designed the Medic, a com-
ponent for monitoring liveness and health of processes, 
VMs, and physical machines and restarting them as nec-
essary. Liveness and health had different meanings for 
different components. For processes, that meant being 
alive and making meaningful progress, like testing new 
network inputs rather than wedging in a tight loop test-
ing one pernicious input repeatedly. For VMs and physi-
cal machines, that meant that processes running on them 
were healthy and that CPU, memory, and disk usage were 
within expected bounds.

We added redundancy to many of our CRS compo-
nents and ran them on multiple hosts concurrently. We 
ran multiple copies of the Medic monitoring each other 
and widely distributed our network seed testing, fuzz-
ing, and exploit generation subsystems. For components 
that could not be duplicated easily, we designed failovers. 
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If one failed, the others would activate seamlessly. For 
instance, we put a lot of effort into securing our expected 
single point of failure: our database. We set up a hot/
actively-synced replica of our database on another host, 
wrote automated failover routines, and tested this func-
tionality extensively. We also had a failover for our patch-
ing system and our communications with the referee.

The only one of these reliability measures that we 
know fired during competition was the Medic, which 
killed the component downloading data from the referee 
to our database because it was running abnormally slowly. 
Unfortunately, killing that component did not solve the 
problem but made it worse, by increasing the backlog we 
had to pull down from the referee.

Counter-Autonomy
Counter-autonomy aims to hinder, deceive, or shut down 
an adversarial autonomous system’s operations. In the 
CGC, CRSs could see traffic sent to their networked 
software as well as the patched binaries and network fil-
ters deployed by their adversaries. Those inputs should 
be considered malicious. Carefully crafted binaries or 
network packets could potentially slow down or take 
out an autonomous system for the rest of the competi-
tion. Counter-autonomy techniques were used by several 
teams during the CGC, and we discuss some of them here.

One of the least damaging counter-autonomy attacks 
simply slows down the target CRS. For instance, in the 
CGC, patched binaries from several teams6 could detect 
when they were run under popular dynamic analysis 
frameworks like Intel PIN7 or QEMU.8 Under analysis, 
these binaries behaved differently, hindering the autono-
mous system by wedging the analysis system, wasting 
CPU cycles in tight loops, or allocating gigabytes of mem-
ory. Deploying patched binaries that varied their behavior 
when run in different environments was somewhat risky, 
as we had limited guarantees about the environment in 
which the binaries’ performance would be measured for 
scoring purposes. Nevertheless, some teams considered 
the risks worth the potential benefits.

More damaging counter-autonomy techniques 
attempt to destroy rather than slow down the adver-
sary’s system. The goal of this sort of attack is to directly 
exploit components of the autonomous system itself. 
For instance, during the CGC, we assumed that most 
CRSs would replay packets received from the network 
tap against the unpatched version of the binary to detect 
crashes and exploits. On a crash, CRSs would likely per-
form additional analysis under a dynamic analysis frame-
work. A malicious test case could exploit the unpatched 
binary to gain code execution, and then exploit the 
dynamic analysis framework to run code directly on the 
machine doing analysis. If no countermeasures were in 
place, these attacks were potentially game-ending. For 

example, a particularly nefarious payload could connect to 
the unauthenticated power API to turn off the adversary’s 
machines for the rest of the game. Another option was to 
scrape the disk for credentials to the referee API and submit 
broken patched binaries for all the services in play, prevent-
ing the target from scoring any points. Although the CGC 
rules prohibited attacks of this kind, as security researchers, 
we planned for the worst. We took precautions to prevent 
these attacks on our system and to minimize our risk.

Finally, more elaborate and subtle counter-autonomy 
techniques involve deception in order to trick adversaries 
into making costly strategic mistakes. These are perhaps 
the most difficult to defend against. Attacks of this kind 
require predicting how adversaries will react to certain 
behaviors and using those reactions to your benefit. For 
instance, we predicted that once a service started crashing, 
a CRS might infer, perhaps incorrectly, that the service 
was being exploited, and consequently patch it. Due to the 
scoring algorithm, patching too early was a net loss; if no 
team was exploiting you, deploying a patch meant taking 
a performance and downtime penalty for no gain. There-
fore, Mayhem sent harmless crashes like null-pointer 
dereferences to services we could not exploit, and it led 
some CRSs to make strategic mistakes in their patching 
decisions during the competition. In general, however, the 
structure of the competition made deploying deception 
difficult, as we had no data on the strategy and behaviors 
of our opponents. In a multicompetition series, however, 
deception would become important.

Counter-Counter-Autonomy
An autonomous CRS requires counter-autonomy coun-
termeasures to be resilient in an adversarial environ-
ment. Consequently, we designed several protections in  
Mayhem. At a high level, our countermeasures are split 
into three categories: minimizing the attack vectors, fault 
isolation, and sandboxing.

Mayhem minimizes analyses conducted on 
attacker-controlled inputs. In particular, Mayhem  
never leverages static analysis and limits use of dynamic 
instrumentation frameworks on an adversary’s patched 
binary. This was a conscious design decision: we did 
not think the benefits would outweigh the risks. On the 
one hand, this handicapped our CRS, as Mayhem could 
potentially have found more exploits by analyzing adver-
saries’ patches. On the other hand, doing so would have 
put us at a greater risk of being exploited and taken down.

Mayhem did, however, run adversaries’ patched bina-
ries (albeit without analysis) to check that our exploits 
worked locally before deploying them to the network. 
This was a calculated risk, but one that we minimized with 
isolation. To limit the damage from a potential attack, 
Mayhem had one dedicated virtual machine per adver-
sary, and it was the only machine on which we ever ran 
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their binaries. The effects of an attack would be limited to 
that one VM (assuming no ability to escape from the VM) 
and would not affect our analysis of other teams or the 
unpatched services.

Finally, we needed to consider malicious test 
cases from the network. Network traffic contained 
test cases sent by the referee to check availability, and 
those test cases were critical for both our offense and 
our defenses—they provided initial seeds for our 
fuzzing and symbolic execution, and they were also 
ground-truth for the intended functionality of each ser-
vice. However, this network traffic potentially included 
malicious traffic from adversaries. Therefore, we han-
dled data from the network (as well as data derived from 
it) with care. We hardened our dynamic analysis frame-
works against public and homemade exploits, and we 
sandboxed our analysis processes with a combination of 
system call whitelists and limits on CPU and memory.

Mayhem’s Autonomy in the CGC
Despite all the techniques mentioned above, we are sad to 
say that Mayhem still ran into issues during the competi-
tion. We failed to account for a failure mode in the compo-
nent downloading round data from the referee. Although 
downloading a single round usually took less than 30 
seconds, it got much slower starting at round 27 (out of 
96). Some rounds took more than 18 minutes to down-
load fully. As rounds were only five minutes long, this 
component therefore fell behind, and Mayhem did not 
have access to the current state of the game. Our CRS was 
essentially playing the game in the past: it was analyzing 
binaries after the referee had removed those services from 
the game, unaware that new services had replaced them.

Luckily for us, the number of exploits thrown by other 
teams decreased significantly starting around the time this 
issue occurred, and therefore Mayhem’s score was not as 
negatively affected as expected. This lack of exploits made 
leaving the unpatched binaries up a surprisingly good 
strategy; it avoided downtime and performance losses. 
As a result, Mayhem held onto its lead from the first 27 
rounds and still won first place. Interestingly, Mayhem 
recovered near the end the game and landed an exploit in 
the last round.

The Cyber Grand Challenge shows hope for technolo-
gies that were recently considered pure science fic-

tion. With some of the top researchers in academia and 
industry working for two years toward a goal of automating 
large parts of software and network security, many hurdles 
have been overcome. ForAllSecure has always believed 
that these technologies would transfer to real-world appli-
cations, and we are excited to continue development to 
make automated security practical for real networks and 

software applications. Automated bug finding, patching, 
and software testing will help scale up security, hopefully 
allowing us to catch up to the blistering pace of modern 
technological development and ensure a safe computing 
landscape for everyone. 
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