
52 March/April 2018 Copublished by the IEEE Computer and Reliability Societies 1540-7993/18/$33.00 © 2018 IEEE

HACKING WITHOUT HUMANS

The Mayhem Cyber Reasoning System

Thanassis Avgerinos, David Brumley, John Davis, Ryan Goulden, Tyler Nighswander, Alex Rebert, and

Ned Williamson | ForAllSecure

Mayhem, one of the first generation of autonomous computer security bots that finds and fixes

vulnerabilities without human intervention, won the DARPA Cyber Grand Challenge in August 2016.

In this article, we detail Mayhem’s creation and look forward to a future where autonomous bots will

radically improve computer system security.

We are losing the battle against criminals who break
into our computer systems. The reason: we rely

only on humans to find new vulnerabilities and fix them.
What if, however, we did not need to rely on human effort
alone to find vulnerabilities? What if we could build intel-
ligent computer bots that can find and fix vulnerabilities?
And what if these intelligent bots could reduce the time to
identify and remediate a vulnerability from human time
scales—days, months, or years—to computer time scales
of milliseconds?

The art of securing computer systems and processes
against malicious actors has a broad frontier. DARPA’s
Cyber Grand Challenge (CGC) explored a new technol-
ogy on the forefront of cybersecurity: the cyber reason-
ing system (CRS). A CRS is a fully autonomous system
that takes complete responsibility for defending a set of
software services. CRSs competing in the Cyber Grand
Challenge demonstrated techniques in all core cyberse-
curity areas, including automatically developing firewall
rules to stop attack traffic, analyzing programs to find bugs
before an attacker, and patching vulnerabilities in com-
piled programs without any access to source code. Soft-
ware defenses that might take human analysts hours, days,
or weeks to develop and test were all deployed at machine
speeds, on the order of tens of seconds, with no humans in

the loop. This first generation of CRSs offers hope for an
automatic first line of defense against attacks conducted
using novel exploits on large scales at machine speeds, in
addition to greatly tightening a defender’s response time
to other, more typical attacks.

We are the authors, designers, and developers of
Mayhem, the winning CRS in the Cyber Grand Challenge,
and this article discusses the design and implementation
of Mayhem, lessons learned while preparing for the chal-
lenge, and our key takeaways from the competition.

DARPA’s Cyber Grand Challenge
The CGC was a competitive, symmetric game played
by seven fully autonomous CRSs and moderated by a
“referee” scoring system. Here, we provide a brief over-
view of the game mechanics as well as the main ways in
which CRS systems could attack and defend. We refer the
interested reader to a presentation by the program man-
ager1 for a more comprehensive presentation of CGC.

Game Structure
The CGC was structured similarly to a networked
“capture-the-flag” competition. Players raced to find,
exploit, and fix software bugs in their services in an adver-
sarial environment in real time. The competition started

www.computer.org/security 53

when the network was brought up. Each CRS was respon-
sible for a networked server running an identical set of
vulnerable software services. The referee served up previ-
ously unknown vulnerable software throughout the game.

The referee brokered all communications during the
game. Each CRS was on a different and isolated network
so that CRSs could not communicate with each other. In
addition, a CRS did not have direct control over the server
running the vulnerable software services and could only
interface with that server through the referee.

To score points (or avoid losing them), players had to
perform three main tasks during the competition. First,
they had to protect their software from adversaries by
finding and patching vulnerabilities. Second, they needed
to keep their software available, functional, and efficient.
Third, they needed to exploit vulnerabilities in their adver-
saries’ software.

Players scored points by keeping their services run-
ning and exploiting the software of other teams, and lost
points by damaging their own software or having their sys-
tems exploited. All exploit attempts were routed through
the referee and mixed in with the referee’s tests, which
checked that patches to the defended software had not
broken its functionality or performance. At the end of
each five-minute round, the referee calculated the scores
for all the players based on which services they kept run-
ning, how performant and functional those services were,
and whose services were exploited by whom.

All CGC services were run on the DECREE architec-
ture: a Linux variant with seven system calls and a cus-
tom executable format very similar to the binary format
commonly used in Linux. This kept the scope of the engi-
neering effort within the reach of small teams, while also
keeping the platform close enough to Linux for tools to
require straightforward engineering to extend to produc-
tion systems. It also limited the damage teams could do to
each other via exploitation.

Attacking
To attack a service, a CRS had to submit to the referee a
program, called an exploit, that proved the existence of a
security-critical software vulnerability in the target ser-
vice. The submitted “proof of vulnerability” (PoV) pro-
gram had to either gain code execution within the target
service—which, in the real world, corresponds to taking
over a server running that service—or manipulate the
target service into leaking privileged data, a less versatile
attack than hijacking a server but, as demonstrated by
the infamous 2014 Heartbleed bug, a potentially serious
vulnerability. Attacks against a particular service could
be conducted up to 10 times per five-minute round. This
meant that attacks did not need to be perfectly reliable,
but an unreliable attack thrown many times increased
the chances that the target would notice, patch their

service, and reflect your exploit. Consequently, reliable
and stealthy exploits were encouraged by the structure of
the competition.

Defending
Each CRS had two independent methods to defend each
of its services: intrusion detection and binary patching. To
use the competition’s intrusion detection system, CRSs
had to write firewall rules in a language similar to the
Snort Intrusion Detection System (IDS) rule language
and submit them to the referee, which then deployed
them in front of a given service. We did not use the IDS
functionality, as its performance impact on the protected
services was difficult to predict. Instead our defense relied
entirely on binary patching—finding vulnerabilities in the
services themselves and fixing them at the machine-code
level. Typically, when vendors release a security patch,
they make modifications to the program’s source and
recompile. We did not have the luxury of source, and con-
sequently patching correctly was quite challenging.

A pivotal aspect of the CGC was that deployed firewall
rules and patches were harshly penalized for disrupting the
operation of services. This could occur either by misiden-
tifying legitimate network traffic as an attack, introduc-
ing a bug into the service that caused it to malfunction, or
degrading the performance of the service. The correctness
and performance of a service were reflected by an “availabil-
ity score” calculated by the CGC referee. Availability scores
began to drop steeply at 5 percent overhead compared to an
unpatched service with no firewall rules. Despite this high
bar, after optimizing our patches for performance, most of
the patches we deployed suffered negligible performance
penalty: out of the seven patches that were scored by the
referee, our average overhead was 2.64 percent for time and
0.98 percent for memory. All had perfect functionality.

In addition, to represent the cost of distributing
a patch across a defended network, whenever a CRS
deployed a patch or a network filter for a service, the
referee took that CRS’s copy of that service down for
a round, effectively giving a 0 availability score for one
round every time you patched. This made deploying a
buggy patch very expensive—you lost a round of points
when you deployed it, lost points every round that it was
deployed, and then lost another round of points when
you deployed a replacement patch.

These tradeoffs are not unique to the Cyber Grand
Challenge. Network administrators commonly forgo
applying security patches until they know the patches will
not disrupt vital services. Vendors are careful to mention
in security announcements how severe software vulner-
abilities are as well as whether the bugs are known to be
exploited in the wild so that their customers can decide
how detrimental not patching would be. Today, this data
is gathered by humans, but an automated solution able to

54 IEEE Security & Privacy March/April 2018

HACKING WITHOUT HUMANS

optimize service availability without sacrificing security
would be immensely valuable.

Scoring
Because the scoring algorithm drove many of our design
decisions, we briefly describe it here. For each service,
the score was calculated each round for a given CRS as
follows:

Score � Availability � Security � Evaluation

Availability is the measure of performance and func-
tionality described above, security is 1 if any adversary
proved a vulnerability in this CRS’s instance of the ser-
vice during this round and 2 otherwise, and evaluation

is
x

N
+
−

1
1

 where x is the number of competitors suc-

cessfully attacked on this service by the CRS, and N is the
number of CRSs participating (which was seven).

The score for a given round is the sum of all the ser-
vices’ scores. Similarly, the total score of a CRS is the sum
of its scores over all the rounds.

Mayhem Defense
Mayhem confirms and patches software flaws differently
from a human developer or security analyst. When ana-
lyzing a service, Mayhem confirms a software flaw only
when a test case that causes the service to crash or other-
wise exhibit potentially exploitable behavior is available.
Mayhem has no access to the original source code or the
specification of the application (while both are typically
available to the developer). Mayhem only knows how a
service actually behaves and that services should not crash
or be exploitable. Thus, patches deployed by Mayhem aim
to render identified software flaws unexploitable.

Mayhem patches are based on runtime property
checking. For every identified flaw, Mayhem inserts intro-
spective checks into programs, similar to assertions that a
developer might add. These checks verify runtime prop-
erties that are exceedingly likely to be true for a correctly
operating C or C�� program, and not likely to be true
for a CGC service that is being exploited. Specifically, a
Mayhem patched service verifies at various points that
it would not access memory at, or branch to, invalid or
unusual addresses. Failing a check leads to safe termina-
tion of the service, preventing exploits from successfully
completing.

Although these checks could be placed in thousands
of locations throughout a service’s code, too many such
assertions reduces performance. Mayhem places checks
along any code paths that it found crashing test cases
for, and also at a few heuristically identified points.
Furthermore, Mayhem uses formal methods to elide
checks that are proven unnecessary.

Mayhem is also capable of defending its services using
several established exploit mitigation techniques: stack
canaries, address randomization, data execution preven-
tion, and a simple tag-based control flow integrity (CFI)
scheme. When utilized by a compiler, these mitigations can
obviate entire classes of exploits, while rarely interfering
with correct program behavior. Unfortunately, although
introducing these mitigations into compiled services after
the fact is possible, the added code may affect performance
and/or functionality. Mayhem relies on its test case genera-
tion capabilities to verify that the inserted mitigations do
not break the performance or functionality of services and
to fall back to less comprehensive mitigation techniques
when the performance overhead is unacceptable.

Binary patching is difficult. Even after deciding which
checks and mitigations to insert where, Mayhem has to
insert the patches and generate a functional, performant
binary. Lacking source code, Mayhem patches services by
directly editing the assembled processor instructions within
the program. This is a nontrivial task because simply insert-
ing instructions into the middle of a program would break
the various fixed addresses and relative offsets with which
a program refers to itself. This is similar to how inserting
pages into a printed book would render the page numbers
in the index and table of contents inaccurate, but much
more critical and much harder to fix. In the next section,
we discuss the core approaches Mayhem follows for tack-
ling the practical issues of binary patching.

Binary Patching Techniques
Mayhem has two techniques for inserting patches (see
Figure 1). Its preferred method, full-function rewriting
(FFR), approaches the above challenge directly. FFR
inserts patches into the middle of the program, and then
attempts to repair the issues this causes by adjusting all
addresses and offsets within the program accordingly.
This is a tricky process, and our methods were not per-
fect: we relied fully on static analysis, which resulted in
malfunctioning patched services on 0.57 percent of our
test binaries. To ensure maximum reliability, we tested
our methods daily on binaries released by the organizers
and compiled across a variety of optimization levels dur-
ing development, for a total of 293 test binaries. In addi-
tion, during the competition Mayhem was careful to not
deploy FFR-patched binaries until it had verified that they
functioned as intended on the referee’s network traffic and
generated test cases.

The other patching technique Mayhem employs is
more conservative. Injection multipatching (IMP) avoids
comprehensive modifications to programs by not insert-
ing patches into the middle of a program. Instead, IMP
substitutes a branch instruction into the program at
each location to be patched. These branch instructions
jump into a custom section appended to the end of the

www.computer.org/security 55

program, which contains the instructions implementing
the patch—along with any instructions displaced by the
branch. To continue the book metaphor, this is like over-
writing a sentence with “See Appendix A.” IMP is more
reliable than FFR because it leaves the majority of the pro-
gram untouched, but the extra jumps to the added section
increase the performance overhead of patched services.

Network Intrusion Detection
Mayhem did not use the network intrusion prevention
system available to CRSs. Signature-based defenses like
network filtering have trouble generalizing to defend
against polymorphic exploit variants, and they might
spuriously trigger on inputs that do not pose a threat to
the service. Furthermore, they can inform other teams
about the nature of the identified flaw. Mayhem’s patches
are much less susceptible to these failure modes, because
they catch attacks as they exploit critical software flaws, do
not interfere with normal service operation, and include
obfuscation.

Mayhem Offense
Mayhem’s offensive capabilities are based on generating
test cases that demonstrate flaws in a target service. While
humans tend to discover exploitable vulnerabilities by
first identifying potentially flawed sections of code and
then figuring out how to trigger that flaw, Mayhem needs
to “see” a flaw occur before it can identify or attempt to
exploit it. Mayhem makes up for this deficiency by gener-
ating and analyzing thousands of inputs per second, each
of which could trigger a vulnerability.

Mayhem generates these test cases using a combina-
tion of gray box fuzzing and white box symbolic execu-
tion techniques. Other competing teams also combined
the two.2

Symbolic Execution
Symbolic execution3 is a method for reasoning about
the behavior of a program by building logical formulae
that represent the program. The inputs to the program
are treated as variables, and any value computed by the
program—such as return values, or branch conditionals
that affect choices the program makes—is represented as
a function on these input variables. Using an SMT solver,
these functions may be solved for a desired output value to
calculate an input test case that ensures the program will
reach a desired state.

Mayhem’s symbolic execution engine4 manipulates
the branch conditionals within a program. By generat-
ing inputs that will result in the program having different
values for the conditionals it computes, Mayhem forces
the program to execute in a variety of different ways. This
exercises different areas of code within a program under a
variety of circumstances, exposing software flaws.

The specific strategy Mayhem uses to generate test
cases is known as concolic execution. Starting from an
arbitrary initial seed test case, Mayhem traces the con-
crete (nonsymbolic) execution of the target program on
that test case, while simultaneously building symbolic
formulae for values derived from the input. Every time
Mayhem encounters a conditional branch, it uses the
formula for the condition to produce a modified input
test case that takes the other direction on the branch.
We call this production of modified test cases forking.
Mayhem also forks for values other than branch con-
ditionals, such as pointer values—this generates new
test cases for which the program accesses memory dif-
ferently. As Mayhem traces the seed test case, it forks
many times. After the program completes execution of
the seed test case, Mayhem repeats the tracing process
using the forked test cases as new seeds.

Figure 1. Injection multipatching (IMP) versus full-function rewriting (FFR) techniques. IMP clobbers some instructions to jump out to the
patch body, located in a section at the end of the program. FFR inserts patches directly inline, but all program addresses are changed; many
control flow instructions and code pointers must be updated accordingly.

0x1000: lea eax, [eax+edx+0x10]
0x1004: add DWORD PTR [edi], eax
0x1006: mov eax, DWORD PTR [eax+ecx]
0x1009: test eax, eax
0x100b: je 0x1105

0x1000: lea eax, [eax+edx+0x10]
0x1004: add DWORD PTR [edi], eax
0x1006: verify that[eax+ecx] is sane...
 . . .
0x10XX: mov eax, DWORD PTR [eax+ecx]
0x10XY: test eax, eax
0x10XZ: je 0x1XXX

0x1000: jmp 0x9000
0x1005: nop
0x1006: mov eax, DWORD PTR [eax+ecx]
0X1009: test eax, eax
0x100b: je 0x1105

0x9000: lea eax, [eax+edx+0x10]
0x9004: add DWORD PTR [edi], eax
0x9006: verify that[eax+ecx] is sane...
 . . .
0x90XX: jmp 0x1006

Original code IMP patch FFR patch

56 IEEE Security & Privacy March/April 2018

HACKING WITHOUT HUMANS

Repeatedly tracing all forked test cases as new seeds leads
to exponential growth of the number of seeds, rapidly over-
whelming a system’s capability to process them all. This “path
explosion problem” is not specific to concolic execution; it
arises from the fact that even simple programs tend to have
an exponentially large number of possible states to explore.
Mayhem employed a novel technique called Veritesting,5
which mitigates path explosion by merging similar seeds
together; processing a single merged seed achieves explora-
tion equivalent to processing each of its constituent seeds.

During the CGC competition, our symbolic execu-
tion component found crashes for 62 of the 82 services,
including five services that fuzzing did not crash.

Fuzzing
Our fuzzing was largely guided by the open source proj-
ect American Fuzzy Lop (AFL; http://lcamtuf.coredump
.cx/afl). This tool was designed to do intelligent, fast fuzz-
ing using compile-time instrumentation to measure edge
coverage in programs. Here, we describe some differences
between AFL and our fuzzing.

As we did not have the source code for our target ser-
vices, Mayhem uses alternative techniques for gathering
coverage information. The first technique uses our FFR
patching infrastructure: we inserted a series of patches that
implemented the necessary code coverage tracking and
reporting mechanisms. Although this technique was com-
plicated and fragile, it allowed us to add many other useful
features. For example, 32-bit comparisons were rewritten
as four consecutive 8-bit comparisons to allow the fuzzer
to make incremental progress with its random explora-
tion and mutation, without needing to randomly guess
the correct 32-bit value. In addition, initialization done by
the binary could be skipped and analysis could be deferred
until the program began reading user input, greatly acceler-
ating fuzzing. In the end, FFR-assisted fuzzing allowed us
to run the binary with negligible performance impact. In
the rare event that FFR was not able to successfully patch
the program, we fell back to a modified version of QEMU,
as used by the AFL fuzzer. Although this was a safe option,
it suffered a 100 to 900 percent performance hit.

During the qualifying event for the CGC, fuzzing
helped us find bugs in 65 of the 131 binaries in 24 hours.
Based on write-ups from other teams, this suggests that
our fuzzer was far more effective than any fielded by any
other team. Furthermore, continued improvements to
our fuzzer between the qualifying and final events roughly
doubled our bugs per hour; it found crashes in 92 of those
131 binaries from the qualifying event in a 16-hour period
just before the final event. During the final CGC event,
fuzzing found crashes in 62 of the 82 services (five of
which were not found by symbolic execution).

Both of these techniques—symbolic execution and
fuzzing—make use of code coverage metrics, particularly

edge coverage. Coverage-guided program exploration
searches for test cases that reach parts of the target program
that no other test case has reached before. By analyzing the
frontier of test cases that achieved new coverage, more and
more parts of the code will be explored over time. By using
the same coverage metric for test case prioritization in our
fuzzer and symbolic executor, we minimized the amount
of work duplicated between the two components. Work-
ing together, the two systems found crashes for 67 of the
82 services, just over 80 percent. Of the 57 crashes found
by both components, symbolic execution found 27 before
fuzzing, while fuzzing found 30 first.

Automatic Exploit Generation
After finding bugs, Mayhem had to exploit them. The
Automatic Exploit Generation (AEG) component took
in a CGC program (either an unpatched challenge binary
or an opponent’s patched binary), an opponent’s network
filter, and a crashing input and attempted to generate a
PoV. To generate PoVs, we used a combination of black
box and white box techniques. The black box AEG compo-
nent inferred the relation between the input string and the
crashing state through input mutations, and then gener-
ated an input that demonstrated the desired condition for
a PoV (EIP control or a leak of sensitive data). The white
box AEG component symbolically executed the crashing
path and attempted to satisfy the constraints necessary for
exploitation. If the constraints were satisfiable, Mayhem
used the solution to emit a PoV. In addition, those con-
straints might depend on the data sent by the service. For
instance, a service might expect a client to replay a nonce
it sent or to solve a simple mathematical CAPTCHA. In
those scenarios, the PoV generated the input on the fly by
querying an embedded SMT solver.

All generated PoVs were tested in the DECREE envi-
ronment to measure their reliability before deployment.
At the end of the competition, Mayhem’s database con-
tained working PoVs for 18 services. This represents a
lower bound on what we actually found, as our system
deleted most (and sometimes all) PoVs for a challenge after
that challenge was removed from the competition by the
referee in order to free up disk space on the database node.

Mayhem Strategy
Strategy was an essential component. CRSs had to make
strategic decisions throughout the game: Which bina-
ries to patch? Which patches to deploy? Which teams to
attack, and with which exploits? Where should limited
resources be spent?

A bad strategy could ruin the winning chances of an
otherwise good CRS. A single bad decision could have
disastrous consequences. Indeed, as all the services were
running on a single host, deploying one patched binary
(or network filter) consuming too many resources could

www.computer.org/security 57

affect all the services in play. In fact, this scenario hap-
pened to at least two CRSs, and might have cost one team
third place and $750,000.

Patch Scoring and Selection
To avoid deploying bad patches, we took maximum advan-
tage of the opportunities presented by the organizers to
observe their scoring system and deduced which perfor-
mance metrics were being used where the documentation
was ambiguous. We also developed a distributed testing
platform, which replayed seeds from the network against
both our patched binaries and the unpatched versions to
calculate our overheads and verify that we retained func-
tionality. This allowed us to accurately predict how our
patches would score before we deployed them, and we
never fielded a functionality-breaking patch.

In addition to guaranteeing performance and func-
tionality, we also had to balance uncertain security against
known performance. Whereas our crash-specific patches
were performant, they did not protect against vulnerabili-
ties we had not yet found. Our binary hardening techniques
could protect against unknown exploits, but they carried
performance costs, and we often generated several variants
with decreasing security before finding one with acceptable
performance. In the end, we generated a priori estimates
for the security scores of each type of patching and used
these and our observed performance scores from testing to
generate estimated scores for our patched binaries. When
Mayhem decided to deploy a patch, it picked the one that
it projected would score highest—a simple patch selection
strategy, ignoring adversary behavior, but effective nonethe-
less. Given reasonably effective patches, choosing when to
deploy was the critical part of the patching strategy.

Because the referee made deployed patches available
to other CRSs during the competition, another option
for patch selection, which we rejected, was “stealing” and
redeploying other teams’ deployed patches. Although
this might be tempting if another CRS clearly had stron-
ger patching capabilities, this exposes you to back doors,
where an opponent could send your copy of his deployed
patch a particular input and it could give him code execu-
tion. Because we added back doors to our patched bina-
ries, we believed any adversary capable of patching better
than us would probably do the same. Automatic back door
removal would have required deep analysis of an adver-
sary’s patches, which might have exposed us to exploita-
tion (as we discuss later), and so we did not consider it
worth the risk. Because we never successfully exploited a
back door against another team’s service, we believe other
teams reached the same conclusions about patch stealing.

Patching Strategies
Deploying patched binaries in the CGC was risky. Aside
from the possibility of degraded availability, the patching

process incurred one full round of downtime. Leaving
binaries unpatched was dangerous, but patching a binary
that was never going to be exploited was a straight loss of
points. Deploying a poorly performing patch might also
have been better in the long run than being constantly
exploited. To address these nuances, we examined many
possible patching strategies before finalizing on one.

Several naive patching strategies presented themselves,
the most obvious of which was “always deploy as soon
as you’ve generated a crash-agnostic patch you think has
reasonable performance.” Shellphish chose this strategy.
Unfortunately, this strategy has some weaknesses. Patch-
ing everything as soon as possible led to large patching
downtime penalties, and in several cases, Shellphish’s
patches performed worse than expected, leading to further
penalties. In addition, some binaries were never exploited,
so leaving the unpatched service up was optimal—as this
avoided any downtime penalty and any risk of breaking
functionality or performance. Even if a service was even-
tually exploited, if you generated and selected a good
patch beforehand and deployed it promptly when exploi-
tation began, you were only down one turn of exploitation
points compared to the naive strategy. Detecting exploita-
tion, however, was nontrivial due to the limited informa-
tion available from the referee.

Although simple strategies are robust, we chose a com-
plex strategy based on a Bayesian classifier. This allowed us
to make informed inferences about which services were
being exploited by other teams using all the data available
to us. We used information including our points per round,
what sort of test cases we had uncovered from our own bug
hunting, and whether we had seen traffic crashing each ser-
vice as observable values that were fed into a classification
system with hard-coded initial Bayesian priors.

This system worked well for several reasons. Many of
the relevant quantities to calculate the conditional prob-
abilities were directly observable from the game state,
giving us good sensors on which to base our measure-
ments. We could also calculate many probability estimates
in multiple independent ways and take the geometric
average. This allowed us to turn several noisy probability
estimates into a higher-accuracy estimate. Overall, this
resulted in Mayhem being able to make many intelligent
choices. For example, if teams attempted to trick our sys-
tem into believing that it was under attack by sending
“fake” exploits that crashed our service but did not actu-
ally exploit services, Mayhem would start treating crash-
ing test cases as an unreliable indicator of being exploited
(because our other sensors would not corroborate us
getting exploited). This meant Mayhem could adapt to
changing and unknown environments, which is a neces-
sity in adversarial settings. The downside to this was that
Mayhem’s patching strategy was fundamentally reac-
tive. Although it might detect quickly that it was being

58 IEEE Security & Privacy March/April 2018

HACKING WITHOUT HUMANS

exploited, it would never patch a service before it believed
that there was an exploit in the wild.

Once we had an estimate for the probability that a ser-
vice was being exploited, we compared it to a threshold to
decide if we should deploy a patch. Rather than setting a
fixed probability cutoff for when we should patch a ser-
vice, Mayhem instead dynamically adjusted this thresh-
old. This allowed us to adapt across a variety of possible
strategic situations—if we observed that teams patching
many or all services were doing well, we could become
more aggressive in our patching to match them, but if we
observed that high-scoring teams were conservative with
their patching or that we were losing points for patching
too aggressively, we could adjust this threshold.

Finally, once we determined that a service was prob-
ably under attack and we made the decision to patch, we
evaluated the scores of our possible replacement binaries.
In addition to our continuously updated performance
estimates for our patches, we factored in estimates of how
much longer the service would stay in the game and how
badly a round of downtime would impact us (to avoid,
for example, taking a round of downtime if the service
was only expected to remain in play for one more round).
After these calculations, if we decided that it would benefit
our score to patch a service, we did so.

Anecdotally, we observed many cases in which
Mayhem made “good decisions.” We tested Mayhem’s
decision-making process through a number of practice
CGC games and were often surprised by when it chose
to patch or leave services unpatched. As humans we fre-
quently make decisions irrationally, treating “worrying”
indicators such as a crash in one of our services as strong
indications of exploitation, even when statistical evidence
in the game suggests these indicators are untrustworthy.

Offensive Strategy
CRSs had to make many offensive decisions through-
out the competition. At each round and for each service
in play, systems had to decide which teams to attack and
which exploits to use. For instance, a CRS might not want
to send an exploit to another system that is good at reflect-
ing exploits by extracting them from the network tap.

Strategy is a function of the objective function. The
CGC was no exception, and our strategy was specifi-
cally tailored to the CGC scoring. In particular, the scor-
ing function penalized insecure binaries more than it
rewarded successful attacks. Therefore, we concluded that
the optimal offensive strategy was to send exploits, when
available, to all teams at all times.

However, Mayhem still attempted to minimize reflec-
tion attacks by generating stealthy exploits. For instance,
information disclosure attacks are harder to detect than a
crashing input. Mayhem ranked exploits by stealthiness
and submitted the stealthiest one.

Mayhem Autonomy
and Counter-Autonomy
The CGC was a fully autonomous competition. No
human intervention was allowed once the game started.
The machines were entirely on their own, and the CRSs
needed to maintain themselves for the duration of the
competition in an adversarial environment.

One of our largest system resilience concerns was
counter-autonomy, that is, adversaries sending us malicious
input to disrupt the different components of our CRS
(as opposed to exploiting the services provided by the
referee). Here, we describe how Mayhem monitored itself
to maintain uptime. We then discuss the different tech-
niques that could be used to disrupt the correct operation
of an autonomous CRS. Finally, we go over countermea-
sures to adversaries with counter-autonomy capabilities.

Autonomy
During development, we quickly realized that Mayhem
would encounter scenarios that could not be predicted,
because the CGC would be our first time handling inputs
from real and motivated adversaries. Therefore, we worked
under the assumption that components would go down.
To simulate unexpected failures and challenge Mayhem’s
resiliency, we developed Chaos Monkey (https://github
.com/Netflix/chaosmonkey).

Due to the full autonomy requirement, significant
resources were spent on ensuring reliability and automatic
recovery from failures. Our autonomy strategy relied on
three main techniques: defensive programming, liveness
monitoring, and redundancy.

We designed our components defensively. A signifi-
cant portion of Mayhem’s code consists of error handling,
with a heavy use of timeouts to ensure progress. All com-
ponents run in infinite loops with cron jobs to bring them
back up if they die. We also have cron jobs to kill leaked
processes and delete leaked temporary files.

To improve autonomy, we designed the Medic, a com-
ponent for monitoring liveness and health of processes,
VMs, and physical machines and restarting them as nec-
essary. Liveness and health had different meanings for
different components. For processes, that meant being
alive and making meaningful progress, like testing new
network inputs rather than wedging in a tight loop test-
ing one pernicious input repeatedly. For VMs and physi-
cal machines, that meant that processes running on them
were healthy and that CPU, memory, and disk usage were
within expected bounds.

We added redundancy to many of our CRS compo-
nents and ran them on multiple hosts concurrently. We
ran multiple copies of the Medic monitoring each other
and widely distributed our network seed testing, fuzz-
ing, and exploit generation subsystems. For components
that could not be duplicated easily, we designed failovers.

www.computer.org/security 59

If one failed, the others would activate seamlessly. For
instance, we put a lot of effort into securing our expected
single point of failure: our database. We set up a hot/
actively-synced replica of our database on another host,
wrote automated failover routines, and tested this func-
tionality extensively. We also had a failover for our patch-
ing system and our communications with the referee.

The only one of these reliability measures that we
know fired during competition was the Medic, which
killed the component downloading data from the referee
to our database because it was running abnormally slowly.
Unfortunately, killing that component did not solve the
problem but made it worse, by increasing the backlog we
had to pull down from the referee.

Counter-Autonomy
Counter-autonomy aims to hinder, deceive, or shut down
an adversarial autonomous system’s operations. In the
CGC, CRSs could see traffic sent to their networked
software as well as the patched binaries and network fil-
ters deployed by their adversaries. Those inputs should
be considered malicious. Carefully crafted binaries or
network packets could potentially slow down or take
out an autonomous system for the rest of the competi-
tion. Counter-autonomy techniques were used by several
teams during the CGC, and we discuss some of them here.

One of the least damaging counter-autonomy attacks
simply slows down the target CRS. For instance, in the
CGC, patched binaries from several teams6 could detect
when they were run under popular dynamic analysis
frameworks like Intel PIN7 or QEMU.8 Under analysis,
these binaries behaved differently, hindering the autono-
mous system by wedging the analysis system, wasting
CPU cycles in tight loops, or allocating gigabytes of mem-
ory. Deploying patched binaries that varied their behavior
when run in different environments was somewhat risky,
as we had limited guarantees about the environment in
which the binaries’ performance would be measured for
scoring purposes. Nevertheless, some teams considered
the risks worth the potential benefits.

More damaging counter-autonomy techniques
attempt to destroy rather than slow down the adver-
sary’s system. The goal of this sort of attack is to directly
exploit components of the autonomous system itself.
For instance, during the CGC, we assumed that most
CRSs would replay packets received from the network
tap against the unpatched version of the binary to detect
crashes and exploits. On a crash, CRSs would likely per-
form additional analysis under a dynamic analysis frame-
work. A malicious test case could exploit the unpatched
binary to gain code execution, and then exploit the
dynamic analysis framework to run code directly on the
machine doing analysis. If no countermeasures were in
place, these attacks were potentially game-ending. For

example, a particularly nefarious payload could connect to
the unauthenticated power API to turn off the adversary’s
machines for the rest of the game. Another option was to
scrape the disk for credentials to the referee API and submit
broken patched binaries for all the services in play, prevent-
ing the target from scoring any points. Although the CGC
rules prohibited attacks of this kind, as security researchers,
we planned for the worst. We took precautions to prevent
these attacks on our system and to minimize our risk.

Finally, more elaborate and subtle counter-autonomy
techniques involve deception in order to trick adversaries
into making costly strategic mistakes. These are perhaps
the most difficult to defend against. Attacks of this kind
require predicting how adversaries will react to certain
behaviors and using those reactions to your benefit. For
instance, we predicted that once a service started crashing,
a CRS might infer, perhaps incorrectly, that the service
was being exploited, and consequently patch it. Due to the
scoring algorithm, patching too early was a net loss; if no
team was exploiting you, deploying a patch meant taking
a performance and downtime penalty for no gain. There-
fore, Mayhem sent harmless crashes like null-pointer
dereferences to services we could not exploit, and it led
some CRSs to make strategic mistakes in their patching
decisions during the competition. In general, however, the
structure of the competition made deploying deception
difficult, as we had no data on the strategy and behaviors
of our opponents. In a multicompetition series, however,
deception would become important.

Counter-Counter-Autonomy
An autonomous CRS requires counter-autonomy coun-
termeasures to be resilient in an adversarial environ-
ment. Consequently, we designed several protections in
Mayhem. At a high level, our countermeasures are split
into three categories: minimizing the attack vectors, fault
isolation, and sandboxing.

Mayhem minimizes analyses conducted on
attacker-controlled inputs. In particular, Mayhem
never leverages static analysis and limits use of dynamic
instrumentation frameworks on an adversary’s patched
binary. This was a conscious design decision: we did
not think the benefits would outweigh the risks. On the
one hand, this handicapped our CRS, as Mayhem could
potentially have found more exploits by analyzing adver-
saries’ patches. On the other hand, doing so would have
put us at a greater risk of being exploited and taken down.

Mayhem did, however, run adversaries’ patched bina-
ries (albeit without analysis) to check that our exploits
worked locally before deploying them to the network.
This was a calculated risk, but one that we minimized with
isolation. To limit the damage from a potential attack,
Mayhem had one dedicated virtual machine per adver-
sary, and it was the only machine on which we ever ran

60 IEEE Security & Privacy March/April 2018

HACKING WITHOUT HUMANS

their binaries. The effects of an attack would be limited to
that one VM (assuming no ability to escape from the VM)
and would not affect our analysis of other teams or the
unpatched services.

Finally, we needed to consider malicious test
cases from the network. Network traffic contained
test cases sent by the referee to check availability, and
those test cases were critical for both our offense and
our defenses—they provided initial seeds for our
fuzzing and symbolic execution, and they were also
ground-truth for the intended functionality of each ser-
vice. However, this network traffic potentially included
malicious traffic from adversaries. Therefore, we han-
dled data from the network (as well as data derived from
it) with care. We hardened our dynamic analysis frame-
works against public and homemade exploits, and we
sandboxed our analysis processes with a combination of
system call whitelists and limits on CPU and memory.

Mayhem’s Autonomy in the CGC
Despite all the techniques mentioned above, we are sad to
say that Mayhem still ran into issues during the competi-
tion. We failed to account for a failure mode in the compo-
nent downloading round data from the referee. Although
downloading a single round usually took less than 30
seconds, it got much slower starting at round 27 (out of
96). Some rounds took more than 18 minutes to down-
load fully. As rounds were only five minutes long, this
component therefore fell behind, and Mayhem did not
have access to the current state of the game. Our CRS was
essentially playing the game in the past: it was analyzing
binaries after the referee had removed those services from
the game, unaware that new services had replaced them.

Luckily for us, the number of exploits thrown by other
teams decreased significantly starting around the time this
issue occurred, and therefore Mayhem’s score was not as
negatively affected as expected. This lack of exploits made
leaving the unpatched binaries up a surprisingly good
strategy; it avoided downtime and performance losses.
As a result, Mayhem held onto its lead from the first 27
rounds and still won first place. Interestingly, Mayhem
recovered near the end the game and landed an exploit in
the last round.

The Cyber Grand Challenge shows hope for technolo-
gies that were recently considered pure science fic-

tion. With some of the top researchers in academia and
industry working for two years toward a goal of automating
large parts of software and network security, many hurdles
have been overcome. ForAllSecure has always believed
that these technologies would transfer to real-world appli-
cations, and we are excited to continue development to
make automated security practical for real networks and

software applications. Automated bug finding, patching,
and software testing will help scale up security, hopefully
allowing us to catch up to the blistering pace of modern
technological development and ensure a safe computing
landscape for everyone.

References

 1. M. Walker, “Machine vs. Machine: Lessons from the First

Year of Cyber Grand Challenge,” Proceedings of the 24th

USENIX Security Symposium, 2015.

 2. N. Stephens et al., “Driller: Augmenting Fuzzing through

Selective Symbolic Execution,” 23nd Annual Network and

Distributed System Security Symposium (NDSS 16), 2016.

 3. E.J. Schwartz, T. Avgerinos, and D. Brumley, “All You Ever

Wanted to Know about Dynamic Taint Analysis and For-

ward Symbolic Execution (but Might Have Been Afraid to

Ask),” Proceedings of the IEEE Symposium on Security and Pri-

vacy, 2010.

 4. S.K. Cha et al., “Unleashing Mayhem on Binary Code,” Pro-

ceedings of the IEEE Symposium on Security and Privacy, 2012,

pp. 380–394.

 5. T. Avgerinos et al., “Enhancing Symbolic Execution with

Veritesting,” ICSE, 2014.

 6. “Cyber Grand Shellphish,” Shellphish, phrack.org, 2017;

www.phrack.org/papers/cyber_grand_shellphish.html.

 7. C.-K. Luk et al., “PIN: Building Customized Program Anal-

ysis Tools with Dynamic Instrumentation,” Proceedings of

the 2005 ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, 2005.

 8. F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,”

Proceedings of USENIX Annual Technical Conference, 2005.

Thanassis Avgerinos is a cofounder of ForAllSecure.
Contact at thanassis@forallsecure.com.

David Brumley is the CEO and cofounder of ForAllSecure
and a professor at Carnegie Mellon University in ECE
and CS. Contact at dbrumley@forallsecure.com.

John Davis is a software engineer at ForAllSecure. Con-
tact at jedavis@forallsecure.com.

Ryan Goulden is an engineer at ForAllSecure. Contact at
ryan@forallsecure.com.

Tyler Nighswander is a bidirectional engineer at
ForAllSecure. Contact at tylerni7@forallsecure.com.

Alex Rebert is a computer security researcher and
cofounder of ForAllSecure. Contact at alex@
forallsecure.com.

Ned Williamson is a software engineer at ForAllSecure.
Contact at ned@forallsecure.com.

