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Preface

There is an ongoing policy debate over whether the U.S. government—or any 
government—should retain so-called zero-day software vulnerabilities or disclose 
them so they can be patched.1 Those who have knowledge of a zero-day vulnerabil-
ity may create “exploits”—code that takes advantage of the vulnerability—to access 
other parts of a system, execute their own code, act as an administrator, or perform 
some other action, but many worry that keeping these vulnerabilities secret can expose 
people who use the vulnerable software to malware attacks and other attempts to col-
lect their private information. Furthermore, cybersecurity and the liability that might 
result from attacks, hacks, and data breaches using zero-day vulnerabilities have sub-
stantial implications for U.S. consumers, companies, and insurers, and for the civil 
justice system broadly.

The debate of whether to retain or disclose these vulnerabilities is often fueled by 
how much overlap there might be between the zero-day vulnerabilities or exploits the 
U.S. government keeps and those its adversaries are stockpiling. If both sides have the 
same stockpiles, then some argue that there is little point to keeping them private—
whereas a smaller overlap might justify retention. But without information on the over-
lap, or concrete metrics based on actual data, it is challenging to make a well-informed 
decision about stockpiling.

To address this question, RAND obtained rare access to a dataset of informa-
tion about zero-day software vulnerabilities and exploits. In this report, we explore the 
dataset using novel applications of traditional statistical methods to reveal a number 
of insights about the industry and establish some initial metrics regarding the life 
status, longevity, and collision rates of zero-day vulnerabilities and their exploits. We 
also touch on the labor time required to create an exploit. The results of this research 
provide findings from real-world zero-day vulnerability and exploit data that could 
augment conventional proxy examples and expert opinion, complement current efforts 
to create a framework for deciding whether to disclose or retain a cache of zero-day 

1  Zero-day vulnerabilities are vulnerabilities for which no patch or fix has been publicly released. The term zero-
day refers to the number of days a software vendor has known about the vulnerability (Libicki, Ablon, and Webb, 
2015). Zero-day vulnerabilities and their exploits are useful in cyber operations—whether by criminals, militar-
ies, or governments—as well as in defensive (e.g., penetration testing) and academic settings.
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vulnerabilities and exploits, and inform ongoing policy debates regarding stockpiling 
and vulnerability disclosure. 

This research could be valuable to a wide variety of stakeholders, chief among 
them policymakers making decisions about how to reduce the nation’s vulnerability 
while still maintaining robust options for cyber operations. 

Funding for this venture was provided by philanthropic contributions from 
RAND supporters and from members of the RAND Institute for Civil Justice Board 
of Overseers and other RAND supporters, as well as income from operations. 

RAND Institute for Civil Justice

The RAND Institute for Civil Justice (ICJ) is dedicated to improving the civil jus-
tice system by supplying policymakers and the public with rigorous and nonpartisan 
research. Its studies identify trends in litigation and inform policy choices about liabil-
ity, compensation, regulation, risk management, and insurance. The institute builds on 
a long tradition of RAND Corporation research characterized by an interdisciplinary, 
empirical approach to public policy issues and rigorous standards of quality, objectiv-
ity, and independence.

ICJ research is supported by pooled grants from a range of sources, including cor-
porations, trade and professional associations, individuals, government agencies, and 
private foundations. All its reports are subject to peer review and disseminated widely 
to policymakers, practitioners in law and business, other researchers, and the public.

The ICJ is part of RAND Justice, Infrastructure, and Environment, a division of 
the RAND Corporation dedicated to improving policy- and decisionmaking in a wide 
range of policy domains, including civil and criminal justice, infrastructure protection 
and homeland security, transportation and energy policy, and environmental and nat-
ural resource policy. For more information about the RAND Institute for Civil Justice, 
see www.rand.org/icj or contact the director at icjdirector@rand.org.

We welcome your questions and comments, which can be addressed to the lead 
author, Lillian Ablon (Lillian_Ablon@rand.org). For more information about the 
RAND Institute for Civil Justice, see www.rand.org/icj or contact the director at 
icjdirector@rand.org.
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Summary

Zero-day vulnerabilities are software vulnerabilities for which no patch or fix has been 
publicly released. The term zero-day refers to the number of days a software vendor has 
known about the vulnerability (Libicki, Ablon, and Webb, 2015). Attackers use zero-
day vulnerabilities to go after organizations and targets that diligently stay current on 
patches; those that are not diligent can be attacked via vulnerabilities for which patches 
exist but have not been applied. Thus, zero-day vulnerabilities and their exploits are 
useful in cyber operations—whether by criminals, militaries, or governments—as well 
as in defensive (e.g., penetration testing) and academic settings. Inevitably, a busi-
ness model and markets have sprung up to trade or sell these exploitable zero-day 
vulnerabilities. 

There is an ongoing policy debate of whether the U.S. government—or any gov-
ernment—should retain so-called zero-day software vulnerabilities or disclose them so 
they can be patched. Those who have knowledge of a zero-day vulnerability may create 
“exploits”—code that takes advantage of the vulnerability—to access other parts of the 
system, execute their own code, act as an administrator, or perform some other action, 
but many worry that keeping these vulnerabilities secret can expose people who use 
the vulnerable software to malware attacks and other attempts to collect their private 
information.

The debate of whether to retain or disclose these vulnerabilities is often fueled by 
how much overlap there might be between the zero-day vulnerabilities or exploits the 
U.S. government keeps and those its adversaries are stockpiling. If both sides have the 
same stockpiles, then some argue that there is little point to keeping them private—
whereas a smaller overlap might justify retention. But without information on the over-
lap, or concrete metrics based on actual data, it is challenging to make a well-informed 
decision about stockpiling.

In an effort to address the question, RAND obtained rare access to a dataset of 
information about zero-day software vulnerabilities and exploits. It is a rich dataset, 
as some of these exploits have been found by others, but others have not. The dataset 
spans 14 years (2002–2016) and contains information about more than 200 zero-day 
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exploits and the vulnerabilities they take advantage of, over half of which are publicly 
unknown.1 

In this report, we explore the dataset using novel applications of traditional sta-
tistical methods to reveal a number of insights about the industry, and establish some 
initial metrics regarding the life status and longevity of zero-day vulnerabilities and 
their exploits, and the likelihood that others will discover them (known as the “colli-
sion rate”2). We also touch on the labor time required to create an exploit for a zero-day 
vulnerability. The results of this research provide findings from real-world zero-day 
vulnerability and exploit data that could augment conventional proxy examples and 
expert opinion, complement current efforts to create a framework for deciding whether 
to disclose or retain a cache of zero-day vulnerabilities and exploits, and inform ongo-
ing policy debates regarding stockpiling and vulnerability disclosure.

Findings

Our research yields several interesting findings. We highlight two of these up front, 
and detail the others below: 

1. Exploits and their underlying vulnerabilities have a rather long average life 
expectancy (6.9 years).

2. For a given stockpile of zero-day vulnerabilities, after a year, approximately 
5.7 percent have been discovered by an outside entity.

Stockpiling may be beneficial for those offensively focused, and technically 
sophisticated vulnerability researchers likely prefer to stockpile vulnerabilities they 
find, rather than disclose them. Defenders will always be vulnerable to zero-day vul-
nerabilities, and likely will want to disclose and patch a vulnerability upon discovery. 

Our data did not indicate that there are any vulnerabilities that are “stronger” or 
“weaker” than others in terms of resilience to being discovered and disclosed. It may 
be most efficient and cost-effective to develop an exploit for whatever vulnerability is 
easiest to find or whatever vulnerabilities are most effective.

Finding #1: Declaring a vulnerability as alive (publicly unknown) or dead (publicly 
known) may be misleading and too simplistic 
Common practice is to classify a vulnerability simply as alive (publicly unknown) or 
dead (publicly known); however, our analysis revealed that there are several subcatego-

1  As of the time of our data cut-off (March 1, 2016).
2  When a two (or more) researchers independently find the same vulnerability, a “collision” is said have occurred, 
and the vulnerability is said to have “overlap.” The collision rate is sometimes also referred to as the overlap rate.   
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ries of each, which can make labeling a vulnerability as either alive or dead misleading 
and too simplistic.

Vulnerabilities that are alive (publicly unknown) can be those that are actively 
sought out by defenders—these are called “living” vulnerabilities—or those that will 
remain in a product in perpetuity because the vendor no longer maintains the code or 
issues updates—these are called “immortal” vulnerabilities.

Vulnerabilities that are dead (publicly known) can be disclosed publicly by the 
researchers who found them (“killed by researcher”) or by another party. Sometimes 
these vulnerabilities are disclosed with a security advisory or patch (died via “security 
patch”). Sometimes developers or vulnerability researchers will post a bug or vulner-
ability they found via a mailing list, an online blog, or a book. The poster may or may 
not be aware that the bug discussed is actually a security vulnerability, so there is no 
security advisory connected with the vulnerability (died via “publicly shared”).

There are still other vulnerabilities that are quasi-alive (like a zombie), because 
they can be exploited in older versions but not the latest version of a product. These 
“code refactor” vulnerabilities get removed through revisions to the code, without 
being discovered or publicly disclosed as security vulnerabilities. 

And because of the dynamic nature of vulnerabilities, something exploitable one 
day may not be the next (and vice versa). 

In the course of investigating life status for our vulnerabilities, we found that 
Common Vulnerabilities and Exposure (CVEs) do not always provide complete and 
accurate information about the severity of vulnerabilities.

Finding #2: Exploits have an average life expectancy of 6.9 years after initial 
discovery; but roughly 25 percent of exploits will not survive for more than a year 
and a half, and another 25 percent will survive more than 9.5 years
After initial discovery by a vulnerability researcher, exploits have an average life expec-
tancy of 6.9 years (specifically, 2,521 days), and any given exploit is likely to live between 
5.39 and 8.84 years. Only 25 percent of vulnerabilities do not survive to 1.51 years, and 
only 25 percent live more than 9.5 years. The relatively long life expectancy of 6.9 years 
means that zero-day vulnerabilities—in particular the ones that exploits are created for 
gray, or government, market use—are likely old. 

While our data showed that a short life is 1.5 years, this might be long enough for 
most vulnerability researchers. 

Finding #3: No characteristics of a vulnerability indicated a long or short life; 
however, future analyses may want to examine Linux versus other platform types, 
the similarity of open and closed source code, and various groupings of exploit 
class type
After evaluating the vulnerability type, platform affected, source code type, and exploit 
class type, no characteristic statistically stood out as a “smoking gun” that might indi-
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cate a short or long life. This may have been due to either a true lack of association or a 
lack of statistical power to detect those associations, given the relatively small number 
of deaths in our dataset. More data would perhaps provide more statistically significant 
results, though whether that would confirm this finding or find that a particular char-
acteristic does matter is unclear. 

While nothing stood out as statistically significant, our analysis does provide 
guidance on what hypotheses may be valuable to test in future analyses—in particular, 
to examine the longevity of vulnerabilities for Linux compared with other platforms; 
to confirm the similarity of longevity of vulnerabilities for open and closed source code 
type; and to investigate any significance of grouping client-side and remote exploits 
together compared against a grouping of local, mixed, and other exploits.

Had there been characteristics that stood out (which may be confirmed or refuted 
with more data), that may have informed those involved with vulnerability research, 
the vulnerability equities process, or security in general to better refine what should be 
kept and what should be publicly released. 

Finding #4: For a given stockpile of zero-day vulnerabilities, after a year 
approximately 5.7 percent have been discovered by others
The likelihood that two (or more) independent parties will discover a vulnerability in 
question is known as the collision rate. (When two or more researchers independently 
find the same vulnerability, a “collision” is said to have occurred, and the vulnerability 
is said to have “overlap.” The collision rate is sometimes also referred to as the overlap 
rate.) In our analysis, collision rates changed significantly depending on the interval 
time used (from 40 percent to less than 1 percent), and so the timing of “flushing” a 
stockpile of dead vulnerabilities matters. We found a median value of 5.76 percent 
overlap (6.79 percent standard deviation) given a 365-day time interval, and a median 
value of 0.87 percent overlap (5.3 percent standard deviation) given a 90-day time 
interval. A 14-year interval (i.e., all of our data in one time interval) yielded a 40 per-
cent overlap. With the exception of the 14-year interval, our data show a relatively low 
collision rate. This may be because those in the private exploitation space are looking 
for different vulnerabilities from those hunting for vulnerabilities to share as public 
knowledge, as well as using different techniques to find the vulnerabilities (e.g., vulner-
abilities found via fuzzing, or automatic software testing, are often different than those 
found via manual analysis). 

The data also appear to show that, in the 2002–2016 time frame, for exploits that 
die (i.e., are found by independent parties), death seems to happen relatively quickly 
and often within the first year, though the rate of discovery may not be consistent each 
year (e.g., vulnerabilities found post-2008 were found at a faster rate than those found 
pre-2008). 



Summary    xiii

Our findings would be further refined with better information on how often 
evaluation happens (i.e., interval time used by organizations and agencies), as well as 
what vulnerabilities are held by other private groups.

Finding #5: Once an exploitable vulnerability has been found, time to develop a 
fully functioning exploit is relatively fast, with a median time of 22 days
Exploit development time ranges, but is generally relatively short. In our data, 71 percent 
of the exploits were developed in a month (31 days or less), almost a third (31.44 per-
cent) were developed in a week or less, and only 10 percent took more than 90 days to 
exploit. The majority of exploits in our dataset took between 6 and 37 days to become 
fully functional (with a median of 22 days, minimum of 1 day, and maximum of 955 
days).

The cost to develop (and, relatedly, the value or price of) an exploit can rely on 
many factors: the time to find a viable zero-day vulnerability (research time), the time 
to develop an exploit to take advantage of the zero-day vulnerability (exploit develop-
ment time), the cost of purchasing or acquiring a device or code for review, the time 
to set up a test lab and the cost of the appropriate infrastructure or tools required for 
testing and analysis, the time to integrate a particular exploit into other ongoing opera-
tions, the salaries of the researchers involved in developing the exploit, the churn of 
the codebase (i.e., the likelihood of having to revisit the exploit and update it to new 
versions of the code to maintain a capability), and supply and demand of an exploit 
for a particular platform or codebase. Additional value can come from a vulnerability’s 
uniqueness (e.g., if it is the only vulnerability found in a specific product) or the need 
and timeline of the customer. 

Vulnerabilities purchased from external third parties had a shorter lifespan (aver-
age life of 1.4 years). This may be an argument for finding vulnerabilities and develop-
ing exploits in-house if a long life is desired. 

Exploit development time does not appear to have an influence on the lifespan or 
survival time of an exploit.

At the most basic level, any serious attacker can likely get an affordable zero-day 
for almost any target. However, other tangible costs (acquiring products to find vul-
nerabilities in, setting up test infrastructure, renting work space, etc.) and intangible 
costs (premium of a high-demand, low-supply product, etc.) can cause the price to rise 
dramatically.

Implications for Defense and Offense 

Since zero-day vulnerabilities have an average life expectancy of 6.9 years, and the 
overlap between what is disclosed publicly and what is found privately appears to be 
relatively small, offense may have an upper hand. Further, because no characteristic 
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of a vulnerability appears to indicate a long or short life, and oversimplifying vulner-
abilities as either alive (publicly unknown) or dead (publicly known) may be creating a 
barrier for vulnerability-detection efforts, security strategies should focus on all types 
of vulnerabilities, rather than just one kind.

Defenders likely need better options to both find zero-day vulnerabilities and 
detect when a system or software package is being exploited. In addition, rather than 
focusing only on finding zero-day vulnerabilities, defenders may be able to shift the 
balance in their favor by starting from the assumption of compromise, investigating 
ways to improve system architecture design to contain the impact of compromise, and 
adopting different techniques to identify vulnerabilities.

Those who are involved with planning offensive operations using a specific zero-
day vulnerability should consider its use mostly in short-term planning circumstances. 
On the other hand, because there appears to be no vulnerability characteristic that 
indicates a shorter or longer life, it may be most efficient and cost-effective to stockpile 
and develop exploits for whatever vulnerabilities are easiest to find or most effective. 
And given vulnerabilities’ long life and low collision rate, having only a few vulner-
abilities as backup may be sufficient, and the use of any zero-day vulnerability for a 
particular software package may allow for a longer window of time to plan or carry 
out an operation. In addition, while potentially of limited use, vulnerabilities that are 
immortal or code refactored may still be valuable for operations, depending on what 
system or target they reside in: Researchers should consider regularly revisiting vulner-
abilities they had once found to be unexploitable.

At the most basic level, any serious attacker can always get an affordable zero-day 
for almost any target. The majority of the cost of a zero-day exploit does not come from 
labor, but rather the value inherent in them and the lack of supply. Other tangible costs 
(acquiring products to find the vulnerabilities in, setting up test infrastructure, main-
taining and porting the exploit to work on multiple versions, renting work space, etc.) 
and intangible costs (premium of a high-demand, low-supply product, etc.) can cause 
the price rise dramatically. Defenders should be aware of the availability and econom-
ics so they can defend more effectively. 

To Stockpile or Not to Stockpile?

Governments may choose to keep zero-day vulnerabilities private, either for defensive 
purposes (e.g., penetration testing) or offensive operations. The decision to stockpile 
requires careful consideration of several factors, including the vulnerability itself, its 
use, the circumstances of its use, and other options that may be available to achieve an 
intended outcome.

Our analysis shows that zero-day vulnerabilities may have long average lifetimes 
and low collision rates. The small overlap may indicate that vulnerabilities are dense 
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(i.e., another, different vulnerability usually exists) or very hard to find (with these 
two characteristics not necessarily mutually exclusive). If another vulnerability usu-
ally exists, then the level of protection consumers gain from a researcher disclosing a 
vulnerability may be seen as modest, and some may conclude that stockpiling zero-
days may be a reasonable option. If zero-day vulnerabilities are very hard to find, then 
the small probability that others will find the same vulnerability may also support the 
argument to retain a stockpile.

On the other hand, our analysis shows that that the collision rates for zero-day 
vulnerabilities are nonzero. Some may argue that, if there is any probability that some-
one else (especially an adversary) will find the same zero-day vulnerability, then the 
potentially severe consequences of keeping the zero-day private and leaving a popula-
tion vulnerable warrant immediate vulnerability disclosure and patch. In this line of 
thought, the best decision may be to stockpile only if one is confident that no one else 
will find the zero-day; disclose otherwise.
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CHAPTER ONE

Introduction

There is an ongoing policy debate of whether the U.S. government—or any 
government—should retain so-called zero-day software vulnerabilities or disclose 
them so they can be patched. Those who have knowledge of a zero-day vulnerabil-
ity may create “exploits”—code that takes advantage of the vulnerability—to access 
other parts of the system, execute their own code, act as an administrator, or perform 
some other action, but many worry that keeping these vulnerabilities secret can expose 
people who use the vulnerable software to malware attacks and other attempts to col-
lect their private information.

The debate of whether to retain or disclose these vulnerabilities is often fueled by 
how much overlap there might be between the zero-day vulnerabilities or exploits the 
U.S. government keeps and those its adversaries are stockpiling. If both sides have the 
same stockpiles, then there is little point to keeping them private—whereas a smaller 
overlap might justify retention. But without information on the overlap, it is challeng-
ing to make a well-informed decision about stockpiling.

In an effort to address the question, RAND obtained rare access to a rich dataset 
of information about zero-day software vulnerabilities and exploits. In this report, we 
explore the dataset, reveal a number of insights about the industry, and establish some 
initial metrics regarding the life status and longevity of zero-day vulnerabilities and 
their exploits, and the likelihood that others will discover them (known as the “colli-
sion rate”). We also touch on the labor time required to create an exploit for a zero-day 
vulnerability. 

Little Is Known About the Extent, Use, Benefit, or Harm of Zero-Day 
Exploits 

Software vendors aim to create flawless software, but this is aspirational. Devices, net-
works, systems, and processes inherently have some number of bugs in them; estimates 
range from 3 to 20 bugs per 1,000 lines of code, and one or two orders of magnitude 
less after thorough review (McConnell, 2004). The number of bugs varies by applica-
tion, device, or method (McConnell, 2004). 
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A vulnerability is a type of bug that creates a security weakness in the design, 
implementation, or operation of a system or application (NRC, 1999).1 Vulnerabilities 
and weaknesses can be introduced wittingly—i.e., through intentional behavior—or 
unwittingly, through an accidental design or implementation flaw (NRC, 2009). An 
exploit “is malicious code that takes advantage of software vulnerabilities to infect, 
disrupt, or take control of a computer without the user’s consent and typically without 
their knowledge” (Microsoft, 2013). However, not all bugs are vulnerabilities, and not 
all vulnerabilities can be usefully exploited.2 Some vulnerabilities may only enable an 
attacker to escalate privileges conduct a denial-of-service attack, while others will actu-
ally allow an attacker to gain remote code execution—often thought of as the ultimate 
goal—whereby the compromised system runs an attacker’s code without the user’s 
knowledge. 

Zero-day vulnerabilities (or zero-days) are vulnerabilities for which no patch or 
fix has been publicly released; in some cases, the software vendor may not be aware 
of the vulnerability (the term zero-day refers to the number of days a software vendor 
has known about the vulnerability) (Libicki, Ablon, and Webb, 2015).3 A zero-day 
exploit is a piece of code that takes advantage of a zero-day vulnerability and allows the 
exploit’s creator to access other parts of the system, execute her or his own code, act as 
an administrator, or perform other potentially damaging deeds.4 Zero-day exploits can 
be extremely valuable to those with the knowledge of them, both because every system 

1  Vulnerabilities can also include misconfigurations and lack of adequate controls. 
2  For instance, there may not always be a code path from the vulnerability to a useful part of the code. As an 
example, one might discover a buffer overflow, but no pathway allows exercising that buffer overflow. Or one 
might discover a path manipulation vulnerability, where an attacker can grab a file from a location he is not sup-
posed to access (a common example is by inserting a command to go up to a directory to which the attacker does 
not have access), but the presence of a vulnerability (i.e., the attacker can move around in the file system) does 
not mean the implementation is available (perhaps there is a fixed/static file that is not part of any other directory, 
thus, nothing an attacker enters will ever get to that desired file location) (Libicki, Ablon, and Webb, 2015).
3  The term zero-days often refers to both zero-day vulnerabilities and zero-day exploits—the exploits created to 
take advantage of the zero-day vulnerabilities. Throughout the report, we have attempted to specify when we are 
talking about a vulnerability and when we are talking about an exploit.
4  Exploits are sometimes mistaken for implants. In this report, we focus on exploits and exploit development. 
There are some significant distinguishing aspects between an exploit and an implant: An exploit provides initial 
access and often the ability for code execution by taking advantage of some vulnerability in a system process, and 
then facilitates an implant or implant’s payload, which solidifies and maintains that access (i.e., achieves persis-
tence), and delivers some effect to the system (not just a process on the system). For example, given an actor is able 
to run as a user on a system, a privilege escalation exploit might modify a process to get higher-level privilege, thus 
allowing an implant to use a payload to then do something with that extra privilege. In other words, exploits pro-
vide access and put an actor in position to do “something.” Implants are responsible for doing that “something.” 
These lines sometime blur, particularly in the case of automated exploitation.
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that runs the software has the vulnerability and because they can be difficult to detect 
and stop.5 

Attackers use zero-days to go after organizations and targets that diligently 
stay current on patches; those that are not diligent can be attacked via vulnerabili-
ties for which patches exist but have not been applied. Thus, zero-day vulnerabilities 
and their exploits are useful in cyber operations—whether by criminals, militaries, or 
governments—as well as in defensive (e.g., penetration testing) and academic settings. 
Inevitably, a business model and markets have sprung up to trade or sell these exploit-
able zero-day vulnerabilities.

While many—and perhaps most—of defensive testing or offensive operations 
involve known vulnerabilities (i.e., not zero-day), exploits for zero-day vulnerabilities 
have been used in some high-profile cases, the most famous being the Stuxnet worm, 
which relied on four Microsoft zero-day vulnerabilities to compromise Iran’s nuclear 
program (Naraine, 2010). In another case, the Heartbleed vulnerability was a serious 
vulnerability in OpenSSL (a cryptography library used by millions of websites) that 
could allow private keys to be leaked and shared with an attacker. While there are no 
known cases of attackers exploiting Heartbleed in operations, many suspect it was used 
in some operations while still a zero-day.

Beyond these high-profile examples, little is known about the true extent, use, 
benefit, and harm of zero-day exploits. Discussions are often speculative or based on 
what is discovered after the vulnerability has been exploited and detected in an attack.6 
While some heuristic models have been created to examine the depletion rate of soft-
ware vulnerabilities (Libicki, Ablon, and Webb, 2015), game theoretic outcomes of 
stockpiling (Moore, Friedman, and Procaccia, 2010), the collision rate in various code 
bases (Moussouris and Siegel, 2015), and the general economics of software vulner-
abilities (Kuehn and Mueller, 2014), no publicly available research on this topic has 
been based on actual data about current zero-day vulnerabilities. In this report, we pro-
vide data-driven insights into zero-day vulnerabilities that could augment conventional 
proxy examples and expert opinion, complement current efforts to create a frame-
work for deciding whether to disclose or retain a cache of zero-day vulnerabilities and 
exploits, and inform ongoing policy discussions surrounding zero-day vulnerabilities 
regarding stockpiling and vulnerability disclosure.

5  Though a system with a vulnerability can avoid being exploited if there is software or hardware elsewhere in 
the system that prevents or mitigates the exploit’s consequences.
6  This is likely a subset of all exploits used, since presumably not all exploits operationally used are detected. 
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Should the U.S. Government Disclose Zero-Day Vulnerabilities?

There are policy discussions about whether the U.S. government—or any government—
should retain (or stockpile) zero-day vulnerabilities for its own use or disclose them 
to the affected vendors for patching. When an entity stockpiles vulnerabilities and 
exploits for its own use, other systems that use the same software are also vulnerable 
(including the computers and systems of citizens, government personnel, and critical 
infrastructure). Some are concerned that, by stockpiling vulnerabilities and not alert-
ing the affected vendors, adversaries or criminals will find the same vulnerabilities and 
use them for their own purposes.

Two factors important to this debate are 

1. Longevity of a vulnerability: how long the vendor or public remains ignorant 
of the vulnerability7 

2. Collision rate: the likelihood that a zero-day found by one entity will also be 
found independently by another.8 

Stockpiling should not be viewed as a cut-and-dried issue (“keep them all” or 
“disclose them all”); there are many considerations and nuances that come into play. 
If an adversary finds a zero-day vulnerability, stockpiling of the same vulnerability 
by one’s government may be harmful: Not only can the adversary can patch against 
anyone using it, but it may also leave a critical population vulnerable. Furthermore, 
who finds the zero-day makes a difference—for example, an affected vendor or a bug 
hunter working on the vendor’s behalf, or cybercriminals or other nefarious actors who 
withhold the information from the vendor and the public. 

On the other hand, a government’s disclosure of all vulnerabilities may signifi-
cantly reduce any advantage it has in using zero-days for defensive testing or offensive 
operations. There may be classes of vulnerabilities or certain products for which it may 
make sense to disclose any vulnerabilities found, and others for which it does not.9 

7  Here we are simply looking at the timeline between one entity privately finding a zero-day vulnerability and 
that zero-day vulnerability being publicly disclosed; we are not taking into account the time that a vendor might 
take to patch the vulnerability once publicly disclosed.
8  When a two (or more) researchers independently find the same vulnerability, a “collision” is said have occurred, 
and the vulnerability is said to have “overlap.” The collision rate is sometimes also referred to as the overlap rate. 

A close collision occurs where researchers find a different vulnerability in the same place in the code. See 
Appendix D, “Close Collisions,” for more on close collisions.
9  For example, vulnerability researchers may easily find the same buffer overflows, but each tends to find dif-
ferent path manipulation vulnerabilities—making a case to disclose the first class but not the second. Similarly, 
perhaps citizens or stakeholders of one country mostly use products of one network security manufacturer; they 
may want to disclose vulnerabilities found in that manufacturer’s products, but not those found in a competitor’s 
products.
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There Are Many Considerations That Stakeholders Want Addressed

Government agencies, security vendors, and independent researchers have each been 
trying to determine which zero-days to hold on to and for how long. This generally 
involves understanding (1) the survival probability and expected lifetime of zero-day 
vulnerabilities and their exploits (longevity) and (2) the likelihood that a zero-day 
found by one entity will also be found independently by another (collision rate). While 
longevity of a vulnerability may be an obvious choice of desired metric, collision rate 
is also important, as the overlap might indicate what percentage of one’s stockpile has 
been found by someone else, and possibly the types of vulnerabilities that may be more 
or less desirable to stockpile.10

To some extent, stakeholders are also interested in knowing how much it costs to 
find vulnerabilities and develop reliable exploits, and what their purchase price should 
be. Other considerations include how long a target system keeps its current configura-
tion and version of code, how often it gets patched, how long a vulnerability should be 
held before it is made public, and who the target is. 

There has been much discussion on this topic: Following the discovery and disclo-
sure of the Heartbleed vulnerability in 2014, then White House Cybersecurity Coordi-
nator Michael Daniel outlined some of the considerations.11 Others have discussed the 
benefits and challenges of disclosure versus retention (Schneier, 2014), explored the var-
ious markets (Fidler, Granick, and Crenshaw, 2014; Kuehn and Mueller, 2014; Libicki, 
Ablon, and Webb, 2015), examined the vulnerabilities equities process (Schwartz and 
Knake, 2016), investigated the role of disclosure in improving or undermining security 
(Ransbotham and Mitre, 2011), reviewed the specific recommendations regarding soft-
ware exploits from the U.S. President’s Review Group (Clark et al., 2013), held indus-
try round tables on the topic (Zetter, 2015), and opined on whether the government 
holding zero-day vulnerabilities weakens digital security (Crocker, 2016).

10  More in-depth discussion of overlap follows later in this chapter. 
11  Former White House Cybersecurity Coordinator Michael Daniel outlined some of the considerations (Daniel, 
2014):

• How much is the vulnerable system used in the core internet infrastructure, in other critical infrastructure 
systems, in the U.S. economy, and/or in national security systems?

• Does the vulnerability, if left unpatched, impose significant risk?
• How much harm could an adversary nation or criminal group do with knowledge of this vulnerability?
• How likely is it that we would know if someone else was exploiting it?
• How badly do we need the intelligence we think we can get from exploiting the vulnerability?
• Are there other ways we can get it?
• Could we utilize the vulnerability for a short period of time before we disclose it?
• How likely is it that someone else will discover the vulnerability?
• Can the vulnerability be patched or otherwise mitigated?
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Research Questions and the Purpose of This Research

The decision to stockpile vulnerabilities likely depends on many factors independent 
of the vulnerabilities themselves (e.g., What kind of organization are we? How would 
withholding vulnerabilities harm or help us?). When the discussion moves to particular 
vulnerabilities, then specific questions may come into play:

1. Life status: Is the vulnerability really a zero-day? Is it “alive” (publicly unknown) 
or “dead” (known to others)? 

2. Longevity: How long will the vulnerability remain undiscovered and undis-
closed to the public? 

3. Collision rate: What is the likelihood that others will discover and disclose 
the vulnerability (including other private researchers and the affected vendor)?12

It may be additionally helpful to know:

4. Cost: What is the cost to develop an exploit for the vulnerability (e.g., in order 
to help set purchase price)?

Answering these questions can be useful in determining which vulnerabilities to 
stockpile and which to patch and disclose to the vendor.13 While there are hints that 
high-level criteria may exist for deciding whether to stockpile or retain vulnerabilities 
(e.g., Daniels, 2014), there are no publicly available metrics or hard data to inform 
the discussion, which makes it challenging to make a well-informed decision about 
stockpiling. 

The purpose of this study is to establish some initial metrics regarding zero-day 
vulnerabilities to help inform the conversation. In particular, in this report we provide 
some initial metrics on the life status, longevity, and collision rate of real-world zero-
day vulnerabilities and their exploits, using novel applications of traditional statisti-
cal methods—methodology that could be repeated on other sets of vulnerability and 
exploit data. We also touch on some of the costs and effort required to create an exploit, 
in terms of labor time. 

12  Throughout this report, we use the term discover. However, some might argue that identify or hunt are more 
appropriate (e.g., Dai Zovi, 2016). We acknowledge the differences but stick with discover.
13  The decision to disclose it publicly but not to the vendor (called “full disclosure” rather than “coordinated 
disclosure”) is based on a different set of considerations such as how mulish the vendor is or how much publicity 
the discoverer wants.
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Intended Audience for This Research

The primary audience for this research is policymakers seeking to make the best pos-
sible decisions about how to reduce the nation’s vulnerability while still maintaining 
robust options for cyber operations.

This research could help inform software vendors, vulnerability researchers, and 
policymakers by illuminating the overlap between vulnerabilities found privately 
and publicly, highlighting the characteristics of these vulnerabilities, and providing a 
behind-the-scenes look at zero-day exploit development. 

This research should be of interest to those involved in the Vulnerabilities Equities 
Process; U.S. Department of Defense personnel who are responsible for acquisition of 
zero-days and developing policies regarding software vulnerabilities; the U.S. Depart-
ment of Homeland Security (given its work on IDS Systems, e.g., Einstein III); the 
U.S. Department of State (given its role in export control topics); the military service 
components that are engaged with cyber effects; the FBI (which finds and prosecutes 
criminal activity that relies on zero-days and which uses zero-days to conduct crimi-
nal investigations); and various government offices involved in finding, creating policy 
around, or using zero-day exploits.

Other groups that may be interested in the research results include:

• Those who are actively looking for vulnerabilities and developing exploits for 
offensive purposes. The results could help them be more efficient in developing 
exploits for vulnerabilities that have a long life expectancy, be more frugal in 
developing the most time-consuming exploits (i.e., increase the benefit/cost ratio), 
and create representative pricing models.

• Those who are creating bug-bounty programs or buying vulnerabilities or exploits. 
The results could help them adjust their business models to match the efforts to 
find and exploit different types of vulnerabilities, and be more selective about 
which vulnerabilities may last the longest before detection by others. 

• Those who are building software security products or are actively looking for vul-
nerabilities for defensive purposes. The results could provide insight into which 
types of vulnerabilities or classes of exploits remain undetected longest, which 
could be used to focus secure development efforts, or for vulnerability feeds that 
test new defensive measures.

Breaking Down the Zero-Day Space

Zero-day vulnerabilities and their exploits are valuable to many different communities 
(military and defense departments, software vendors, vulnerability researchers) and 
are useful both for conducting offensive operations and for strengthening defensive 
measures. 
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Figure 1.1
The Common Understanding of the Vulnerability Inventory
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functional

Different groups look for zero-day vulnerabilities: government agencies and their 
defense contractors, software vendors, and security researchers, either as independent 
contractors or employees at a vulnerability research company.

One can distinguish between those who look for zero-day vulnerabilities to 
exploit and keep private and those who aim for zero-day vulnerabilities to be patched 
and (publicly) disclosed. The composition and number of people in each group varies, 
as do the inventory of zero-days and funding sources.

The (Zero-Day) Vulnerability Inventory
The common understanding is that there are two types of vulnerabilities: (1) those 
that are retained for private use and (2) those that are part of public knowledge (see 
Figure 1.1). Vulnerabilities in the private space are often thought to be unpatched and 
used exclusively for offensive purposes. Vulnerabilities in the public space are often 
assumed to be known to the vendor, with a patch or fix available; once a vulnerability 
has made it into public knowledge, it is no longer considered a potential harm to the 
public. 

But this view is largely oversimplified. Vulnerabilities can remain privately known 
but get quietly patched (so thus are no longer considered zero-day); conversely, vul-
nerabilities can be part of public knowledge yet still remain unpatched. Within the 
private knowledge space, there can be vulnerabilities that are known only to one indi-
vidual or organization, and vulnerabilities that are known to multiple individuals or 
organizations. Some of these actors may aim to keep vulnerabilities privately known, 
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unpatched, and exploitable (i.e., zero-day), and others may aim for the opposite.14 We 
thus break down vulnerabilities into the following categories: 

1. Vulnerabilities that are known privately:
a. to one individual or organization, and only that one individual or organiza-

tion
b. to more than one individual or organization (which may consider each 

other hostile or friendly), who both wish for the vulnerabilities to remain 
privately known

c. to more than one individual or organization, one of which aims to bring the 
vulnerability into public knowledge space

d. to the affected vendor (and possibly privately by others) and have been patched 
but are not publicly disclosed or known to be a security vulnerability.15

2. Vulnerabilities that are publicly known, and that may be known by the vendor 
and are
a. unfixed or unpatched
b. fixed, but only partially patched
c. completely fixed and patched.

Over time, some vulnerabilities known only in the private space become public 
knowledge, for a variety of reasons (found and disclosed by an independent researcher, 
the affected company, a private group, etc.). Thus, over time, there will be an overlap 
between the private and public inventory of vulnerabilities (as shown in Figure 1.2). 

Those who search for vulnerabilities and develop exploits for private use can, for 
the most part, be split up into two opposing groups: Blue and Red.16 The two groups 
can include government agencies, defense contractors, and vulnerability researchers—
consisting of independent individuals or groups of individuals and commercial exploit 
development shops.

Figure 1.2 shows a simplistic view and some examples of who is in each space.
Publicly disclosing zero-days that are known to both private groups but not the 

public—found in the purple overlap in Figure 1.2—would help Blue strengthen its 
defense because it would be able to protect against the zero-days that its adversaries 
(Red) had also found. On the other hand, publicly disclosing zero-days found in the 

14  Google’s Project Zero would be an example of the latter.
15  This category in particular is often overlooked in other literature on software vulnerabilities.
16  Technically, “Red” can consist of multiple private groups; however, in this case we group them all together 
to represent those that might use zero-days against the interests of Blue. Furthermore, there is an assumption 
is that, if a vulnerability is private, it is (1) in use and (2) in use by a nation-state or criminal. But vulnerability 
researchers we spoke to noted that there is an under-appreciated set of vulnerabilities that just gather dust on the 
shelf (i.e., remain private) because they have no utility and may have properties that make the disclosure process 
with vendors difficult and time-consuming.
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Figure 1.2
A Simpli ed View of Who the Vulnerability Inventory Includes
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Figure 1.3
A Simpli ed View of Retention Decisions
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pure blue section would hurt Blue’s offensive operations and benefit Red because Red 
would know about the zero-days that Blue found yet still keep its own private zero-day 
vulnerabilities in reserve. 

A big unknown is how much overlap there is between Blue and Red. Figure 1.3 
shows the extremes: A great deal of overlap would support the argument for disclosing 
and releasing all vulnerabilities found. But if the overlap is relatively small, then the 



Introduction    11

two groups are finding different vulnerabilities, and disclosing what Blue has might 
leave Blue in a weaker state. In that case, retention may be valuable.17

Data for This Research

RAND obtained a dataset of information about zero-day software exploits through a 
research connection.18 It is a rich dataset, as some of these exploits have been found by 
others and some have not. The dataset spans 14 years (2002–2016) and contains infor-
mation about more than 200 zero-day exploits and the vulnerabilities that they take 
advantage of, over half of which are unknown to the public.19 The data we received had 
a final count of 207 exploits, after approximately 20–30 were removed due to opera-
tional sensitivity.20 

The data cover many aspects of an exploit and the software vulnerability it takes 
advantage of: types of products, vendors, source types, vulnerability types, and exploit 
types. It also includes dates specifying when a vulnerability was first determined to be 
worthwhile to develop into a fully functioning exploit, when an exploit had been cre-
ated, and if and when the vulnerability was found externally by a third party. It also 
contains information on the analyst who wrote the exploit and the relevant security 
bulletin (where applicable). 

The dataset contained numerous categories per entry, and there are a myriad of 
things that one could study about it. In this report, we perform some first-order analy-
sis to determine a variety of metrics related to zero-day vulnerability life status, survival 
rates, collision rates, and costs (determined by time to develop exploits). More details 
on the data can be found in Appendix G, “More Information About the Data.” 

The data came from a vulnerability research group (which we will call BUSBY 
to protect its anonymity).21 Some BUSBY researchers have worked for nation-states (so 
their skill level and methodology rival that of nation-state teams), and many of BUSBY’s 
products are used by nation-states. Thus, these data are a proxy for what Blue—or a 
sophisticated private use group—has, and can be used to explore a variety of questions 
related to zero-day vulnerabilities, including the longevity and lifetime of zero-day vul-

17  As was previously mentioned, this decision calculus is not simple.
18  The source of the data has deep experience participating in both the private use (gray) and public knowledge 
(white) markets. 
19  As of our information cut-off date of March 1, 2016. 
20  The exact number is unknown.
21  A busby is a type of military hat that reached popularity in early 20th century. We find it a fitting cover term 
because (1) it is playful reference to the many types of hats (white, gray, black) of vulnerability researchers and (2) 
zero-day exploits are most often used by military components.
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Figure 1.4
Our Data
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nerabilities, the types of vulnerabilities that last the longest before detection by others, 
and the types of products that contain exploitable zero-day vulnerabilities.

Ideally, we would want similar data on Red (i.e., adversaries of Blue, or other 
private-use groups), to examine the overlap between Blue and Red, but we could not 
obtain that data. Instead, we focus on the overlap between Blue and the public (i.e., 
the teal section in the figures above) to infer what might be a baseline for what Red 
has. We do this based on the assumption that what happens in the public groups is 
somewhat similar to what happens in other groups. We acknowledge that this is a weak 
assumption, given that the composition, focus, motivation, and sophistication of the 
public and private groups can be fairly different, but these are the only data available 
at this time. 

With our data, we know the size of the overlap between private use vulnerabilities 
and public knowledge vulnerabilities (i.e., the teal overlap between the blue and green 
in Figure 1.4).

Our research focuses on the characteristics of vulnerabilities that are in the over-
lap between Blue (or a reasonable proxy for Blue) and the public (i.e., the blue and teal 
sections). We sought to understand the size of the overlap and the lifetime or longevity 
of zero-days held privately before they are discovered publicly. We use this to create a 
floor for overlap and lifetime of zero-day vulnerabilities. This lower bound would pro-
vide an indicator and help inform the discussion of stockpiling. Further insights into 
the inventory of some of Blue’s most sophisticated adversaries (or other groups that find 
zero-days for private use) would lead to a more refined estimate of overlap and lifetime.

While our intent was to perform analysis and derive results from the data and 
quantitative measures, we also sought out the qualitative expertise from others in the 
vulnerability research community. In addition to in-depth conversations with those 
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who provided the data, we spoke with vulnerability researchers from three gray-market 
companies (i.e., researchers who write exploits for government or private-use custom-
ers), those at two large commercial companies that have their own in-house vulner-
ability research team, those at companies that run bug-bounty programs, and other 
experts who have published on this topic or who have had other experience with the 
buying, selling, brokering, or developing of zero-day vulnerabilities.

Methodology of Research and Data Collection

Our Data Contain Characteristics About Each Exploit
Our dataset was created by culling relevant information from the exploit code itself. 
We collected information about various characteristics of each exploit:

• vulnerability type (at a high and low level)
• platform type (high and low level)
• exploit class
• source code type
• vendor.

More information and a breakdown of frequencies is provided in Appendix G, 
“More Information About the Data.”

Collecting the Data and Determining Lifetime Dates
Three analysts spent a week systematically working through repositories of exploit code 
and detailed exploit documentation of more than 200 exploits, pulling out informa-
tion about the vulnerability exploited, platform affected, life status, lifetime, and other 
relevant information. 

The three dates possible for each exploit are as follows: 

1. Birth date: The date a vulnerability was discovered and determined to be worth 
creating a fully functioning exploit for.22 This date was most often obtained 
from the repository log check-in. When the repository logs were not available, 
we used the dates on the exploit documentation when the exploit developer kept 

22  Only a subset of zero-day vulnerabilities are exploitable, so when exploit developers find vulnerabilities, they 
must determine whether or not they are able to develop an exploit. Many factors can come into play when decid-
ing whether an exploit will be developed to take advantage of the vulnerability. For example, there may be other 
vulnerabilities or bugs standing in the way of exploiting the intended vulnerability (see discussion of “blocker 
bugs” later in the report), the vulnerability may not lead to anything useful (yet), or the exploit developer may 
already have several exploits in the same place in code on the shelf, so they will use their time on other vulner-
abilities (for example, in this dataset, 14 percent of the entries only made it to the “proof of concept” stage and 
fully functioning exploits were not created).
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a timeline of her or his work. In the cases when these dates were not available, 
we used the creation date of the document (i.e., when the exploit developer first 
started writing about the vulnerability found). In a few cases, we relied on the 
recall of the exploit developer who had been involved with the specific exploit. 
In some cases, when an initial discovery date was not available, the birth date 
was the date that a cursory proof of concept (PoC) exploit had been developed.23

2. Mature date: The date of the first fully functioning, reliable exploit (i.e., the 
exploit was ready to be delivered to a client or used in operations).24 This date 
was obtained from the exploit documentation and repository logs.25 

3. Death date (if applicable): The date when the vulnerability was discovered 
and disclosed to the public by an outside third party; this is only applicable to 
some of the vulnerabilities and exploit in our dataset.26 We used search engines 
to perform online searches of strings, libraries, functions, variables, and other 
unique identifying information that was specific to the vulnerability, was the 
basis of the exploit, or was instrumental in achieving exploitation. In addition 
to using basic search engine methods, we examined various repositories where 
known vulnerabilities are reported (e.g., Common Vulnerabilities and Expo-
sures [CVE]/National Vulnerability Database [NVD], Open Sourced Vulner-
ability Database [OSVDB], Bugtraq, SecurityFocus).27 The three analysts each 
spent approximately 30–45 minutes per vulnerability to search. In the cases in 
which no results appeared, we searched for any reported vulnerability on the 
product and analyzed those results to see whether our particular vulnerability 

23  That is, code that demonstrates or proves that a vulnerability is exploitable. For more detail on proof-of-
concept exploits, see Chapter Two and Appendix A, “The Exploit Development Cycle.”
24  There were some cases in which follow-on work needed to be done to make the exploit reliable for multiple 
versions, but this timeline was not captured. 
25  These dates are fairly accurate, as exploit developers tend to be quite excited, proud, and eager to share with 
their colleagues when one of their exploits is fully functional and reliable.
26  Another way to determine whether a vulnerability was still a zero-day and its exploit was still viable would be 
to try the exploit on the latest version of the product. We did this in a few cases; however, in most cases we were 
not given approval to test the exploit to see whether it was still alive. Therefore, we have relied on the methodology 
noted here to determine whether a vulnerability was still zero-day or not. 
27  We acknowledge that not all publicly known vulnerabilities are encompassed by these repositories. Some 
experts in the vulnerability disclosure space we spoke with estimated that vulnerabilities listed in the OSVDB 
(now called VulnDB) represent approximately 80 to 90 percent of all known vulnerabilities (including all vul-
nerabilities listed in CVE/NVD), and vulnerabilities listed in CVE/NVD represent approximately 50 percent 
of those vulnerabilities in OSVDB/VulnDB. Vulnerabilities not in OSVDB (and thus, not in CVE/NVD) were 
thought to be largely bugs found in live websites—often the focus of bug-bounty programs. They noted that, for 
those vulnerabilities in OSVDB/VulnDB but not in CVE/NVD, there was a high likelihood that a patch did not 
exist and that vulnerability scanners had not yet found them. These vulnerabilities were thought to be in indus-
trial control, automotive, and medical systems.
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matched or could be reasonably assumed to match.28 Sometimes, discovering 
that a vulnerability had been discovered meant scouring listservs.29 In a few 
instances, people had described the vulnerability in a listserv as simply an error 
(rather than a security vulnerability), and there was no indication that a secu-
rity bulletin or public advisory of the vulnerability had been made. We still 
considered these vulnerabilities dead, since the information was made public—
regardless of whether it was specifically mentioned as a security issue. In a very 
few cases, the exploit developers whom the authors worked with had a “gut feel-
ing” that a vulnerability was detected, but we could not find proof.30 In these 
cases, we marked the exploit as “uncertain.” 

To determine dates, we used the timestamps on the repository logs. Because some 
of the exploits were older and the documentation was done by the actual exploit devel-
oper, some documentation was more thorough than others. While the details of the 
exploit were always thorough, obtaining exact dates was not always achievable. As a 
result, we lack information about birth date and maturity date or only have a month 
and year associated with a subset of the 207 exploits.31 This affected our sample size for 
analysis, as it meant that we could use only those with complete information for per-
forming survival analysis and calculation of expected lifespan. In the cases where we 
had only the month and year timestamp for the birth date, we defaulted to the first of 
the month, so, in some cases, there may be up to a 30-day range. But because this was 
only for the birth date, and not the mature date, the numbers may be conservative for 
time to develop an exploit. In a few cases, we relied on the personal recall of those who 
had been directly involved in the exploit development for how long it took to exploit.32

We used birth and death dates for our calculations of longevity and collision 
rates, as those indicate dates of first discovery by private researchers (birth) and first 
disclosure to the public (death). The mature date is important in calculating the time 
it takes to develop a fully functional exploit. 

28  This brought some interesting findings to light. For example, a CVE entry that publicly listed a vulnerability 
as causing a denial of service was privately used by BUSBY to provide privilege escalation (something often con-
sidered more severe and sophisticated than a denial of service).
29  Some have argued that discussion of a vulnerability on publicly available listserv does not warrant that vul-
nerability being considered “known,” “dead,” or no longer a zero-day. We acknowledge that it is acceptable to 
consider those vulnerabilities alive and zero-day—but for the purposes of our research, we count them as dead. 
30  To definitively determine whether the vulnerability existed, we would have needed to download the applicable 
version of source code and search for the vulnerability.
31  Only 61 percent of our data had the criteria we needed for these calculations.
32  We acknowledge that humans tend to be inaccurate with respect to recall. That said, those that were perform-
ing the recall did so for only a small number of our sample, and were experts in the topic, so perhaps had more 
accurate recall.
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Organization of This Report

The rest of the report is organized as follows. Chapter Two provides more background 
and depth into the nature of zero-day vulnerabilities, the exploit development process, 
business models, and the security researchers themselves. Those already familiar with 
this topic may wish to skip directly to Chapter Three, where we dive into analysis of 
the data and discuss the different life stages for an exploit; survival probability and 
life expectancy estimates; collision rate; and an initial look at the cost to develop an 
exploit. Chapter Four concludes with implications and recommendations. Our appen-
dixes contain additional information about the exploit development cycle (Appendix A) 
and the vulnerability researchers (Appendix B), a case study on how mitigations have 
affected exploitability (Appendix C), an investigation of close collisions (Appendix D), 
a first order look at cost and pricing considerations for zero-day exploits (Appendix E), 
and additional charts (Appendix F) and information about the data (Appendix G) that 
may be of interest to the reader. Appendix H provides a glossary of terms and defini-
tions to supplement the reader’s understanding of software vulnerabilities and exploits.
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CHAPTER TWO

More Discussion of Zero-Day Vulnerabilities

Chapter One provided a brief background on zero-day vulnerabilities. This chapter 
provides more detail about the complex nature of zero-day vulnerabilities, the exploit 
development process, business models, and security researchers. When possible, we 
provide concrete examples from our data and discussions; we also provide more infor-
mation in the appendixes.

Nature of Zero-Day Vulnerabilities

Vulnerabilities Are Dynamic
Vulnerabilities are dynamic: the usefulness of an error may differ depending on where 
it is in code.1 Furthermore, not all errors are vulnerabilities, and not all vulnerabili-
ties can be usefully exploited. The usefulness of an error in code can change from 
one day to the next: A vulnerability that is not initially exploitable may eventually be 
exploitable in future code bases (and vice versa).2 New access methods and techniques 
are constantly being developed that allow the use of previously unexploitable vulner-
abilities, and mitigations are similarly introduced that prevent the further use of cur-
rently exploitable vulnerabilities.3 In one case, BUSBY researchers discovered a design 
flaw vulnerability that allowed for the remote code execution of arbitrary binaries in a 
specific location, which most consider a high-impact vulnerability, but it needed to be 

1  For example, a null dereference error in user space is generally considered difficult to exploit; a null dereference 
error in the kernel has historically been easier to exploit. A null dereference vulnerability is one where a memory 
address is zeroed out or set to zero before it gets its first reference. In user space, one must work with dynamic 
allocations, different compiled versions, etc., but in the kernel, generally just one compiled distribution exists.
2  For example, a vulnerability can achieve newfound exploitability due to changes in the code or compiler that 
remove a “blocker bug”—bugs that do not lead to anything useful but will cause a crash or get in the way of some 
other bug that can be exploited. Some exploit developers have contemplated submitting those blocker bugs to the 
affected vendor to be fixed so they can get to the exploitable bugs. In other words, in lieu of the exploit developer 
being able to introduce a vulnerability into the source code (because they are not part of the vendor core develop-
ment team), the “blocker bug” submitted for patch allows the introduction.
3  For example, the introduction of call flow graphing in Windows 10.
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combined with other vulnerabilities to enable write access to that location to achieve 
any effect (i.e., if one cannot write the code to be executed, simply having the execute 
ability is not as valuable). Waiting for a high-impact bug to become an exploitable vul-
nerability can be frustrating: The means for it to be exploitable may never emerge, or 
the vulnerability may be discovered and patched before it is usable.4 That said, while it 
can be time-consuming to check for exploitability after every new code release, many 
exploit developers see it as more cost-effective to keep track of vulnerabilities that they 
have already found but that may not currently be exploitable, rather than trying to find 
new vulnerabilities, which is generally seen as more resource-intensive than exploita-
tion.5 Because a vulnerability’s severity or impact can vary depending on the location 
in code, reliance on other vulnerabilities, or goal of the operator using an exploit, plac-
ing a static score may be misleading.6 

Exploit Development Basics and Considerations

Developing a reliable exploit is challenging; operational considerations (including the 
operator and mitigations) can lead to uncertainties and decreased reliability. Ideally, an 
exploit will work on every configuration and version of a target, but the only true test 
is running the exploit on the intended target. Because testing in an operational setting 
is not generally feasible, vulnerability researchers take different approaches to reduce 
uncertainty and increase reliability in operational settings. Some create spreadsheets 
that matrix various versions and configurations tested against, and test each arrange-
ment 1,000 or so times. Others examine the exploit—and the operational setting of 
the target, to the extent possible—and attempt to find the remaining unknowns and 
chances for failure. This means making sure that the primitives (the building blocks of 
an exploit) are as reliable as possible, which may depend heavily on the type of vulner-

4  For example, a null dereference vulnerability found by researchers in user space was determined not to be 
accessible; the researchers waited until a new code version revealed a vulnerability in the kernel, providing a way 
to access the user space vulnerability and create a useful exploit. In another case, researchers told us of a vulner-
ability in a commonly used wireless application that would have required too much effort to exploit (e.g., it might 
require special hardware to access). Thus, the analysts set it aside and return to it every so often to check whether 
some new vulnerability has emerged that would assist in exploitation. 
5  For the cases in our data where no exploit was created (although exploitable vulnerabilities were found), 
approximately half were not exploited because certain capabilities were required or conditions needed to be true; 
the others were not exploited because the analysts already had plenty of coverage in the particular codebase.
6  That said, impact ratings, such as those from the Common Vulnerability Scoring System (CVSS), can be 
useful from a defensive posture, and are understood to be applicable in the specific time and context the vul-
nerability was found. On the other hand, impact and severity ratings may not always be accurate: For example, 
BUSBY researchers found and exploited a vulnerability that was a highly impactful memory mismanagement 
vulnerability (allowing an out-of-bounds write), but was reported in the CVE as medium criticality as a denial-
of-service bug.
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ability being exploited.7 And because an exploit can consist of several vulnerabilities 
chained together, a normally reliable vulnerability can be combined with an iffy vul-
nerability to create an unreliable exploit, or an exploit that reliably works on a physical 
system may behave drastically differently on a virtual machine.8

Researchers may also try to determine the baseline information about a target, 
such as system load and configuration; network lag, fragmentation, and architecture; 
and memory usage, architecture, and availability. Countermeasures and mitigations, 
such as load balancers and detection mechanisms, auto-update prevention, patch exis-
tence (whether or not applied), and intrusion and prevention systems, also factor in. It 
can help if the exploit developer knows the nature of the intended follow-on implant.9 
Uncertainty about the reliability of an exploit can also depend on the skills of the 
operator who is employing the exploit and how well the operator knows the target 
environment.10 Whatever the approach, testing is still done in a lab setting, with little 
of the variance from debug settings, language packs, latency, and bandwidth that can 
affect the success and reliability of an exploit in an operational setting.

An exploit may be a “single-shot” exploit that allows for a single attempt at exploi-
tations (e.g., a single stack overflow in a process that will become unavailable if the 
exploit fails), or it may need to exploit many things in sequence or repeat the exploi-
tation attempt multiple times.11 Once the vulnerability researcher sells or leases an 

7  For example, vulnerabilities that exist in certain places in code (e.g., user space), or are of certain types (e.g., 
command injection, SQLi, stack overflow) are generally reliable. But vulnerabilities that lead to a heap overflow 
or require timing or race conditions may not be as reliable.
8  Here we are talking about reliability for exploits, not implants or “payloads.” Reliability is desired for exploits, 
but it is not always guaranteed. Reliability for an implant, however, is critical. While an exploit provides initial 
access, an implant maintains that access, persists, and delivers some effect. If an implant is unreliable, it could 
lead to blue-screening a box and damaging a sensitive operations. Implants are very hard to maintain, so they 
command a hefty price. One estimate is $1 million per implant. 
9  For example, if the customer plans to use a payload for data egress, then the exploit developers need to be 
aware of the exfiltration route and what countermeasures (e.g., firewalls), if any, are in place.
10  Operational use is up to the customer; the exploit developer can only provide feedback and hope that the 
operators will know what to do. If an exploit is not performing in an operational setting as it did in the lab envi-
ronment, the operator may need to determine characteristics of her target environment that are affecting the 
exploit (e.g., using the exploit during times of high traffic—and thus high latency and congested bandwidth—on 
a target system; a savvy operator may recognize the need to wait until off-hours to use the exploit). Some operators 
are better at this than others. 
11  Sometimes, multiple exploits can be used in different phases to reduce uncertainty and increase reliability. 
For example, information leak vulnerabilities can be used in initial phases for reconnaissance and fingerprinting, 
to aid development for follow-on exploits. If the payload used by the operator after initial exploitation requires 
egress, then there may be requirements to know about the route of exfiltration (e.g., what firewalls or countermea-
sures may be in place, or what protocol the payload needs to be wrapped in). Another part of the exploit may be 
in charge of cleaning up the presence of an exploit by removing logs, ensuring continuation (i.e., no crashes) and 
persistence, exiting threads, and rewinding the state of the target system.
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exploit to a customer, the transaction is complete; it is up to the customer how and 
whether to use the exploit. 

Exploit Development Cycle

The exploit development process consists of many steps, and each step can go through 
multiple iterations. The first stage of exploit development is to create a proof of concept 
(PoC), generally to prove that code execution can be achieved for one case or version. 
A fully functional exploit expands a PoC to be useful for every possible version of a sys-
tem.12 Exploits often also come with documentation for an operator (including infor-
mation about system latency, bandwidth requirements, and possible secondary effects, 
such as log entries left behind and what needs to be cleaned up). For more details about 
the exploit development cycle and some factors that go into exploit development, see 
Appendix A, “The Exploit Development Cycle.”

People in the Zero-Day Vulnerability Space

Some vulnerability researchers focus on finding zero-day vulnerabilities and giving 
them to the affected vendor, sometimes for a fee and sometimes for recognition.13 
Often, these vulnerabilities go into the public domain through advisories and published 
vulnerability notices.14 This group of “white hat” bug hunters is growing, due to the 
increasing popularity of bug-bounty programs from companies, like HackerOne and 
BugCrowd. Many software vendors have their own internal groups tasked with find-
ing zero-day vulnerabilities in the company’s software and any software the company 
uses.15 Companies such as Exodus Intelligence, ZDI, and iDefense provide a “zero-day 
feed” that their subscribers can use for defensive testing and for implementing protec-
tive measures in products. The vulnerabilities generally make it back to the affected 
vendor. The goal is often 90 days, though that timeline can vary.16 The researchers who 
participate in bug-bounty programs or who sell to feeds generally focus on finding a 

12  This is when the exploit gets additional logic: for example, a memory or information leak, brute force algo-
rithm, or potentially a list of addresses to try on different versions.
13  This group is in the right-hand side of Figure 1.1.
14  There are various publicly available databases containing information about discovered vulnerabilities (that 
may or may not be patched). Some popular ones have been the NVD and the freely available ODSVDB, which 
is now the payment-required VulnDB (Risk-Based Security, 2017). 
15  For example, Cisco’s Talos group.
16  Upon discovering some zero-day vulnerabilities that had remained undetected for four years, Exodus Intel-
ligence changed its policy of never disclosing a vulnerability found to instead disclosing 90 days after notifying 
the vendor (Exodus Intelligence, 2016).
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vulnerability and developing a basic PoC exploit for it. Researchers within Google’s 
Project Zero also aim to find vulnerabilities and provide their findings to the vendor 
within 90 days, but they go beyond a PoC to create a fully functional exploit in order 
to determine the true impact. As such, they are similar to researchers who seek out 
vulnerabilities for private use. 

Vulnerabilities that remain privately held are sometimes patched quietly or simply 
held unpatched.17 The group that seeks zero-day vulnerabilities for private use gen-
erally consists of researchers who look for vulnerabilities to be used for operational 
purposes—both offensively and defensively—and can consist of “gray hat” nation-
state actors or defense contractors (of any country), “black hat” cybercriminals, or hob-
byists with various motives.18 The most sophisticated aim to not only find zero-day 
vulnerabilities but also to create fully functional exploits for them. 

While exact numbers are unknown, many estimate that the number of people in 
the “public” group is at least an order of magnitude larger than the number of people 
who search for zero-days and create exploits for private use. There are essentially three 
tiers of vulnerability researchers.

Those in the top tier are very skilled and range from a single contractor work-
ing alone, to a team of a dozen, to a company in the (low) hundreds. Exploits written 
by members of this tier are high-quality and reliable. A majority of those in this tier 
are in the gray markets—finding exploits for private use or for sale to governments or 
defense contractors—although white-market researchers who find vulnerabilities to 
share as part of public knowledge also exist, and there can be fluidity between gray and 
white hats depending on the funding and resources available (e.g., many researchers at 
Google’s Project Zero came from government or gray-market teams). The number of 
researchers at this top level is thought to range between 300 and 3,000.19 Many believe 
that it is becoming harder to author a reliable exploit because vendors are getting better 
at patching and because mitigations aim to cover wide classes of vulnerabilities. 

Those in the intermediate tier have the ability to find vulnerabilities and write 
exploits that work against low-hanging vulnerabilities and targets, but they may not be 
capable of writing exploits against hard targets and may rely on off-the-shelf tools or 
retooling existing exploit code for their own use. Some believe this intermediate class 
drives the cybercrime markets. 

17  This group is in the left-hand side of Figure 1.1.
18  For example, a hacker named “Phineas Fisher” found and used a zero-day vulnerability to penetrate the sys-
tems of the gray market group Hacking Team to exfiltrate data and source code (Zorabedian, 2016).
19  One expert estimated that 300 researchers serve the United States and likely 1,500 exist worldwide. Others 
estimated a maximum of 1,000–2,000 researchers worldwide. Another person familiar with the space estimated 
3,000 researchers work for U.S. defense contractors and similar numbers work for other countries. For example, 
Chinese company Tencent’s Keen Security Lab is thought to have about 3,000 security researchers, though not 
all are thought to have the highest skills and abilities.
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At the bottom are the bug hunters who do not go beyond finding vulnerabilities 
and perhaps showing a hypothetical exploitation. The skill required at this level can 
be taught. Most agree that the number of researchers in the lowest tier is at least an 
order of magnitude larger than in the highest tier. For example, there are more than 
26,000 researchers on the BugCrowd platform (though it is unclear how many are 
active bug hunters, as only ten have collectively made 23 percent of the total payouts), a 
few thousand reportedly signed up to hunt for bugs on HackerOne, and almost 8,000 
have contributed to Wooyun’s vulnerability disclosure program.20 The types of vulner-
abilities found by each tier are thought to be relatively distinct, though some overlap 
can occur. More discussion on the characteristics, career length, and seasonality of 
exploit developers is in Appendix B, “The Vulnerability Researchers: Who Looks for 
Vulnerabilities?”

Business Models

Markets for Zero-Day Vulnerabilities
Markets for zero-day vulnerabilities have been growing in recent years and are distin-
guished by who the initial buyer is, the public versus private nature of the vulnerability, 
and the intended use of the vulnerability.21 Those in the white market seek to immedi-
ately turn their vulnerabilities over to the affected vendor (often moving them into the 
public knowledge space) and use them for defensive purposes. In the gray market (also 
sometimes called the government market), vulnerabilities remain private, are used for 
either offensive or defensive purposes, and may eventually be disclosed to the affected 
vendor, though that is not guaranteed because they are typically first sold to a govern-
ment, military, or defense contractor.22 Black markets sell zero-day vulnerabilities for 
criminal use or illicit purposes and aim to keep the vulnerabilities private. 

Those who develop and then sell or lease fully functioning exploits garner more 
money than those who just find vulnerabilities or create a PoC, because purchasers of 
the former are buying the guarantee that the exploit is reliable, effective, and, in some 

20  More than half of the researchers that signed up on BugCrowd’s site are from India and the United States 
(BugCrowd, 2016; Zhao, Grossklags, and Liu, 2015). 
21  Another way to differentiate between markets can be by timeline: In the white market, a vulnerability is often 
given to the vendor without delay. In the gray market, a vulnerability may make it back to the vendor but after a 
delay or use by someone else. In the black market, a vulnerability generally never makes it back to the vendor.
22  Some in the gray market believe they are part of the white market because they operate within the law, and 
thus are deserving of the “white” coloring. However, we distinguish by the initial recipient of the vulnerability 
or exploit derived from the vulnerability, not whether the market participant is acting within or outside the law. 
Because the gray-market customer tends to be part of or associated with the government, another term for the 
gray market could be the government market. 
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cases, able to avoid detection. As such, PoC exploits are generally an end goal for white 
hat researchers, whereas the gray and black markets deal in fully functioning exploits.23 

Buyers and sellers have shifted over time. In years past, the use of third parties, 
brokers, and “cutouts” were common to move exploits, but that is not generally the 
case today: Given a long enough relationship, or the right connections, exploit devel-
opment organizations prefer to work directly with a customer, because doing so allows 
for more control over what happens to the exploit. One vulnerability research team 
we spoke with noted that they had bad experiences with brokers reselling exploits to 
multiple parties and, in another case, the broker sharing the exploit with the broker’s 
own partners. Additionally, because of the shrinking size of the market, the use of a 
third-party broker cuts into the minimal profit margins. “There is no money or future 
in being a broker,” one former broker told us. Another trend is gray-market buyers and 
sellers shifting to the white market.24 

Business Models Vary
Exploit development for profit has existed since the late 1990s to early 2000s. Since 
then, business models and focus have shifted, and exploit development and zero-day 
vulnerability exploitation now involve a much more formalized process. For example, 
in the early days, exploit developers looked for exploitable vulnerabilities in anything, 
exploits tended to be more specific to the operating system, and exploit development 
generally stopped at the PoC level. Now, exploit developers are more customer-focused, 
exploits tend to be more process- and application-specific, and buyers require exploits 
to be fully functioning and work on multiple versions and configurations. 

Some gray-market players lease, rent, contract, or license their exploits so they 
retain all intellectual property. A typical (usually exclusive) leasing contract is about 
two years. When the contract expires, the customer often has the option to re-lease 
the exploit. Each customer gets a specific license for the exploit, which specifies what 
the customer can and cannot do (although there is no way for the company or exploit 
developer to enforce this). Some sellers are selective about whom they sell to, so they 
may have only have a handful of customers to choose from.25

Other vulnerability research groups maintain that there is no benefit to any-
thing other than selling, because many of the customers already share the information 

23  See Chapter Four of Libicki, Ablon, and Webb (2015) for more discussion of and distinction between the 
three markets.
24  One expert attributed this to the white market only now being sellable because the marketing environment 
and perspective have shifted. In the past, one had to position oneself as a “master of the dark arts” to get custom-
ers. Once a vulnerability researcher gained traction, she or he could shift to the white market. 
25  One vulnerability research group shared that they had three to four entities to which they sell; another noted 
approximately the same number.
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and license restrictions are difficult to enforce.26 Additionally, because there are so few 
customers, there is disincentive for a vulnerability research group to try to enforce an 
exploit only going to one place. 

In general, buyers demand exclusivity, likely for operational security require-
ments. Exploits that are similar (in terms of the bug class or library they target, or the 
exploit technique they use) are sometimes sold or leased to different customers, but 
generally only if the seller can reasonably determine that the discovery of one will not 
lead to the discovery of another. Some buyers have internal rules that cap the number 
of vulnerabilities they can retain per system, so they may pay an exploit developer to 
keep an exploit “on the shelf” for purchase or rent at a later date. 

Some buyers of exploits will be specific about what they want an exploit for (e.g., 
a specific piece of software with a particular configuration); others may want some-
thing for a specific target, telling the exploit developers “Get me into this target system 
or target organization, I don’t care how.” Sometimes buyers are specific about the 
mechanics of the exploit, noting whether or not crashes are acceptable, what platforms 
or architectures need to be supported (e.g., 32-bit versus 64-bit), whether the exploit 
needs to be a man-in-the-middle exploit, or whether there are certain timing require-
ments.27 Ideally, customers share what they want a vulnerability researcher to focus on 
because of target and operational sensitivities. This increases the return on investment 
for both the exploit developer and the purchaser: The former has something to focus 
on and a higher guarantee of a buy, and the latter gets what they want. In these cases, 
the vulnerability researcher might offer a menu of exploits available and leave it to the 
customer to choose one. Because they are not clairvoyant, exploit developers are some-
times left with exploits sitting on the shelf, acting as a “caching layer” until a customer 
requests the particular exploit. This risks an exploit spoiling or its vulnerabilities being 
discovered. One exploit development group estimated that 50 percent of its developed 
exploits remain on the shelf.

26  These sellers might, however, have some reusable “helper code” to assist the customer in testing the exploit 
until the customer can write their own production code for operational use. The helper code is retained by the 
seller. 
27  “Man-in-the-middle” or “machine-in-the-middle” refers to an attacker who is in the middle of the legitimate 
sender and receiver, relaying and possibly altering the communications between the two parties.
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Exploit Developers (and Exploit Development Companies) Often Supplement Their 
Income with Consulting and Selling Vulnerability Feeds
Despite claims that vast amounts of money can be made creating zero-day exploits,28 
few companies and organizations today focus exclusively on exploit development.29 
They usually supplement their exploit development with other businesses such as offer-
ing penetration testing services or a vulnerability feed, or selling data, supporting tools, 
and products.30 Exploit development is difficult to scale, and, except for individual con-
tractors working alone, the financial incentives are not often present.31 

It is believed that approximately two dozen companies are in the business of sell-
ing to U.S. or U.S.-allied entities, with this number decreasing steadily.32 Some people 
familiar with the white and gray markets attributed the diminishing numbers to high 
costs, claiming that many of those companies found that the exploit product model 
was not as lucrative as the service model or as publicly acceptable as bug bounties and 
bug hunting on the public market.33 

28  For example, Fidler, Granick, and Crenshaw (2014) estimate the size of the gray market at $4 million to $10 
million. We were told by vulnerability research groups that the U.S. government invests much more than that 
on having products assessed and subscribing to vulnerability feeds, and less on buying exploits and zero-day 
vulnerabilities. 
29  One vulnerability research group estimated revenue from exploit development at 6 to 7 percent of the overall 
business, with most revenue coming from commercial consulting gigs and selling tools. These commercial con-
sulting gigs can be thought of as “short lifetime bug hunting.” Often, during a security assessment, a zero-day 
vulnerability will be discovered at a client site, and, as such, will get immediately disclosed. One vulnerability 
research company noted that their consulting arm finds more zero-day vulnerabilities than their research arm. 
This may be due to the fact that, for a researcher to find a zero-day vulnerability, she needs to set up the software, 
back-end database, and infrastructure before any auditing can begin; that setup can easily take a month. A con-
sultant, however, already has the full infrastructure set up at the client site, so it is sometimes easier to find zero-
day vulnerabilities there. These zero-days tend to be of specific types—often, enterprise versions (versus personal 
or consumer use versions) or software that only runs on a particular vertical (e.g., software specific to a law firm 
or health care facility). 
30  A vulnerability feed is a subscription-based model, whereby subscribers get regular information about zero-
day vulnerabilities that have not yet been disclosed. Often, subscribers use the feed to test their own products 
against zero-day vulnerabilities to further secure them, or use the feed during penetration tests or consulting 
engagements to test their client’s products, networks, and systems. 
31  One of the biggest reasons is that exploit developers are expensive: A company with seven or eight top-tier, 
full-time vulnerability researchers making in the “mid-to-high six-figures” may make $1 million to $2.5 million 
in a year selling exploits, but the lion’s share of that revenue goes to the analysts. One company told us that 2015 
was a negative payout from revenue, yet they continued to develop exploits because it is “a labor of love” that 
provides satisfaction beyond compensation.
32  These companies consist of both boutique firms (with a handful of researchers) and arms of traditional large 
cleared defense contractors (with large numbers of researchers). One exploit developer was personally aware of 
more than 18 such companies just in the business of selling in the U.S. arena. The developer was also aware of a 
handful of other foreign companies that focused on their governments. That said, many of these companies are 
newer to the space, and many have only been around for a few years.
33  One example of a company publicly changing its business model is Exodus, which in February 2016 announced 
that it would keep vulnerabilities for only 90 days for its customer feed, then it would disclose the vulnerability 
for the affected vendor to patch (Exodus Intelligence, 2016). 
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CHAPTER THREE

Analysis of the Data

As mentioned in Chapter One, in deciding whether to stockpile or disclose a particular 
vulnerability, one may want to know the following:

1. Life status: Is the vulnerability really a zero-day? Is it alive (publicly unknown) 
or dead (known to others)? 

2. Longevity: How long will the vulnerability remain undiscovered and undis-
closed to the public? 

3. Collision rate: What is the likelihood that others will discover and disclose the 
vulnerability?

It may be additionally helpful to know:

4. Cost: What is the cost to develop an exploit for the vulnerability?

The following sections explore answers to each of these questions—in particular, 
what vulnerabilities are publicly unknown or known (life status), how long they live 
(survival probability and life expectancy), and the rate of collision (overlap). We also 
briefly touch on some considerations for the cost to develop an exploit. Because we 
used different methodologies and approaches for each section, we discuss the methods 
and analysis within each section. 

Our dataset contains information about exploits, so when we discuss life status, 
life expectancy, and overlap or collision rate, we are referring to the vulnerability or 
vulnerabilities that the exploit is taking advantage of. An exploit dying means that one 
of the previously unknown vulnerabilities (if multiple exist) gets discovered.1

1  It could also have a patch available, but at the most basic level, we define “death” as discovery by others.
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1. Life Status: Is the Vulnerability Really a Zero-Day? Is It Alive 
(Publicly Unknown) or Dead (Known to Others)? 

Common practice is to classify a vulnerability simply as alive (publicly unknown) or 
dead (publicly known); however, our analysis revealed that there is more granularity 
to a vulnerability being either alive or dead. There are several subcategories of each, 
which can make labeling a vulnerability as either alive or dead misleading and too sim-
plistic.2 Below, we list the various life statuses of vulnerabilities and their exploits and 
outline how they are classified in our dataset. 

Alive: There Are Different Ways for a Vulnerability to Be Alive (Publicly Unknown)
Some vulnerabilities are publicly unknown and still actively sought out by defenders 
(because they reside in the latest versions of an operating system, or are in use by a large 
percentage of people). These are classified in our dataset as “Living” (n = 66). 

There are vulnerabilities that will remain in a product in perpetuity because the 
vendor no longer maintains the code or issues updates. We classify this type of vul-
nerability as “Immortal” (n = 13). This does not necessarily mean the vulnerability 
has any special properties that made it immortal: It could be immortal because it was 
found just before the vendor stopped maintaining the codebase, and might have been 
found given enough time. 

Dead: There Are Different Ways for a Vulnerability to Be Dead (Publicly Known)
Vulnerabilities that are known can be disclosed publicly by the researchers who found 
them or by another party. 

When a vulnerability has been disclosed by the original vulnerability researcher, 
we classify it as “Killed by BUSBY” (n = 8). The researcher may do so to help the 
information security community as a whole by sharing the information, or to get credit 
for finding and disclosing a vulnerability that the researcher feels might be easily or 
imminently found by someone else. 

When a vulnerability has been disclosed by another party, it is often in conjunc-
tion with a security advisory or bulletin and patch, and we classify it as “Security 
Patch” (n = 69). The security advisory contains information about the vulnerability, 
and may include Common Vulnerabilities and Exposures (CVEs) that describe the 
vulnerability and CVSS scores that detail severity. Interestingly, CVEs do not always 
provide accurate and complete information about the severity of the vulnerability.3 

2  We recognize that using terms such as “dead” may be misleading, because the vast majority of cyber actions 
use these “dead” N-Day vulnerabilities. One expert we spoke with suggested we use the terminology “a vulner-
ability previously undescribed in literature,” especially given that strong emotional reaction to the words alive and 
dead (and weaponized) can make it difficult to be objective and dispassionate about the topic. 
3  It is easy to understand why vendors may not want to give out too much detail about the vulnerabilities their 
patches fixed. See Rescorla, 2005. For one exploit whose vulnerability died via security patch in our dataset, the 
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And sometimes a vulnerability is discovered and publicly disclosed in one system but 
remains publicly unknown—and privately exploitable—in another system.4

But not all vulnerabilities that are disclosed by others have a security advisory or 
patch. Sometimes, developers or vulnerability researchers will post a bug or vulner-
ability they found in a mailing list, an online blog, or a book. The poster may or may 
not be aware that the bug discussed is actually a security vulnerability, so there is no 
security advisory connected with the vulnerability. We classify these in our data as 
“Publicly Shared” (n = 6). 

Other: Some Vulnerabilities Fit into Other Categories
An intriguing type of vulnerability are those that get removed through revisions to the 
code without being discovered or publicly disclosed as security vulnerabilities. We clas-
sify these as “Code Refactor” (n = 21). These vulnerabilities can still be exploited in 
older versions, so they are quasi-alive (zombies). However, some may see these zombie 
vulnerabilities as “dead” because they are no longer alive in the latest version of the 
software.5 

We classified the life status of some of the exploits in our dataset as “Uncertain” 
(n = 24). These consisted of exploits whose vulnerabilities’ status remained uncertain, 
even after extensive searches online. At the time of writing, these vulnerabilities were 
still being reviewed for status (i.e., the BUSBY researchers were checking them against 
the latest versions). 

Our dataset contained vulnerabilities that are alive (publicly unknown) in one 
codebase but dead (publicly known) in another. For example, code that contained a 
vulnerability allowing a sandbox escape in a Microsoft product was ported over to a 
non-Microsoft product; the vulnerability was discovered and patched in the Micro-
soft product but remains undiscovered (and unpatched) in the non-Microsoft product. 

CVE notes that an exploit could use a particular value to trigger a heap-based overflow, but fails to note that a 
differently crafted exploit could actually change the value of the trigger. In another case, the CVE lists the vul-
nerability as something that, when exploited, causes a denial of service, but the BUSBY vulnerability researchers 
found that it could provide privilege escalation—something much more severe.
4  For example, one of BUSBY’s exploits had a vulnerability that had been found in a 32-bit version of a system 
but was not exploitable. Once the 64-bit version came out, the vulnerability was exploitable. That particular vul-
nerability lived for more than five years before a security patch was released.
5  Sometimes, a code refactor can turn a previous codebase into a whole new product—to the advantage or 
disadvantage of exploit developers. A code refactor may inadvertently change a codebase so that vulnerabilities 
are no longer present or exploitable; other times, a code refactor will unblock paths to previously unexploitable 
vulnerabilities. A product that was previously sparse may become dense with exploitable vulnerabilities, and vice 
versa. For example, in 2012, Rapid7 looked at the old code bases of Universal Plug and Play (UPnP)-enabled net-
work devices that had been refactored in 2010; they showed how previous versions of UPnP-enabled devices were 
vulnerable and remained vulnerable. Because many systems retain old versions—due to lack of ability, resources, 
or awareness to upgrade—many LinkSys routers around the world still remained vulnerable. (See hdmoore, 
2013.) The takeaway is that it is valuable to go back and audit old versions of code, especially (from an offensive 
point of view) if it is known that a certain target or sector is not likely to update.
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Exploits for both of these were created, and we recorded them with the appropriate life 
status in our dataset.

Figure 3.1 shows the data broken down by life status, with just the categories 
“alive,” “dead,” and “other,” while Figure 3.2 shows the further breakdown, with all the 
categories. Table 3.1 provides a summary description of each life status.

Figures 3.3 and 3.4 break down vulnerabilities found by BUSBY vulnerability 
researchers between 2002 and 2015. Some data (an estimated 20–30 exploits) are omit-

Figure 3.2
Further Breakdown of Life Status for Our 
Data (n = 207)
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Table 3.1
Description of Various Life Statuses

Life Status Description

Living A publicly unknown vulnerability for current versions of the product; not found and 
publicly noted by anyone else (as far as it is known); those in defensive roles are likely 
actively looking for it.

Immortal A publicly unknown vulnerability for the version of the product it was created for; 
that product is no longer maintained (so a security patch will never be issued).

Security Patch A vulnerability found by a third party and recognized as a security vulnerability; an 
advisory, patch, and/or CVE has been issued.

Killed by BUSBY A vulnerability publicly disclosed by the private entity that found it when they 
realized that vulnerability was about to be found, or when they wanted to use a 
particular vulnerability as a teaching tool or for marketing purposes. 

Publicly Shared A vulnerability found by a third party and publicly discussed, but not publicly 
recognized as a security vulnerability; no advisory, patch, and/or CVE issued.

Code Refactor A likely publicly unknown vulnerability for past versions of a product that is no longer 
exploitable in current versions due to code revisions; the product is still maintained 
(so a security patch sometime in the future is still possible for the past versions).

Figure 3.3
Vulnerabilities Found by BUSBY Vulnerability Researchers Each Year (n = 207)
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ted in the latter years (and all data for those found in 2016 are omitted) because of 
sensitivities of current operations. 

Not all vulnerabilities used for exploits were found by the vulnerability research-
ers associated with our dataset. Sometimes a vulnerability was purchased from a third-
party researcher to help complete an exploit (recall that an exploit may rely on multiple 
vulnerabilities to be fully functioning).6 In our dataset, nine of the exploits (approxi-
mately 4 percent) were purchased from an outside third-party researcher. Two were 
Code Refactored, and the rest died (one was publicly disclosed, and the other had 
security patches). Of those that died, the average age of the exploit created from them 
was slightly less than a year and a half (521 days).

Some years saw more vulnerabilities die than others. Vulnerabilities that were dis-
covered by vulnerability researchers in 2010 fared worse than those found in any other 
year. This might be explained by new mitigations starting in 2011 that countered vul-
nerabilities from previous years (e.g., stack cookies), causing the vulnerability research-
ers to change exploitation techniques.7 

6  For example, an exploit developer might need an information leak vulnerability in some part of a kernel in 
order to bypass a mitigation like ASLR to continue with the rest of exploitation. 
7  See Appendix C, “How Mitigations Have Affected Exploitability: Heap Versus Stack Exploitation Case 
Study,” for some data analysis on shifts in exploitation methods (e.g., between stack-based memory corruption 
vulnerabilities and heap-based memory corruption vulnerabilities). 

Figure 3.4
Vulnerabilities Found by BUSBY Each Year, by Current Life Status (n = 207)
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How Do Vulnerabilities Die?
While we do not have data on how deaths occurred—of our vulnerabilities, or other 
vulnerabilities used to create fully functioning exploits—we do have qualitative assess-
ments from several vulnerability researchers and individuals with whom we spoke. 
They said the majority of their exploits die (i.e., their vulnerabilities became known) 
due to code churn and, less commonly, to independent rediscovery by a vulnerability 
researcher performing a code audit. None we spoke to believed that their vulnerabili-
ties or exploits died or were discovered due to use by a customer in some operational 
campaign, or by information leakage (e.g., via Wikileaks or Shadow Brokers releasing 
information). That said, vulnerability researchers are also not privy to what a customer 
does with their exploit—i.e., when they use it, how they use it, or whether they use it 
at all.

Due to sensitivity, operational, or other reasons, often a customer cannot dis-
close exactly what product or system they want an exploit for. As such, vulnerability 
researchers make educated guesses about a customer’s needs. While the ideal is for 
all exploits developed to be sold to customers, there are cases where exploits die while 
sitting on the shelf. One vulnerability research team told us that 99 percent of their 
exploits go to customers. Another team put the number at closer to 50 percent, and a 
third individual with experience in the exploit sales business could not recall any time 
when an exploit sat unused.

2. Longevity: How Long Will the Vulnerability Remain Undiscovered 
and Undisclosed to the Public?

Determining how long an exploit might live before its vulnerability or vulnerabilities 
are detected—as well as which exploits live the shortest and the longest—could help 
exploit developers adjust their business models and help defensive penetration testers or 
offensive operators plan their engagements. 

We sought to understand the expected life of an exploit. We found that exploits 
are expected to live 6.9 years on average and have a median survival time of 5.07 
years. We define a short lifetime to be death (or its vulnerabilities become known 
and publicly disclosed) within 1.51 years, corresponding to the 25th percentile of 
the survival distribution, and a long lifetime to be at least 9.53 years, correspond-
ing to the 75th percentile. 

For this part of our analysis, we reduced our dataset from the full set (n = 207) to 
just those exploits that were alive (living) or dead (security patch or public disclosure) 
and that had a date of birth (n = 127).8 

8  Seven of our exploits that died had no birthdate recorded, as their vulnerabilities were purchased by a third 
party. We do have date of maturity for those exploits (i.e., the date when a fully functional exploit had been cre-
ated), but to ensure uniformity over our data, we elected to exclude these exploits. We also considered including 
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Table F.1 in Appendix F, “Additional Figures and Tables,” provides a breakdown 
of the various characteristics of the exploits.

Survival Analysis
We sought to describe the distribution of the length of time from birth to death of the 
127 exploits described above, to assess the effects of several exploit-level characteristics 
on the risk of death, and to calculate the expected lifespan of exploits overall and by 
their characteristics. This requires analytic methods that account for differences in the 
amount of time we were able to observe each exploit. Some exploits in our data were 
born as early as 2003, allowing more than ten years of observation time in which we 
might observe its death. Others were born just a year or two before our analysis. We 
therefore cannot observe the full lifespan of each exploit; those that remain undetected 
at the end of the study period are referred to as censored. Censored data are common in 
health studies, where investigators may not get to observe each patient until some event 
of interest. In our study, censoring occurs administratively due to the end of study data 
collection. More generally, censoring can occur whenever subjects in a time-to-event 
study are lost to follow-up, even midway through a study, perhaps when they move 
away or choose to withdraw. A suite of statistical methods exists for the analysis of cen-
sored time-to-event data, collectively referred to as survival analysis.

Describing Survivorship with Kaplan-Meier Estimation
Kaplan-Meier analysis is used to estimate a population survival curve from a sample 
and the probability of surviving from some event of interest (e.g., someone having a 
heart attack) as a function of time. In our case, the event of interest is the death of an 
exploit as a result of its vulnerability being discovered and disclosed. Kaplan-Meier 
accommodates censored data, in which the event of interest (death or discovery) has 
not occurred for all of the sample’s observations (exploits) before the end of the study 
period.9 

To graphically depict the survival experience of the exploits in our sample, we 
constructed the Kaplan-Meier survival curve both overall and in groups defined by 
exploit characteristics. The survival curve plots the probability of a zero-day vulnerabil-
ity remaining living along the vertical axis as a function of the time since birth, shown 
along the horizontal axis. From these plots, we obtained the median survival time—

exploits that had a life status of Immortal; however, because survival analysis and life expectancy analysis are 
typically done on humans or things that are all expected to die or fail at some point, we removed the immortal 
exploits. 
9  Kaplan-Meier analysis, and survival analysis generally, assumes that censoring is not informative—that is, 
that the exploits that are censored (still alive at the end of the study) have a similar survival experience over time 
as those we do observe to die. For more information on Kaplan-Meier, see Bland (1998); Lam (no date); and Goel 
et al. (2010).  



Analysis of the Data    35

that is, the time by which half of the sample had died. We also used the Kaplan-Meier 
plot to identify specific quantiles of the survival time distribution to define thresholds 
for what might be considered a “short” or “long” lifespan. In our case, we chose the 
25th and 75th percentiles, or times by which 25 percent and 75 percent had died, as 
thresholds for long and short lifetimes.

We estimated the expected life span of the exploits in our sample, both overall 
and by exploit characteristics, by calculating the area beneath the survival curve. How-
ever, as is visible in our Kaplan-Meier plots (Figures 3.5 and 3.6), the survival curves 
we estimated are not “finished yet.” That is, we did not have sufficient follow-up time 
on each exploit to observe its death, and for that reason, the survival curves do not 
descend fully to the x-axis, corresponding to zero survival probability (i.e., the lines 
end horizontally rather than vertically). For this reason, the area beneath those curves 
is undefined. To allow estimation of the expected lifespan, we employed a different 
type of survival regression model, which places a distributional assumption on the data 
that can allow us to extrapolate the remaining part of the function until it reaches suf-
ficiently close to zero as to obtain an appropriate estimate of the area beneath it. We 
investigated several common parametric survival model types that might be of use, 
and chose the one that best suited the characteristics of our data.

Finally, to assess the effect of individual characteristics on the risk of death of 
an exploit, we estimated Cox Proportional Hazards survival regression models. This 
modeling strategy is one that places fewer assumptions on the data than the parametric 
modeling we used to generate life expectancies, and allows more flexibility in covariate 
adjustment than does the comparison of Kaplan-Meier curves.

Figure 3.5 shows the Kaplan-Meier survival probability estimates, calculated 
using all the data, and without stratifying by characteristic. The gray band surround-
ing the blue line shows the pointwise 95 percent confidence band.10 The confidence 
interval is smaller for exploits that died young (few years since birth), because there 
were more data points to draw from, providing greater precision in the estimate of sur-
vival probability.11

After initial detection, any given exploit (and thus its vulnerabilities) has a median 
survival time of 5.07 years (95 percent confidence interval: 3.71, 7.55). This means that 
any given exploit within our dataset had a 50 percent probability of surviving approxi-
mately five years before its vulnerabilities were publicly discovered and disclosed. Fur-

10  One can interpret confidence intervals as follows: For any given age (years since birth), we are 95 percent 
confident that the true survival probability falls in the gray shaded area.
11  All exploits lived at least a short period of time, so the relatively high precision yields a tighter confidence 
interval. Compare this with the larger confidence intervals as the years since birth get higher; only a few exploits 
lived this long, causing a wider confidence interval. 



36    Zero Days, Thousands of Nights: The Life and Times of Zero-Day Vulnerabilities and Their Exploits

thermore, there is a relatively sharp decline in the survival probability in an exploit’s 
early years.12 

We further sought to define reasonable thresholds for characterizing exploits as 
being “young” exploits or “old” exploits. We obtained the 25th and 75th percentiles 
of the survival time distribution, the times by which 25 percent and 75 percent of the 
exploits have died, respectively.13 Using these quantiles, we define exploits as having 
a short lifespan if they die at or before 1.51 years, corresponding to the time at which 
only 25 percent have died. Exploits that survive at least 9.53 years have lived as long or 
longer than 75 percent of the sample, and so are considered to have had a long lifespan. 

To assess whether survival differs according to characteristics specific to an exploit, 
we plotted Kaplan-Meier curves separately for the following four characteristics of an 
exploit: vulnerability type, platform affected, source code type, and exploit class type. 
Appendix H, “Glossary,” provides definitions and additional information about the 
various vulnerability types and exploit class types:14 

12  The life table (Table F.2) and smoothed hazard function corresponding to the life table plot (Figure F.2) show 
this. 
13  We acknowledge that we could have just as easily chosen the top and bottom 10 percent, or some other 
number.
14  Some characteristics show up as “mixed” or “other.” “Mixed” characteristics indicate exploits that rely on mul-
tiple vulnerabilities chained together (for vulnerability type), multiple platforms, multiple source code types, or 

Figure 3.5
Kaplan-Meier Survival Probability Estimates (n = 127)
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1. Vulnerability type: Memory Corruption, Memory Mismanagement, Logic, 
Mixed or Other

2. Platform affected: Linux, OSX, Open Source, PHP, Unix-based (excluding 
Linux), Windows, Mixed, Other

3. Source code type: Open, Closed, Mixed
4. Exploit class type: Client-side, Local, Remote, Mixed, Other.

We computed the log-rank test for each characteristic (vulnerability type, plat-
form affected, source code type, and exploit class type), testing for differences in the 
Kaplan-Meier curves across levels (e.g., open, closed, or mixed for source code type 
characteristic). Figure 3.6 shows the Kaplan-Meier curves for each characteristic and 
the log-rank test p-value from comparing the curves within each panel to see whether 
curves are statistically different.15 

We did not observe statistically significant differences in survival across any of 
our four characteristics. Detecting differences across the curves is made more difficult 
when a characteristic has many levels, because the number of failures becomes increas-
ingly small as the data are separated into more and more levels. 

Curves in the vulnerability type panel do not show signs of meaningful dif-
ferences across their levels (p = 0.597). For platform affected, the large number of 
categories is difficult to detect differences across levels. We explored comparing Linux-
based exploits to all others combined, as the plot suggests that the Linux exploits may 
tend to survive longer, though that difference had a nonsignificant p-value of 0.357. In 
the source type plot, the curves for open and closed source exploits are nearly identi-
cal, consistent with findings by other investigators (p = 0.729) (Altkinkemer, Reese, 
and Sridhar, 2008; Schryen and Rich, 2010). The curve for the “mixed” category in 
this panel does not descend at all, as we observed no deaths among “mixed” exploits. 
Finally, in the class type panel, we are again challenged by comparing across a large 
number of categories, and find no significant difference in survival across class types 
(p = 0.293). However, there is a suggestion in the figure that collapsing this variable 
into two categories—grouping client-side and remote exploits together and comparing 
them against the combined local, mixed, and other exploits—may produce groups that 
differ. As an exploration, we formed these groups and found that they did not differ 
significantly (p = 0.068, plot not shown), though the p-value is low enough as to sug-
gest this as a potential question for further study.

The lack of observation of statistically significant differences in survival across our 
four characteristics may be because there really are no differences, though it also might 

multiple exploit classes. “Other” characteristics indicate categories that had too few data points to be considered 
for this analysis on their own, so they were combined. 
15  Curves that end in a horizontal line indicate that the last observed value was alive; curves that end in a verti-
cal line indicate that the last observed value was death (i.e., public disclosure) and that there is no evidence of 
continued survival for that particular element.
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Figure 3.6
Kaplan-Meier Curves for Vulnerability Type, Platform Affected, Source Code Type, and 
Exploit Class Type (n = 127)
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be due to a lack of data. As such, our analysis provides guidance on what hypoth-
eses to test in future analyses—in particular, to examine longevity of vulnerabili-
ties for Linux compared with other platforms; to confirm the similarity of lon-
gevity of vulnerabilities for open and closed source code type; and to investigate 
any significance of grouping client-side and remote exploits together compared 
against a grouping of local, mixed, and other exploits. 

Life Expectancy
In addition to exploring median, long, and short survival times, we wanted to examine 
the survival experience of our data in a different way: life expectancy. Life expectancy 
can be estimated directly from a survival curve by calculating the area beneath it. This 
is relatively simple, provided we observe the failure of each subject (i.e., the discovery/
death of all zero-day exploits), bringing the curve down to zero. However, our Kaplan-
Meier curves do not reach zero because we did not observe the death of all 127 exploits, 
making the area under the Kaplan-Meier curve impossible to calculate directly. 

In cases like this, one can use other survival analysis tools that allow a complete 
survival curve to be estimated, even when the last observation time is censored, pro-
vided we are willing to impose parametric assumptions on the survival time distribu-
tion. We examined exponential, Weibull, and log-normal survival models for their fit 
to our data by comparing their estimated survival plots to the Kaplan-Meier plots we 
had already constructed.16 Each of these models fit our data reasonably well, provid-
ing curves that fell within the confidence band in the overall Kaplan-Meier curve in 
Figure 3.5. However, we felt that the exponential model was the best choice for our 
data, based on its assumption of a constant hazard function, which our data appear to 
exhibit. Further details about the hazard function and plots of our unadjusted hazard 
estimates and parametric model comparisons can be found in Appendix F, “Additional 
Figures and Tables.”

Using our exponential regression model, we were able to obtain a model-based 
survival curve estimate that extends arbitrarily close to the x-axis, allowing us to cal-
culate the area beneath it, which is our unadjusted estimate of the life expectancy of 
an average exploit in our sample. We fit four additional exponential models, adjusting 
for each of the four characteristics of an exploit (vulnerability type, platform affected, 
source type, and exploit class type) one at a time, in order to obtain life expectancies 
for exploits within each level of the characteristics. Table 3.2 presents life expectancy 
estimates, both overall and by specific characteristics. 

The life expectancies complement the results from the Kaplan-Meier curves in an 
intuitive way; the steeper the descent of the survivor function, the shorter we expect 
the estimated life expectancy to be. Additionally, the more events we observe as down-
ward “steps” on the Kaplan-Meier plot, the narrower the confidence interval around 

16  See Figure F.1 in Appendix F, “Additional Figures and Tables.”
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Table 3.2
Life Expectancy Estimates Overall and by Exploit 
Characteristics Obtained from Unadjusted Exponential 
Survival Models (n = 127) 

Exploit Characteristic
Exponential Model-Based Life 
Expectancy Estimates (95% CI)

Overall 6.90 (5.39, 8.84)

Vulnerability Type

Logic 7.20 (4.41, 11.75)

Memory Corruption 6.75 (4.83, 9.45)

Memory Mismanagement 8.81 (4.41, 17.55)

Mixed or Other 3.92 (1.63, 9.40)

Platform Affected

Linux 8.62 (5.28, 14.06)

Mixed 6.90 (0.98, 42.63)

OSX 5.36 (2.02, 14.27)

Open Source 7.32 (3.49, 15.32)

Other 5.90 (1.48, 23.25)

PHP 5.59 (1.81, 17.27)

Unix-based 5.95 (2.48, 14.27)

Windows 6.36 (4.30, 9.42)

Source Type

Open 6.51 (4.50, 9.43)

Closed 6.93 (4.95, 9.70)

Mixed –

Exploit Class Type

Client-side 5.16 (2.58, 10.32)

Local 7.63 (5.12, 11.39)

Mixed 8.71 (3.63, 20.75)

Other 21.48 (5.43, 59.36)

Remote 5.14 (3.45, 7.67)
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the life expectancy estimate. Precision in our life expectancy estimates varies markedly 
across characteristics; categories in which we observed many events provide tighter 
confidence intervals around their point estimates (for example, Windows vulnerabili-
ties and remote and local exploits), and categories with very few observed events (for 
example, see the “mixed” and “other” exploit types) had much wider confidence inter-
vals.17 Assuming that what we have is a representative sample of exploits, we find that 
the average exploit (and thus its vulnerabilities) is expected to live 6.90 years (with 95 
percent confidence interval: 5.39 to 8.84 years).18

Proportional Hazards Regression Modeling 
To assess whether any particular characteristic of an exploit contributes to a lower or 
higher probability of death, leading to longer or shorter lifespans, we fit Cox propor-
tional hazards survival models. 

We used Cox proportional hazards regression modeling to estimate the hazard 
ratio associated with each level of each characteristic compared with its referent cat-
egory. We fit separate unadjusted models for each of our four characteristics, as well as 
a fully adjusted model adjusting for all four characteristics simultaneously, and a par-
tially adjusted model that excluded platform affected. Table F.3 and the surrounding 
text in Appendix F, “Additional Figures and Tables,” provide more details about the 
methodologies used and values for each model. 

Consistent with the Kaplan-Meier results, there does not appear to be any “smok-
ing gun” characteristics that may indicate a long or short life, though our findings are 
useful for hypothesis generation. A “smoking gun” characteristic would have suggested 
that a vulnerability or its exploit might last a long or short time, perhaps aiding those 
who deal with the vulnerabilities equities process refine what should be kept and what 
should be publicly released. For example, if all exploits that rely on memory corruption 
vulnerabilities are statistically shown to have lower survival probabilities over time, 
then perhaps those should be the types of vulnerabilities that get publicly disclosed 
and patched (i.e., not stockpiled), because those wishing to exploit them for their own 
operations may get a short time to use with them, and more people may be at risk given 
the quick discovery rate.19 Similarly, if a particular type or aspect of a vulnerability 
indicates a long time, stockpiling may be a justifiable option.

With our data, for each characteristic, the p-values from Wald tests of regression 
parameter estimates are too high to infer any significant differences across any of its 

17  Confidence intervals give a sense of how precisely we have estimated each individual life expectancy. That 
is, we are able to state with 95 percent confidence that the life expectancies for each characteristic lie within the 
confidence intervals as shown. 
18  A 95 percent confidence interval of 5.39 to 8.84 years means we are 95 percent confident that the average 
lifespan of exploits like those in our sample is between 5.39 and 8.84 years.
19  Of course, it depends on the platform and target system affected. It might be the case that, even if a vulner-
ability is quick to exploit and has a short lifetime, a short time of using it could prove valuable. 
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levels, with or without adjustment for the other characteristics. Without more data, we 
cannot statistically determine whether any characteristic of an exploit indicates a long 
or short life. The high p-values may be a result of a true absence of effect, or a result 
of a small number of observed deaths, owing to our small sample size. More data and 
longer follow-up time may provide statistically significant solutions in further study.

3. Collision Rate: What Is the Likelihood That Others Will Discover and 
Disclose the Vulnerability?

Just as understanding the longevity of a particular vulnerability is valuable, so is know-
ing how likely it is that a vulnerability will be discovered by another researcher, regard-
less of how long the vulnerability has already been alive. 

A high collision rate might indicate that vulnerabilities found by private research-
ers and public bug hunters are relatively easy to detect, strengthening an argument for 
disclosing any vulnerability found.20 Similarly, a low collision rate might indicate that 
vulnerabilities found by one researcher will remain undetected by other researchers.

Alternatively, vulnerabilities that are seemingly difficult to detect and deeply 
buried in a code base could yield a high overlap if multiple vulnerability researchers 
use the same bug-hunting techniques.21 

An organization that holds vulnerabilities or exploits likely assesses its stockpile at 
regular time periods, removing those that have been publicly discovered and disclosed 
and only retaining those that are still alive or potentially useful as zero-days. If newly 
dead exploits are thrown out at regular time periods, then the percentage of those dead 
at the end of each time period represents the amount of overlap, or the collision rate. 

Literature on collision rate focuses mostly on vulnerabilities reported to vulner-
ability reward programs or publicly found and reported within a code base. Finifter, 
Akhawe, and Wagner (2013) found that roughly 2.25–5 percent of all vulnerabili-
ties reported to vulnerability reward programs had been discovered by others. Past 
RAND rough order-of-magnitude estimates put the probability that a vulnerability is 
discovered by two parties within a year at approximately 10 percent (Libicki, Ablon, 

20  A codebase or product that has a lot of vulnerabilities discovered (i.e., high overlap and high quantity) does 
not necessarily mean that specific codebase or product is particularly bad or the worst offender: Market share can 
steer bug hunters and vulnerability researchers to look in certain codebases. Some research (Maillart et al., 2016) 
has shown that bug hunters often jump from product to product looking for the fastest (and sometimes cheapest) 
payout.
21  Often, overlap of vulnerabilities in a code base lead to a discussion of sparseness versus denseness and deple-
tion of vulnerabilities. This is a rich debate that many have spoken and written about. Schneier (2014) believes 
that vulnerabilities are plentiful (which one might interpret as dense), and as such the overlap is relatively small; 
Geer (2014) states that vulnerabilities are sparse enough for the U.S. government to corner the bug-buying 
market. Ozment and Schechter (2006) argue that the density of vulnerabilities in the OpenBSD operating system 
ranged from 0 to 0.033 vulnerabilities reported per 1,000 lines of code. 
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and Webb, 2015). Researchers in 2015 created a heuristic model that found a 9 per-
cent overlap in non-security-tested software and 0.08 percent in more secure software 
(Moussouris and Siegel, 2015). 

In our dataset, approximately 40 percent of the exploits were detected and pub-
licly disclosed. We calculated this value by accumulating and keeping all exploits over 
the 14-year span of the dataset, regardless of whether or not an exploit or vulnerability 
had died. 

But an organization would likely flush dead vulnerabilities from a stockpile in 
regular time intervals. Taking 365 days and 90 days as the likely time intervals (as 
well as 30 days and 1 day intervals), we performed sensitivity analysis on our data, 
to assess the percentage of vulnerabilities that died in certain time intervals. In each 
time period, we removed those that had died in the previous interval. We separated 
each exploit into four main categories: (1) Living, (2) Code Refactor, (3) Dead, and 
(4) Unknown. Collisions are represented by those exploits that are dead at the end of 
a particular time interval. Collision rates change significantly depending on the 
interval time. While we found a ~40 percent collision rate over the 14-year span 
of our data, narrowing the time intervals resulted in a 5.76 percent collision rate 
(median value) for a 365-day time interval (6.79 percent standard deviation), and 
an 0.87 percent collision rate (median value) for a 90-day time interval (5.3 per-
cent standard deviation). In other words, for a given stockpile of zero-day vulner-
abilities, after a year approximately 5.7 percent have been discovered and dis-
closed by others.22

Figure 3.7, and Figure F.3 and Table F.4 in Appendix F, “Additional Figures and 
Tables,” show the values.

Timing of Collisions with the Same Vulnerability 
One may additionally want to consider how long the vulnerability was known only to 
the private entity before discovery and disclosure to the public world, or, with our data, 
how long before our privately known vulnerabilities were found and disclosed publicly. 

While it is true that many—or even most, as some might argue—uses of exploits 
are for vulnerabilities that have already been discovered and are no longer considered 
zero-day (Bilge and Dumitras, 2012), knowing the likelihood that a zero-day will 
remain a zero-day, and for how long, might be useful. In particular, those who rely 
on zero-day exploits for offensive or defensive purposes, such as penetration testing or 
trying out a new detection tool, may want to know how long they can expect to go 
undetected by their target during a campaign. Vulnerability researchers and exploit 

22  While we analyzed time intervals of 365, 90, 30, and 1 days, we provide results for only the 365- and 90-day 
time intervals. We calculated values by taking the median percentage of deaths across each time interval. As the 
windows get smaller, there are several windows in which no event occurred, thus driving the median value to 
zero. The median value was zero for both the 30-day and 1-day time intervals. 
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developers may want to know something about how long their exploits generally last 
for business or marketing purposes.23 

We examined those vulnerabilities that were discovered by someone else in order 
to investigate the probability of collision and to examine the decay rate. For our data, 

23  For example, use the data to set prices or inform customers of expected capabilities.

Figure 3.7
Vulnerability Types over Time (n = 192)
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24 While “Code Refactor” and “Killed by BUSBY” are also types of death, they do not indicate that the vulner-
ability was found (in the case of Code Refactor) or found by anyone else (in the case of Killed by BUSBY).

Figure 3.8
Timing of Overlap Between When a Vulnerability Was Found by Two 
Independent Parties (2002–2016) (n = 63) 
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“discovered by someone else” translates to a life status of “Security Patch” or “Publicly 
Shared,” for which we have both birth and death dates.24 

Figure 3.8 shows the amount of time between when a vulnerability used in a 
BUSBY exploit was found by the BUSBY vulnerability researchers and when it was 
found and disclosed to the public by an independent third party. 

Each shaded diagonal region represents one year: the bottom shaded diagonal 
region (labeled 1) contains points plotted for exploits that were discovered and disclosed 
by someone other than BUSBY within one year after initial discovery by BUSBY. Each 
diagonal region above the first is labeled on the left side with the number of years 
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elapsed between initial discovery by BUSBY and subsequent independent discovery 
and disclosure.25 Therefore, the fewer number of points in the higher diagonal bands is 
artificially lower than what the complete plot would display, if we had had additional 
follow-up time available.

Because this analysis does not take into account censoring, we cannot make any 
concrete conclusions about the rate of overlap. That said, one could make the quali-
fied observation that, in the 2002–2016 time frame, the data appear to show 
that, for exploits that die (i.e., are found by independent parties), death seems to 
happen relatively quickly and often within the first year. The plot may also sug-
gest that the rate of discovery is not consistent each year. For example, it appears that, 
beginning in 2008, a number of exploits of BUSBY vulnerability researchers lived 
longer than those found in previous years. The reason why is unclear: It could be that 
the researchers developed a new technique, or discovered a new trove of exploits that 
were different from the ones before, mitigations that prevented exploits from living a 
long time pre-2008 were countered, a new hire to the team had the ability to find vul-
nerabilities deep in code or in products already heavily scored, or some other unknown 
reason. To be clear, this is speculation: It may well be that in the future, a batch of vul-
nerabilities will be independently discovered and disclosed that were found by BUSBY 
back in 2005, which could cast doubt on the list of possible reasons.

4. Cost: What Is the Cost to Develop an Exploit for the Vulnerability?

Planning for a Stockpile: Understanding the Cost of Maintaining Ready-to-Use 
Exploits
If a person or organization wants to keep a stockpile of vulnerabilities ready for use, 
it is useful to know what it might take to replenish and maintain a full stockpile—in 
particular, the cost to develop an exploit, and whether in-sourcing or out-sourcing is 
the best option.26 

The cost and, relatedly, value or price of an exploit can rely on many factors, which 
may influence cost in advance of or concurrently with exploit development. These fac-
tors include the time to find a viable zero-day vulnerability (research time), the time to 
develop an exploit to take advantage of the zero-day vulnerability (exploit development 
time), the cost of purchasing or acquiring a device or code for review, the time to set 
up a test lab and the cost to purchase the appropriate infrastructure or tools required 

25  Our chart shows births occurring through 2013, but this does not mean BUSBY analysts stopped finding 
and exploiting vulnerabilities that year. Rather, we did not have birth dates to calculate this. There are also some 
BUSBY exploits for 2014, 2015, and 2016 not included in our dataset because of additional operational sensitivi-
ties. The dataset also included five vulnerabilities sold to BUSBY by outside third parties in 2014 and beyond—all 
of which have died—so we are unable to determine the dates that those exploits were found.
26  Certainly, there are many times when the use or usefulness of an exploit does not rely on its vulnerabilities 
being zero-day. But for the sake of argument, we consider the cases where someone would want to have zero-days. 
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for testing and analysis, the time to integrate a particular exploit into other ongoing 
operations, the salaries of the researchers involved in developing the exploit, the churn 
of the codebase (i.e., the likelihood for having to revisit the exploit and update it to 
new versions of the code to maintain a capability), the time a ready-to-go exploit sits 
unused, and supply and demand of an exploit for a particular platform or codebase.27 
Additional value can come from a vulnerability’s uniqueness (e.g., it is the only vulner-
ability found in a specific product) or the need and timeline of the customer. 

Benefits come from an exploit having a long enough lifetime to be of use to a cus-
tomer. Ideally, an exploit development organization would look for ways to decrease 
the costs and increase the benefits.

Costs and Benefits of Finding Zero-Day Vulnerabilities and Developing Exploits 
from Them
In addition to dates of when a vulnerability had first been discovered privately (birth 
date), and when the vulnerability had been publicly discovered (death date), our data 
also included the date when a fully functioning exploit had been developed (mature 
date). Thus, we examined the length of time to develop an exploit as the time between 
birth and maturity.28 Figure 3.9 shows the frequency counts of time to develop an 
exploit for our data.29

We found that exploit development time ranges, but is generally relatively 
short. In our data, 71 percent of the exploits were developed in a month (31 days 
or less), almost a third (31.44 percent) were developed in a week or less, and only 
10 percent took more than 90 days to exploit.30 The majority of exploits in our 

27  For example, the FBI reportedly spent approximately $1 million for the technique (which many suspect was 
a zero-day) used to unlock an iPhone (Hosenball, 2016). The high demand to unlock the iPhone likely drove up 
the cost.
28  Our data did not include how long it took for a vulnerability to be initially discovered (i.e., research time), 
though we spoke to several people involved in vulnerability research and exploit development. We learned that 
the time to find a vulnerability is generally longer than the time to create a fully functioning exploit. Thus, once a 
vulnerability is found, it may likely be relatively quick to develop a fully functioning exploit. Granted, one needs 
to ensure that the infrastructure to test exists, and that may take longer to set up. See Appendix E, “Purchasing 
a Zero-Day Exploit: Cost and Pricing Considerations,” for more discussion. 
29  There were no outstanding trends for those exploits (n = 16) that had an exploit development time of more 
than 90 days: Over 56 percent are still unknown (with one Immortal, and one Code Refactor), and roughly 
31 percent are known and have had security patches. 56 percent were memory corruption vulnerabilities (split 
between stack and heap overflows). In terms of type of exploit, 50 percent were remote exploits, 25 percent local, 
roughly 18.75 percent client-side, and 6 percent dependent. Almost 69 percent were based on the Windows plat-
form. The vulnerabilities were discovered between 2005 and 2014, with the majority found in 2011.
30  Approximately 3 percent took longer than a year—with two vulnerabilities taking 2 and 2.5 years to develop 
exploits for. The first was exploited in 2007 and is of uncertain life status. The second was exploited in 2010 and is 
Immortal, as it is in a codebase that is no longer maintained. Both cases involved a remote exploit using memory 
corruption (heap overflow) vulnerabilities within Windows. The long time to develop an exploit was due to reli-
ability issues.
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dataset took between 6 and 37 days to become fully functional (with a median of 
22 days, minimum of 1 day, and maximum of 955 days).

The relatively fast exploit development time may be due, in part, to the same 
vulnerability researchers exploiting the same types of vulnerabilities or platforms. For 
example, someone who is an expert at exploiting Apple’s iOS will likely have primitives 
(building blocks of an exploit) to rely on, so after a vulnerability is found, exploitation 
may be faster than someone who is new to Apple’s iOS. 

A long timeline to exploit could be due to a number of reasons: (1) reliability 
issues, as was the case for the previous examples mentioned,31 (2) the need to chain 
multiple vulnerabilities together to create an exploit, (3) a customer requirement for 
the exploit to work on multiple versions, and (4) the vulnerability temporarily being 
deemed unimportant and set aside.

A long exploitation period does not necessarily mean that someone was working 
on the exploit the entire time: It could be that an analyst found a vulnerability, put 
some time into trying to exploit it, and, if it was not immediately or easily exploited 
within a month or certain time frame, either passing it on to another exploit developer 
or putting it “on the shelf” for several months until a blocker bug had been fixed or the 
vulnerability became more important to a customer (e.g., when a customer asked for an 
exploit to be developed in a particular product, no matter how long it took). 

31  For one, the exploit kept working well in the lab, but not in the wild.

Figure 3.9
Frequency Count of Time to Develop an Exploit (n = 159)
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We also evaluated exploit development time compared with lifetime (from 
matured to died) and by different characteristics. Similar to our finding that no char-
acteristic of an exploit indicated a statistically significant level a long or short life, we 
found that time to develop an exploit did not have a bearing on how long the exploit 
lived and that no characteristic of an exploit indicated a long or short time to develop 
an exploit.32

For some initial analysis of cost to develop an exploit, see Appendix E, “Purchas-
ing a Zero-Day Exploit: Cost and Pricing Considerations,” for more discussion.

32  As in the survival analysis, we examined vulnerability type, platform affected, source type, and exploit class. 
We also examined by life status. 
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CHAPTER FOUR

Conclusions and Implications

The value of investigating zero-day vulnerabilities is that successful findings or remain-
ing unanswered questions can help indicate optimal areas of research for both defend-
ers and for those offensively focused. 

Our research yields several findings, two of which we highlight up front: 

1. Exploits and their underlying vulnerabilities have a rather long average life 
expectancy (6.9 years).

2. For a given stockpile of zero-day vulnerabilities, after a year, approximately 
5.7 percent have been discovered by an outside entity.

These findings imply that stockpiling maybe smart for those offensively focused, 
and technically sophisticated vulnerability researchers likely want to stockpile the vul-
nerabilities they find, rather than disclose them. Defenders will always be vulnerable to 
zero-day vulnerabilities, and likely will always want to disclose and patch a vulnerabil-
ity upon discovery. We discuss all of our findings, and their implications for defense 
and offense, below.

Finding #1: Declaring a vulnerability as alive (publicly unknown) or 
dead (publicly known) may be misleading and too simplistic 

Common practice is to classify a vulnerability simply as alive (publicly unknown) or 
dead (publicly known). However, our analysis revealed that there are several subcat-
egories of each, which can make labeling a vulnerability as either alive or dead to be 
misleading and too simplistic. We found that vulnerabilities can exist in a quasi-dead 
state due to code refactoring, that vulnerabilities can die due to several reasons, and 
that vulnerabilities are dynamic—something that is exploitable one day may not be 
the next (and vice versa). Furthermore, in the course of investigating life statuses for 
our vulnerabilities, we found that CVEs do not always provide accurate and complete 
information about the severity of a vulnerability. 
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Implications for Defense
Oversimplifying vulnerabilities as either alive (publicly unknown) or dead (publicly 
known) may be creating a barrier for vulnerability-detection efforts. 

“End-of-life” products can have dormant (i.e., immortal) vulnerabilities in them, 
so vendors and defenders should make efforts to phase out the software and encourage 
upgrading to new versions. Similar efforts should be made to search previous versions 
of code bases—unsupported or not—that have a high probability of still being in use 
(e.g., in industrial control systems) for vulnerabilities. Because end-of-life code bases 
remain relatively static, every vulnerability found would decrease the total number of 
bugs.

Implications for Offense
While potentially of limited use, vulnerabilities that are immortal or code refactored 
may still be of value for operations, depending on what system or target they reside in, 
and researchers should consider regularly revisiting vulnerabilities they had once found 
to be unexploitable.

Finding #2: Exploits have an average life expectancy of 6.9 years after 
initial discovery, but roughly 25 percent of exploits will not survive for 
more than a year and a half, and another 25 percent will survive more 
than 9.5 years 

After initial discovery by a vulnerability researcher, exploits have an average life expec-
tancy of 6.9 years (specifically, 2,521 days), and we estimate with 95 percent confidence 
that any given exploit will live between 5.39 and 8.84 years. Only 25 percent of vulner-
abilities do not survive to 1.51 years, and only 25 percent live more than 9.5 years. The 
relatively long life expectancy of 6.9 years means that most zero-day vulnerabilities—
in particular the ones for which exploits are created for private use (i.e., in the gray 
markets)—are likely old. 

While our data show that a “short life” for a vulnerability is 1.5 years, this might 
be long enough for most vulnerability researchers. One exploit development team told 
us that they actually prefer their vulnerabilities to die after 18 months (via code churn, 
not independent co-discovery) in order to continue doing business selling new exploits. 
They also noted that, in their experience, customers were happy if an exploit remained 
viable and zero-day for at least 12 months, though that was seen as an emotional 
benchmark more than based on operational data. 

Implications for Defense
Defenders should live with the expectation that any zero-day vulnerabilities in their 
code that are particularly useful as exploits are likely deeply buried within code bases. 
This may mean that vendors should continually look for vulnerabilities even in areas 
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of code they feel they have thoroughly reviewed. Having more people helping to find 
vulnerabilities via bug-bounty programs could help continuously bring new researchers 
to looking at code already deemed clean. 

Finding and patching vulnerabilities in code becomes harder with software reuse 
between platforms and, in particular, with the Internet of Things, as more code is 
reused across platforms in home environments, transportation, medical systems, and 
beyond. The nature of Internet of Things devices often means there are no mechanisms 
to fix the device, and finding and patching vulnerabilities will be a challenge unless 
there is significant effort to maintain the infrastructure for patching. 

“Software rot”—which refers to what occurs when software is not regularly 
updated and code is not maintained—may be a concern, as there are likely dormant 
vulnerabilities that will be found over time and may still be useful to exploit. As 
such, it may be useful to have an effort to patch zero-day vulnerabilities in no-longer-
maintained software, especially for code that remains in widespread use. (Particularly 
for code that was produced by defunct software companies, there are no immediate 
options for patching or starting a bug-bounty program.) This type of effort would also 
be applicable for open source software. 

A life expectancy of 6.9 years implies that offense may have the upper hand. As 
suspected, defenders likely need better tools and more options to both find zero-day 
vulnerabilities and detect when a system or software package is being exploited. Rather 
than focusing only on finding zero-day vulnerabilities or creating more tools or options 
to detect when a system or software package is being exploited, defenders may be able 
to shift the balance in their favor by starting from the assumption of compromise and 
investigating ways to improve system architecture design to contain the impact of 
compromise. 

Implications for Offense
Exploit developers or those who maintain zero-days should be aware that 25 percent 
of their exploits will no longer be useful (as zero-days) in 1.5 years. At the same time, 
because the average vulnerability remains as a zero-day for almost seven years, the 
demand for vulnerabilities in particular software packages may decrease over time. 
Offensive entities may not need to stockpile for a particular software package many 
exploits deep, given vulnerabilities’ long life; having a few vulnerabilities as backup 
may be sufficient. Any remaining similar vulnerabilities could be turned over to the 
vendor for patching, given that they would not expose the vulnerability intended to 
be kept operational.1 It may be useful to develop a “cut-off radius” of proximity to the 
vulnerability that should remain alive.

Those who are involved with planning offensive operations using a specific zero-
day vulnerability should consider its use only in short-term planning circumstances. 

1  Though, as will be discussed below, when one vulnerability is discovered and disclosed, it often leads to the 
discovery and disclosure of other similar vulnerabilities; this could be a factor in increasing collisions. 
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On the other hand, the use of any zero-day vulnerability may allow for a longer window 
of time to plan or carry out an operation.

Finding #3: No characteristics of a vulnerability indicated a long or 
short life; however, future analyses may want to examine Linux 
versus other platform types, the similarity of open and closed source 
code, and various groupings of exploit class type

After evaluating the vulnerability type, platform affected, source code type, and exploit 
class type, no characteristic statistically stood out as a “smoking gun” that might indi-
cate a short or long life. This may have been due to either a true lack of association or a 
lack of statistical power to detect those associations, given the relatively small number 
of deaths in our dataset.  The biggest obstacle was a lack of observed deaths within 
each characteristic level, limiting statistical power to detect differences across levels. 
Thus, more data may provide more statistically significant results, though whether 
that would confirm this finding or find that a particular characteristic does matter is 
unclear.2 

While nothing stood out as statistically significant, our analysis does provide guid-
ance on what hypotheses may be valuable to test in future analyses—in particular, to 
examine longevity of vulnerabilities for Linux compared with other platforms; to con-
firm the similarity of longevity of vulnerabilities for open and closed source code type; 
and to investigate any significance of grouping client-side and remote exploits together 
compared against a grouping of local, mixed, and other exploits.

Had any characteristics stood out statistically (which may be confirmed or refuted 
with more data), that may have helped those involved with vulnerability research, the 
vulnerabilities equities process, or the security community in general to refine deci-
sions about which vulnerabilities should be retained and which should be publicly 
disclosed. If one type of vulnerability was found more often than others over a short 
period of time (e.g., heap overflows for OSX), perhaps that type of vulnerability should 
be publicly disclosed and patched (i.e., not stockpiled) because those wishing to exploit 
them for their own operations may have a short time to do so, and more people may 
be at risk given the quick discovery rate.3 Similarly, if a particular type or aspect of a 
vulnerability indicates a long time, stockpiling may be a justifiable option.

2  One former manager of exploit developers surmised that there would never be a characteristic that would 
indicate long or short life. Rather, this individual believed that the best indicator of a long life was a vulnerability 
being found in a class that had already been thoroughly examined by other vulnerability researchers (e.g., font 
bugs). Other vulnerability researchers we spoke to agreed with this supposition. 
3  Of course, it depends on the platform and target system affected. Even if a vulnerability is quick to develop 
an exploit for and has a short lifetime, a short time of using it could still prove valuable. 
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Implications for Defense
Security strategies must focus on all types of vulnerabilities, rather than just one kind 
(e.g., just memory corruption vulnerabilities, or only those in open source products). 
Defenders cannot focus on one particular thing to defend, since there is no character-
istic that makes vulnerabilities any more or less likely.

Implications for Offense
Because there appears to be no vulnerability characteristic that indicates a shorter or 
longer life, it may be most efficient and cost-effective to stockpile and develop exploits 
for whatever vulnerabilities are easiest to find or most effective. As it stands, our data 
did not indicate that there are any vulnerabilities that are “stronger” or “weaker” than 
others in terms of resilience to being discovered and disclosed.

Finding #4: For a given stockpile of zero-day vulnerabilities, after a 
year, approximately 5.7 percent have been discovered and disclosed 
by others

The timing of “flushing” a stockpile of dead vulnerabilities matters. Collision and over-
lap rates changed significantly depending on the interval time used (from 40 percent 
to less than 1 percent).4 We found a median value of 5.76 percent overlap (6.79 percent 
standard deviation) given a 365-day time interval, and a median value of 0.87 percent 
overlap (5.3 percent standard deviation) in the 90-day time interval. A 14-year interval 
(i.e., all of our data in one time interval) yielded a 40 percent overlap.

With the exception of a 14-year interval, our data show a relatively low collision 
rate. Some argue that this may be because those in the private exploitation and gray-
market spaces look for different vulnerabilities than those hunting for vulnerabilities in 
the public release and white-market spaces, or that different vulnerability-finding tech-
niques are in play, yielding different vulnerabilities found (e.g., vulnerabilities found 
via automatic software testing, or “fuzzing,” versus vulnerabilities found via manual 
analysis). 

We compared overlap rates between those looking for private use (the blue circle 
in Figure 1.2) and those looking for public release (the green circle in Figure 1.2). Those 
in charge of stockpiling considerations may be more interested in the overlap between 
two opposing groups (the blue and red circles in Figure 1.2), and this overlap may be 
different than what we found in our data. On the one hand, the collision rate may be 

4  This is a prime example of how data can be used to support a variety of viewpoints, in particular a high versus 
low collision rate. Those that have argued that the overlap is small (or large) do not typically specify the time 
interval. We have demonstrated with our data that the range can be from a fraction of a percentage to almost 
half—depending on the time window. Our analysis brings to light the importance of noting the time interval—
otherwise, it is seemingly possible for anyone to “prove” the result they want to show, even with data.
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higher, because these types of researchers may be looking for similar vulnerabilities or 
using similar techniques. But it may also be lower, because those in the private exploi-
tation space tend not to stockpile deeply for the same target (i.e., as long as they have 
a few vulnerabilities in a given target, there is not typically a need to prioritize finding 
more bugs in that target). On this point, one vulnerability research team we spoke to 
claimed that co-discovery of their vulnerabilities happens less than once per year. 

Many vulnerability researchers agree that, where one vulnerability exists, so do 
others. As such, once a vulnerability is found (and publicly disclosed) in one part of 
code, bug hunters and exploit developers tend to swarm that part of code to look for 
others.5 There are some rare cases where an exploit development team has maintained 
capabilities in software that other heavily funded vulnerability research teams have 
been looking at for years.6

Had a significant percentage of exploits been dead, then the large overlap between 
what is found publicly and what is found privately might indicate an even larger over-
lap between what is found by disparate groups privately looking for vulnerabilities and 
developing exploits for their own use. As it is, the small percentage of dead exploits 
may indicate that those that search for vulnerabilities privately have a small overlap 
with each other. 

Implications for Defense
Finding and crowdsourcing vulnerabilities may not be enough to secure systems, 
because the overlap between what is found and disclosed publicly and what is found 
and kept privately appears to be relatively small. This implies that vulnerabilities may 
either be dense or very hard to find.

The presence of any overlap indicates that multiple people can—and have—found 
same vulnerabilities in commercial products, in particular, those vulnerabilities that 
are valuable to nation-state type actors. As such, while approaches such as bug boun-
ties and vulnerability detection and patching are valuable, defenders should consider 
employing additional efforts to create mitigations, employ better defensive measures, 
do more thorough (and deeper) code review before releasing a product to the public, 
or study the techniques of how offense finds vulnerabilities. Additionally, defenders 
could consider tackling software security by treating all code as insecure, and investing 

5  There are many analogies for this swarm mentality of vulnerability researchers. Things we heard from people 
included “when you find one bug, you find others,” “it’s like kids’ soccer—one person runs towards the ball and 
everyone follows,” “while the ocean of bugs is deep and vast, vulnerability researchers can all smell a drop of blood 
in the water,” and “vulturing.”
6  While the vulnerability research and information security community is generally open and willing to share 
information, even hinting about vulnerability research is limited. For experienced exploit developers, someone 
just hinting that a bug exists in a specific library or piece of code is enough for the developers to find the bug. As 
such, security researchers are sometimes apt to be close-lipped about the types of vulnerabilities they have found; 
many believe that if they even hint or speak hypothetically about finding a vulnerability in a certain codebase, 
other researchers will flock to find the same or similar type of vulnerability.
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efforts in careful and thorough system and network architecture design to contain the 
impact of eventual compromise. 

Implications for Offense
Offensively focused vulnerability researchers may employ different methods of finding 
vulnerabilities than those who are defensively focused. Therefore, those on the offen-
sive side may benefit by continuing to find vulnerabilities given their current tech-
niques. This may also mean that adding vulnerability researchers to a team could help 
find new and unique vulnerabilities.

Though our data revealed a relatively small overlap percentage, this was only 
between those looking for private use and those looking for public release (i.e., the 
overlap between the blue and green circles in Figure 1.2), rather than two compet-
ing groups both looking for vulnerabilities for private use (i.e., blue and red circles in 
Figure 1.2). Our findings would be further refined with better information on how 
often evaluation happens (i.e., interval time used by organizations and agencies), as 
well as what vulnerabilities are held by other private groups. 

Finding #5: Once an exploitable vulnerability has been found, time 
to develop a fully functioning exploit is relatively fast, with a median 
time of 22 days 

We found that exploit development time ranges, but is generally relatively short. In our 
data, 71 percent of the exploits were developed in a month (31 days or less), almost a 
third (31.44 percent) were developed in a week or less, and only 10 percent took more 
than 90 days to exploit. The majority of exploits in our dataset took between 6 and 37 
days to become fully functional (with a median of 22 days, minimum of 1 day, and 
maximum of 955 days).

The cost to develop (and, relatedly, the value or price of) an exploit can rely on 
many factors: the time to find a viable zero-day vulnerability (research time), the time 
to develop an exploit to take advantage of the zero-day vulnerability (research time), 
the cost of purchasing or acquiring a device or code for review, the time to set up a test 
lab and the cost to purchase the appropriate infrastructure or tools required for test-
ing and analysis, the time to integrate a particular exploit into other ongoing opera-
tions, the salaries of the researchers involved in developing the exploit, the churn of 
the codebase—i.e., the likelihood for having to revisit the exploit and update it to new 
versions of the code to maintain a capability, the time a ready-to-go exploit sits unused, 
and supply and demand of an exploit for a particular platform or codebase. Additional 
value can come from a vulnerability’s uniqueness (e.g., it is the only vulnerability found 
in a specific product) or the need and timeline of the customer. 
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Depending on the time it takes to find a vulnerability, and given the right talent 
and testing infrastructure already acquired, it may be more affordable to develop 
exploits in-house rather than outsource. Given accurate data on time to find a vulner-
ability, estimates could be made to help inform those involved with purchasing vulner-
abilities of what prices they should pay for (based on labor costs alone). Certainly, the 
severity and impact of the vulnerability comes into play. And, while our median time 
to develop an exploit was 22 days, the maximum was over two and a half years, indi-
cating that not all exploit development is the same and that it often takes very talented 
and dedicated researchers. 

Interestingly, exploit development time does not appear to have an influence on 
the lifespan or survival time of an exploit.

Implications for Defense 
The majority of the cost of a zero-day exploit does not come from labor, but rather the 
value inherent in them and the lack of supply. White-market software vendors and 
bug-bounty programs likely should not pay for vulnerabilities purely based on labor 
alone, as they do not to compete with other entities willing to buy zero-day exploits 
for private use. 

Implications for Offense 
At the most basic level, any serious attacker can always get an affordable zero-day for 
almost any target. However, other tangible costs (acquiring products to find the vul-
nerabilities in, setting up test infrastructure, maintaining and porting the exploit to 
work on multiple versions, renting work space, etc.) and intangible costs (premium of a 
high-demand, low-supply product, etc.) can cause the price to rise dramatically.

In our data, vulnerabilities purchased from external third parties had a shorter 
lifespan (average life of 1.4 years). This may be an argument for finding vulnerabilities 
and developing exploits in-house if a long life is desired. 

Governments create a huge demand in this market and, for that reason, have mas-
sive buyer power. If a government coordinated its effort and used its buyer power, it 
could have more control over prices of exploits.

Other Recommendations for Defense

Those involved in defense may have a bigger impact on zero-day vulnerabilities than 
those on the offense side.

Defense may want to focus on mitigation, containment, accountability, and 
maintaining a robust infrastructure of patching, rather than finding and fixing vul-
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nerabilities.7 Mitigations (such as sandboxing and Microsoft’s Enhanced Mitigation 
Experience Toolkit [EMET]) are seen as ways to prune out the easier-to-find vulner-
abilities, but are not seen as an impossible hurdle.8 Containment can come in the 
form of isolation, though it must be physical: Hypervisors and virtual isolation do 
not count.9 Accountability means knowing what software is on every device, know-
ing what devices are present in an enterprise, and knowing what removable media has 
been where. This becomes a bigger challenge with the rise of the Internet of Things (see 
Libicki, Ablon, and Webb [2015] for more discussion).

Defense should consider strategic approaches, in addition to the more traditional 
tactical approaches. That is, in addition to trying to understand what exactly an exploit 
is doing, it may be useful to recognize that a compromise or attempt is inevitable, and 
aim to limit the impact of an exploit via containment and accountability.

Some believe that a government strategy should be to create new configurations 
and put together new workarounds that protect the public, but without releasing any 
information to the public about what exactly those protections are. It may be useful for 
the government to share more openly with the public the benefit of mitigations they 
are releasing, especially if they are in regard to software vulnerabilities.

Other Recommendations for Offense

Companies do not generally audit for vulnerabilities after a new code release (i.e., code 
refactor), but perhaps they should. While they ideally want all customers to use the 
newest version, this is not always reality: Some systems (e.g., ICS [industrial control 
system] and SCADA [supervisory control and data acquisition]) require that old ver-
sions stay in place longer than may be ideal. Other times, upgrading to the newest ver-
sion or applying the latest patches means disrupting business operations and is seen as 
cost-prohibitive. As such, groups and organizations in the vulnerability research and 
exploitation development businesses should consider reexamining old code bases and 
previous versions—exploitable vulnerabilities may still exist, and older products may 
still be in use around in the world.

To beat the software testing programs (“fuzzers”) and bug hunters searching for 
vulnerabilities in the public use space, private exploit developers may want to audit parts 

7  However, some companies see finding and fixing vulnerabilities as a viable strategy. For example, in February 
2002, Microsoft shut down and stopped development to work on security patches for two months. See Chapter 
3 of the “Security Development Lifecycle: Life in the Digital Crosshairs” on Microsoft’s website (Microsoft, no 
date). 
8  Anti-virus solutions are not generally seen as a hurdle at all. BUSBY had seven exploits for anti-virus products: 
Five are still living (the oldest at 4.4 years old), and two are of uncertain life status. 
9  Five of BUSBY’s exploits were for hypervisors or virtual machines. Two are dead, but one of those was inten-
tionally killed by BUSBY. 
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of a code base that are most complex (or, in the words of one vulnerability researcher, 
“the most annoying”). 

Are Zero-Day Vulnerabilities Even That Big of a Deal?

Spear-phishing (i.e., sending emails that appear to be from a known or trusted sender 
to induce the recipient to reveal confidential information) is a major attack vector that 
is not typically reliant on taking advantage of vulnerabilities, zero-day or otherwise. 
And a majority of attacks rely on already known vulnerabilities. So it is not clear how 
much focus should be on zero-day vulnerabilities and their exploits: With so many 
instances of users not applying patches for known vulnerabilities, does it make sense to 
focus on the relatively few zero-day vulnerabilities?10 Other than the few cases in which 
a zero-day is the only way to gain entry into a hardened target, one might infer that 
zero-day vulnerabilities do not matter in the grand scheme of cybersecurity. That said, 
there may be operations in which entry into a system or target is deemed absolutely 
necessary, and zero-day vulnerabilities and their exploits are the only way in. 

To Stockpile or Not to Stockpile?

Governments may choose to keep zero-day vulnerabilities private, either for defensive 
purposes (e.g., penetration testing) or offensive operations. The decision to stockpile 
requires careful consideration of several factors, including the vulnerability itself, its 
use, the circumstances of its use, and other options that may be available to achieve an 
intended outcome.  

Our analysis shows that zero-day vulnerabilities may have long average lifetimes 
and low collision rates. The small overlap may indicate that vulnerabilities are dense 
(i.e., another, different vulnerability usually exists) or very hard to find (with these 
two characteristics not necessarily mutually exclusive). If another vulnerability usu-
ally exists, then the level of protection consumers gain from a researcher disclosing a 
vulnerability may be seen as modest, and some may conclude that stockpiling zero-
days may be a reasonable option. If zero-day vulnerabilities are very hard to find, then 
the small probability that others will find the same vulnerability may also support the 
argument to retain a stockpile.

On the other hand, our analysis shows that that the collision rates for zero-day 
vulnerabilities are nonzero. Some may argue that, if there is any probability that some-

10  As an example, six years after the Conficker work was discovered and patched, nearly a million machines 
remain infected (Asghari, Cieri, and van Eeten, 2015). And past research (Libicki, Ablon, and Webb, 2015) sug-
gests that sufficiently large organizations cannot be protected from penetration, either with zero-day or non-zero-
day vulnerabilities.
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one else (especially an adversary) will find the same zero-day vulnerability, then the 
potentially severe consequences of keeping the zero-day private and leaving a popula-
tion vulnerable warrant immediate vulnerability disclosure and patch. In this line of 
thought, the best decision may be to stockpile only if one is confident that no one else 
will find the zero-day; disclose otherwise.

Some Caveats About Our Data

There are some caveats regarding our data, explained below.

Results from Our Data Can Be Generalized Only to Similar Datasets
Our findings are based on the dataset that we described in Chapter One. We believe 
these data are relatively representative of what a sophisticated nation-state might have 
in its arsenal. As such, a reader who is dealing with similar data could likely come to 
the same or similar conclusions about their data. Even so, applying wide generaliza-
tions to other datasets may be misleading, as generalizations to other data can only be 
drawn if the data are similar in nature to ours.11 

“Death” Can Be a Combination of Many Things
An exploit is not necessarily just one vulnerability. A successful exploit can consist of 
chaining multiple vulnerabilities, so “killing” an exploit does not necessarily mean 
that all the vulnerabilities in the exploit were discovered. Rather, an exploit’s death 
could be due to the discovery of just one vulnerability or component. Similarly, an 
exploit’s resurrection could be as simple as finding a replacement for the discovered 
component—which may be difficult or trivial. This report focuses on exploits, rather 
than vulnerabilities: The life status of an exploit does not necessarily depend on the life 
status of the underlying vulnerability.12 

Some Alive Exploits May Actually Be Dead
Some exploits that we categorize as alive (and unknown) may actually be dead (known 
to the public). If the affected vendor finds a vulnerability, it may not say as much. Fur-
thermore, some researchers choose to not to disclose vulnerabilities they have found. 

There are several reasons why an exploit developer or bug hunter may have found 
a vulnerability but has not disclosed it: 

11  This is especially true in environments experiencing rapid adoption of Internet of Things devices.
12  For example, an exploit might exist that is a combination of a vulnerability or primitive that allows for file 
upload or write ability, as well as a vulnerability that allows for remote code execution. If the write primitive vul-
nerability is discovered, the exploit is considered to be dead even if the other vulnerability remains undetected.
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• Many security researchers who work for bug-bounty or security research organi-
zations come from organizations with an offensive or operational focus, so they 
recognize the importance of sitting on a vulnerability. 

• Security researchers or bug hunters may have found the vulnerability with some-
one else (or for someone else, e.g., an offensive organization within a govern-
ment agency), and if they disclose, they are giving up the capabilities of the other 
researcher or organization. 

• It may just be the personality of the security researcher: In some exploit develop-
ment circles it is considered bad form to publicly disclose them. If any sharing 
occurs, it may be only within certain private circles, possibly for information shar-
ing, proof of insecurity, or pride and boasting purposes.13 

• Security researchers may save the vulnerability for use in hacking contests that 
award big prize money (although there is disagreement on whether this actually 
happens). 

• Security researchers are waiting for maintenance of a codebase to reach end of life 
(e.g., Windows XP) before they employ an exploit and possibly disclose. 

• Some researchers may find the disclosure process with the particular vendor to be 
particularly challenging, so refrain from doing so. 

That said, with our data, we choose to be conservative in calling vulnerabilities 
“alive.” If anyone—intentionally or unintentionally—mentioned the vulnerability in 
question (even if they did not call out that it was a vulnerability), we counted it as 
“dead.”

Other Caveats About the Data
While we spoke to others with similar data and experience developing exploits, and 
although we sought data from multiple sources, we received data from only one source. 
As such, our data are limited to the vulnerabilities from one source, and we acknowl-
edge that they may not encompass the entire world of possibilities for exploitation. 

Sometimes, participants in the software vulnerability markets specialize: One 
might focus on browsers and client-based software, and another might focus on web-
based applications and server-side software. Others are not as discriminating.14 Because 
our data came from one source, not all vulnerability or product types are represented 
in the data (e.g., indigenous versus commercial off-the-shelf code; server-side versus 

13  For example, one exploit in our dataset characterized as living relies on a vulnerability in a class that is all but 
extinct (e.g., font vulnerabilities), yet it does not appear that the vulnerability has been publicly disclosed (includ-
ing by researchers who have specialized in and made a living from finding those particular types of vulnerabili-
ties, and who may have already found the vulnerability but are keeping that information private).
14  For more on the various markets for zero-day vulnerabilities, see Chapter Four of Libicki, Ablon, and Webb 
(2015).
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client-side products; software versus firmware versus hardware; operating systems 
versus browsers). 

While still an impressive amount of data entries, some may consider it small 
because there are only a handful of vendor, platform, and vulnerability types repre-
sented (64, 12, and 42, respectively), and some of the exploits and information had to 
be removed because of the sensitive nature of the work and ongoing operations. Our 
ability to consider multiple vulnerability characteristics simultaneously was limited, as 
the number of observed deaths becomes very small when cross-classifying vulnerabili-
ties based on multiple characteristics.

Our data may also exhibit strong correlations between vulnerability characteris-
tics.15 For example, because most data structures and memory allocations in the Linux 
kernel are heap-based, memory corruption vulnerabilities in the Linux kernel tend 
toward heap overflows. Furthermore, because Linux is open source and Microsoft (for 
example) is closed source, more vulnerabilities in Linux may have a life status of Code 
Refactor, while more vulnerabilities in Microsoft may have an Immortal life status. 

There may be historical reasons why certain vulnerabilities were found and 
exploited when they were. For example, long-lived vulnerabilities may only have a long 
life because no one is looking for them. Several years ago, people were privately and 
publicly looking for those vulnerabilities, but their focus may have shifted over time. 
This may be a reason why long-lived vulnerabilities that remained undetected will con-
tinue to go undetected, and, as such, some believe that one needs to wait through a 
software’s full lifetime and for an entire class of vulnerabilities to be focused on, found, 
and mitigated in order to see what really has a long life.

Follow-On Research

This research is intended to be a starting point for research on zero-day vulnerabili-
ties and their exploits using data and is just one tool to aid those involved in discus-
sions. We only scratched the surface of what is possible to investigate with data. More 
research threads exist. For example: 

• What (if any) characteristics of zero-day vulnerabilities indicate a long or short 
life, and what are collision rates between two similar groups? With more data, 
this question would be relatively trivial to explore (as our analysis mechanisms 
are already set up). 

• Is it possible to have a reliability metric for exploits to determine the quality of 
the exploit? 

15  Some of these properties we examined within this report; others may be examined in future research.
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• What overlap is there between nation-states? What are the sizes and capabilities 
of other nation-states?

• How do our data compare with the private vulnerability repositories of compa-
nies and of other databases? 

• How does what we find compare with what our adversaries (or those who have 
the same motivations as us) find? Can one set of vulnerabilities (e.g., disclosed by 
a government or organization) help intuit what vulnerabilities might be privately 
held by others? How does this affect longevity or collision rates? 

• What are trends over time? As we have seen, the nature of vulnerabilities is 
dynamic, and new mitigations can affect the longevity of exploits and shift the 
focus of exploit developers. If defense suddenly has the upper hand, what does 
that mean for the need to find vulnerabilities and create exploits from them? 
Should there be shifts in resource allocation? 

• What is the overlap between bug bounties and those who find vulnerabilities for 
private exploitation? Some experts see a large overlap, while others do not (e.g., a 
vulnerability researcher we spoke to noted, “I have never cursed a bug bounty for 
foiling my plans.”) What is the long-term impact of more diligent vulnerability 
search and testing and harnessing of bug bounties? 

• What are differences in analysis after a significant amount of time (e.g., ten years 
from now) of similar data, and does that shed some light on whether bug-bounty 
programs have an impact on reducing life expectancies?

• What are the appropriate levels of liability that governments should consider? For 
example, if a government sat knowingly on a vulnerability that that attackers lev-
eraged for a successful compromise against critical infrastructure or a company, 
should the government carry some liability?  

• Are there better ways that security researchers, vendors, and governments could 
more proactively share information that would allow a vulnerability to be kept 
alive by the researchers or governments, yet still allow the affected company to 
better protect itself? Is there a way to provide a behavior or signature without fully 
exposing information about a zero-day?
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APPENDIX A

The Exploit Development Cycle

The exploit development process consists of many steps, each of which can go through 
multiple iterations.

Phase 1: Discovery and Verification

In the first phase, vulnerability researchers search for vulnerabilities and develop a reli-
able proof-of-concept exploit. 

Figure A.1
The Exploit Development Life Cycle
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Step 1: Audit and Create Crashes
The first step of creating an exploit is finding a vulnerability that would be worthwhile 
to develop an exploit for (we call this an “exploit-worthy” vulnerability). Some error 
or corner case gets triggered, which causes a crash for the vulnerability researcher to 
investigate further.

This is code auditing, which can be fairly shallow (e.g., running an automated 
commercial “fuzzer” on a product1), or quite deep (e.g., manual static and dynamic 
code analysis, or taint analysis2). Some vulnerability research groups take pride in never 
using automated tools, claiming that a manual auditing strategy is one of their advan-
tages to finding hidden vulnerabilities. 

The method of finding vulnerabilities can have an impact on which vulnerabili-
ties are actually found. As one example, recent research claims that fuzzers find only 
the tip of the iceberg in terms of vulnerabilities (Kirda et al., no date). Vulnerabilities 
can be found via fuzzing in newer or less mature products, or those with simple code 
bases. For products that have a longer life, are more complex, are popular with a large 
market share, or are high revenue generators, more people have evaluated the code 
bases, and finding vulnerabilities often requires more in-depth auditing, logic review, 
and source code analysis, in order to go several layers deep. 

The probability of finding an exploit-worthy vulnerability changes depending on 
how many have already looked at the code, the depth of code analysis (shallow vulner-
abilities are found first), the complexity of code,3 the rate of change of the product,4 the 
maturity of the product,5 and the function of the products.6

Bug hunting has also become more accessible as resources (books, online guides, 
talks) have been made available for any interested party to be involved.

Some vulnerability researchers focus their code auditing on specific vendors,7 
while others are open to auditing a variety of products. Some, rather than focusing on 

1  Not all fuzzers are created equal. Some have the ability to go deeper than others, and some find different bugs 
depending on their method. For example, AFL (American Fuzzy Lop) finds bugs quickly by tracking down every 
“if statement” in a code base. 
2  Taint analysis follows control data put into the flow of code to see where it moves in a process. See Newsome 
and Song (2005) for more research using taint analysis.
3  The more complex the code, the more opportunities for compatibility issues and exploitable vulnerabilities.
4  For example, browser vendors are constantly updating and releasing new code—and thus introducing new 
bugs at a faster rate. In contrast, with network products, such as routers, there is a longer timetable to release new 
versions, feature release is longer, and the flux is low—and thus new bugs are introduced at a slower rate.
5  The older the product, the more likely that shallow bugs have been found. Additionally, if a product has a his-
tory of buggy code, it likely will have buggy code in the future.
6  Fuzzing for bugs is often faster on products that do one function and return—image readers, video parsers, 
music parsers, etc.
7  This is especially the case for companies that have in-house vulnerability research groups, where it makes 
most sense for them to look at their own products. One such company said that it focused on high-profile targets: 
products in emerging markets or with a large market share. 
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a specific vendor or product, search for a particular vulnerability pattern—regardless 
of what product it may be in.8 

Step 2: Triage the Crashes to Determine How They Occurred
The triage process involves tracing a crash back to determine the root cause in code—
that is, figuring out which piece of code caused the crash to happen. Sometimes, the 
piece of code turns out to be useful for manipulating more than just one crash. These 
pieces of code are called primitives, because they are the basic building blocks of vul-
nerabilities, and they can often be used in multiple exploits.9

Step 3: Develop a Reliable Trigger
Once it is discovered how the crash happened, the researcher needs to determine how 
to solidify a route to the vulnerability, and ensure that a crash can be reliably triggered 
as needed. It is in this stage that a PoC exploit is created. 

Bug hunters, whose goal is to find vulnerabilities and share or sell that informa-
tion to the affected vendor or a bug bounty program, often stop at this point. 

Phase 2: Implementation

In the second phase, vulnerability researchers take their PoC exploit and create a fully 
functional exploit (if possible).

Step 4: Debug and Determine Requirements for Full Exploitation
Here, the vulnerability researcher evaluates the various trigger-able, reliable, crashes, 
to determine which is viable as a fully functional exploit (rather than just a proof of 
concept). Once narrowed down, the researcher determines exactly what can be done 
with the crash (e.g., remote code execution, information leak, crash a different process), 
the potential impact caused by the crash, and other requirements needed to reduce 
uncertainty and create a fully functional exploit (e.g., other building blocks). If other 
requirements are deemed necessary, the researcher may need to go back to Phase 1 to 
find more vulnerabilities and fill in the unknowns. 

Often, an exploit will consist of multiple vulnerabilities, each contributing to the 
overall exploitation. For example, an exploit may require a race condition vulnerability 
to exist in order to then take advantage of a memory mismanagement vulnerability. 
Obviously, the fewer vulnerabilities needed, the easier to create a fully functioning 
exploit; the greater number of variables involved, the harder to exploit.

8  This strategy to focus on specific patterns has potential for high reward, but also high risk: High reward 
because, once found, the exploit development piece is trivial, and high risk because, if the pattern is discovered 
by someone else, it could get patched and eliminate a researcher’s capability in one fell swoop. One vulnerability 
researcher noted that these patterns were one of the two most important pieces of intellectual property s/he had.
9  Examples of primitives include pieces of code that allow privilege escalation, write, read, or execute ability. 
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Step 5: Create Full Exploit
Once the vulnerability researcher has determined what is needed for full exploitation 
(i.e., come up with a theory of exploitation) and has obtained the necessary build-
ing blocks, she or he starts implementing those to fill in the unknowns. Initially, the 
exploit developer might focus on maintaining code execution or some initial foothold 
into a process (via object injection or memory corruption). Eventually, she or he would 
add in capabilities for continuation, port to different infrastructure and platforms,10 
create compatibility with other versions,11 or clean up any identification of the exploit 
being present in the system.12 Sometimes, exploits need to be chained together or cer-
tain operational circumstances need to be met for a desired effect to occur.13 Now the 
vulnerability researcher has a fully functioning exploit.

Phase 3: Operational Handoff

Step 6: Use in the Wild
To use an exploit operationally, more steps are often taken. Use of an exploit “in the 
wild” may be very different than in the lab setting. In a lab, the testing environment 
remains the same: Network load and latency is controlled and consistent, and the 
system being exploited is only being used for testing purposes. Sometimes, debugging 
efforts in the lab introduce process behavior that would not exist in an operational 
environment. In an operational setting, the target system may be under heavy load, 
and different language packs and dynamic link libraries (dll’s) may be loaded differ-
ently. Thus, any lab-based assumptions about process memory layouts may be com-
pletely invalid in an operational setting. This can significantly affect how an exploit 
functions.14 As a result, success of an exploit in an operational setting can often depend 
on the operator’s experience and training.15

Tool (or implant or n-stage payload) deployment is the next step—however, this 
is not part of the exploitation-development process. 

10  Which sometimes requires going back to the initial auditing process.
11  For example, in Windows 2000 server, exploitation can be done remotely, but in Windows 2003 server, it is 
generally done locally. 
12  For example, cleaning up memory used, if exploitation was done in kernel space.
13  For example, exploiting a race condition vulnerability can require positioning oneself on a target system of 
interest for several minutes in order to sync with multiple processes.
14  For example, for memory corruption exploits, successful exploitation can depend on knowing how the heap 
is being used, and how other system requests are being processed and handled concurrent to the exploit’s system 
requests. 
15  For example, recognizing that it may be necessary to deploy the exploit on a target system after hours, when 
network load and latency is at a minimum.
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Keeping Up to Date

Exploit development is an iterative process. While not always required by customers, 
many exploit developers, proud of their work, will continually do audits to make sure 
their exploits still work when new software versions are released. This can be an expo-
nential problem over time. 

Often they are faced with an exploit that has been caught (or leaked) in the wild, 
and must examine whether any of the primitives used by the exploit were shared by 
any of their own exploits. 

Only a Small Percentage of Crashes or Triggered Vulnerabilities Are 
Useful as Exploitable Vulnerabilities. 

Despite the growing popularity of bug bounty programs and the rise of bug hunters, 
finding exploitable vulnerabilities in the midst of the bugs can be challenging, as only 
a subset of the bugs found are actually usefully exploitable. There is no blanket percent-
age of exploitable vulnerabilities from bugs—it depends on the vendor, product type 
(e.g., browsers versus routers), software development practices, etc. Some might argue 
that any crash could be considered a type of attack, and so could be useful in an opera-
tional setting, but it is generally acknowledged that only a small percentage of vulner-
abilities found through auditing (manual or machine fuzzing) are actually “useful” for 
exploitation. Those we spoke to gave a variety of estimates for the percentage of crashes 
or triggered bugs that would turn into useful, exploitable vulnerabilities: 0.5–1 per-
cent, 15–20 percent, 25–30 percent. One vulnerability researcher shared that that as 
high as 50 percent of vulnerabilities s/he found could be useful for exploitation, noting 
however, that her/his method for finding vulnerabilities reduced the number of useless 
vulnerabilities, and that s/he tried to exploit every vulnerability found. 

Sometimes those vulnerabilities that are determined not to be exploitable are still 
kept on a “rainy day” shelf: If a new vulnerability researcher starts at a company, or if 
someone is looking for something to do, they might revisit the vulnerabilities to see 
whether something has changed in code to make them exploitable. 

Some Factors That Can Affect Exploit Development

Mitigations Can Have a Big Impact
Mitigations affect exploitability, and can have a big impact in what gets exploited. As 
one might expect, security mitigations and countermeasures play a large role in the 
exploitability of a vulnerability. Thus, what is exploitable, and what gets exploited, can 
shift over time.
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For example, in the past, vulnerabilities in the kernel were deemed easier to 
exploit than vulnerabilities in user space—largely because complexity was reduced in 
the kernel (e.g., null dereference).16 As companies started to pay more attention to oper-
ating system security, new mitigations were built in, increasing the difficulty for kernel 
exploitation.17 

History—Code Quality, and History of Codebase—Can Be a Good Indicator of 
Exploitability
History is a good indicator of exploitability. If in the past many vulnerabilities and 
exploits in a particular have been found in a particular code base, there is a good 
chance that many vulnerabilities will be found in future iterations of this code base. 
This may be because (1) the code base truly is riddled with vulnerabilities, and/or 
(2) the codebase has a large market share and has more researchers examining it and 
finding vulnerabilities. Researchers sometimes alert others in the information security 
community to code bases that have contained vulnerabilities.18 

Tools for and Information on Exploit Development Are Widely Available, Enabling 
Hacking for the Masses 
Resources have become more available to help formalize the vulnerability research and 
exploit development processes. In the 2007–2010 time frame, books, talks, classes, 
and online resources started to become more widely available to teach anyone how to 
find and exploit vulnerabilities.19 As such, many people without a formal background 
started to get into exploit development. 

Anyone Can Learn To Cook, but Not Everyone Can Be a Chef
Just because resources are available does not mean that anyone can write fully func-
tional exploits. Conference talks, reports, and books can outline how an exploit was 
created. But taking that information and writing an exploit for a new vulnerability still 
requires skill. Some liken it to the culinary world: Anyone can get a recipe for a dish 

16  For example, in user space, one has to work with with dynamic allocations, different compiled versions, etc., 
whereas in the kernel, there was just one compiled distribution. 
17  Some estimates say the shift for Microsoft occurred around 2007–2008, and around 2010 (when GRSecurity 
was introduced) for Linux. 
18  For example, in his ZeroNights 2013 E.0x03 conference presentation, vulnerability researcher Mateusz 
“j00ru” Jurczyk alerts the audience that Windows kernel security vulnerabilities have been and will continue to 
be numerous (Jurczyk, 2013, slide 107).
19  No Starch Press offers many books on hacking, computer security, and vulnerability research topics (No 
Starch Press, no date). Blogs offer insights into new techniques to exploit race conditions (e.g., StalkR, 2010). 
Alberts and Oldani (no date) offer an example of a conference talk discussing exploiting the Android operating 
system. That said, some resources were certainly around before 2007. For example, Andries Brouwer’s “Hackers 
Hut” blog (Brouwer, 2013) has information and examples for a variety of exploitation techniques (e.g., race condi-
tions, stack, heap). 
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(existing exploit) and recreate that particular dish step-by-step, but understanding how 
to take new ingredients (vulnerabilities) and flavor profiles (techniques) to create a new, 
but equally satisfying dish (new exploit) is not immediate or accessible for everyone.

Furthermore, beyond finding vulnerabilities and developing exploits, a skilled 
researcher also needs to know how to write good reports, to show a potential customer 
what the exploit is capable of. 

The Human Element: Analyst Personality and Capability
The human element is a major factor in exploit development. Personality and indi-
vidual capability—of the analyst auditing code, the developer writing the exploit code, 
and the operator employing the exploit product—influence the overall success of the 
final product. 

Each vulnerability researcher brings her or his own skills; many become masters 
on a specific platform or code base, or with a certain technique (e.g., sandboxing on 
Windows versus Linux). Thus, changes in an exploit development team can greatly 
affect expected results. 

Not all vulnerabilities can be equally found or exploited: The ability and person-
ality of the vulnerability researcher matters. For example, finding and exploiting race 
condition vulnerabilities requires being able to visualize and keep track of multiple 
concurrent code paths. 

Exploits with long lives (i.e., those whose vulnerabilities remain publicly 
unknown—and alive—for a long time) may depend on the ability of the exploit devel-
oper to go several layers deeper into code spaces than normal fuzzing (which is typi-
cally on the surface). 

Some vulnerability researchers are better than others at finding exploitable vulner-
abilities, and others are better at doing the exploitation. Thus, in many exploit develop-
ment shops, the vulnerability researchers will pair up or work as teams. 

Finally good management can vastly help a vulnerability research team succeed. 
Some believe that the best management has to have previous exploit development expe-
rience, in order to find the best researchers and build a good team.
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APPENDIX B

The Vulnerability Researchers: Who Looks for 
Vulnerabilities?

Vulnerabilities would not get found (or exploited) without humans in the loop.1 Thus, 
we sought to understand something about the people finding and exploiting vulner-
abilities, to see how much of a role the human element plays into exploit development. 

Lifetime and Seasonality of Bug Hunters and Vulnerability Researchers

In addition to information about the exploits and vulnerabilities that were exploited, 
our dataset contained information on the 23 vulnerability researchers that developed 
those exploits. Some of the researchers focused on a particular platform (e.g., specific 
open source platforms). Others were adept at a particular type of vulnerability (e.g., 
race conditions within Linux). Others were Jacks (or Jacquelines) of all trades, able 
to bounce between code base and vulnerability type. In our conversations with other 
exploit development shops, we learned that some researchers prefer to work in pairs, 
with one researcher preferring to do all the vulnerability finding, and the other prefer-
ring to do all the vulnerability exploitation. 

Career Span of Vulnerability Researchers
Vulnerability research is a career in which many burn out (Libicki, Ablon, and Webb, 
2015). Knowing the length of a viable career may be useful for planning or hiring pur-
poses. We explore some of the characteristics of vulnerability researchers and compare 
this to the characteristics of those who have found publicly disclosed vulnerabilities—
specifically, those of Microsoft bug hunters. 

In Figure B.1, we chart out the career length of exploit developers. The start date 
is the first date at which the researcher recorded finding or exploiting a vulnerability 
(i.e., birth or mature date), and the end date is the last date that when the researcher 

1  The Defense Advanced Research Projects Agency’s Cyber Grand Challenge and follow-on efforts (Defense 
Advanced Research Projects Agency, 2016) hope to disrupt this norm, though humans are still required to code 
up the solutions.
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recorded finding or exploiting a vulnerability. Figure B.2 shows that the rate of devel-
opment is not steady: In some years, a researcher may not find or develop an exploit. 

From these data, it appears that there is a high frequency of early developers (e.g., 
researchers U, P, and I) versus the low frequency of later developers.2 One might sur-
mise that in the early years there was a lot of low-hanging fruit, or that the group of 
researchers peaked, lost some top performers, and is now on a downswing with less 
capable developers. In particular, there may be some special sauce that researchers U, 
P, and I have.3 

2  Due to the nature of the data (e.g., some data were removed due to operational sensitivity), these figures are 
incomplete, and it may appear that some of the vulnerabilities researchers (and thus the overall team) are less well-
performing than was actually the case.
3  Researcher U may have benefited from a lot of “low-hanging fruit.” She or he developed her/his last exploit by 
2010—around the time when many in the vulnerability researcher community agree that exploit development 
and mitigations for vulnerabilities started to increase dramatically and more information about vulnerability 
research and bug finding was publicly available, causing many vulnerabilities to be found quickly by others. 
Researcher P’s exploits were all for Linux. As a result of this focus, s/he likely has a very deep understanding of 
Linux internals and kernel that enables her or him to find deeply hidden vulnerabilities. Twice as many exploits 
are dead as are alive for Researcher U. However, there is almost an even split between Researcher P’s exploits that 
are still alive, and those that are dead. 

Figure B.1
Length of Careers of Vulnerability Researchers While Part of BUSBY (n = 21)
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Anecdotally, another vulnerability research team noted that, for them, each 
researcher will ship approximately four fully working exploits per year. A developer 
might find more vulnerabilities and produce more proof-of-concept exploits, but many 
of the vulnerabilities found might not be useful for sale or not meet the requirements 
of the customer.4 

Lifetime of Vulnerability Researchers in the Gray, or Government, Markets
Previous estimates had found a three-year cycle for vulnerability researchers to stay 
technically relevant before they start to skill out—unless they actively work to stay 
on top of new advances in code, mitigations, etc. (Libicki, Ablon, and Webb, 2015). 
While bug hunting and exploit development are different skills, we compare the length 
of career of vulnerability researchers in the gray, or government, markets with the life-
time of bug hunters in the white markets (i.e., bug bounties, vendors, and groups such 
as Google’s Project Zero). 

4  Interestingly, white hat bug hunters who invest a great deal of time in finding vulnerabilities seem to find the 
same number as well. BugCrowd reported that in 2016, its top “super hunters”—those bug hunters who find the 
most vulnerabilities and are the most paid—submitted an average of 3.75 bugs per year (BugCrowd, 2016).

Figure B.2
Years in Which Researchers Found Vulnerabilities While Part of BUSBY (n = 21)
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Using data from Microsoft’s security advisories as a reasonable proxy for bug 
hunters in the white market, we calculate the average career lifetime as a bug hunter.5 
We do the same for the data we have on exploit developers, and compare. In both cases, 
there were hunters and researchers who found (and recorded) just one vulnerability. We 
compare the lifetime with and without these “one-and-done” folks. Table B.1 shows 
the comparison. Bug hunters who found more than one vulnerability have a recorded 
career length of approximately two and a half years, while exploit developers enjoy a 
significantly longer career length of just under four and a half years. It might be that 
bug hunters are jumping between products (and so their career length is underrep-
resented by just looking at Microsoft Security Bulletin data), or that they have other 
careers in the information security industry (or elsewhere) and that bug hunting is a 
hobby.

Seasonality of Vulnerability Researchers
We wanted to explore whether there was seasonality to bug hunting and vulnerability 
research. That is, are there certain months during the year when zero-day vulnerabili-
ties that are worth exploiting are more or less frequently found? And are exploitable 
vulnerabilities found in certain months? 

Defining the “birth” date as the date found by BUSBY vulnerability researchers, 
we separated vulnerabilities found by month (see Figure B.3). 

A seasonality appears. August appears as the lowest month for finding exploitable 
and exploit-worthy vulnerabilities, while January appears to be the most successful 
month for findings vulnerabilities.6 

5  This is likely an underrepresented sample, since some researchers may have looked for vulnerabilities in prod-
ucts other than Microsoft, and Microsoft may not have recorded all vulnerabilities that were reported to them. 
Similarly, the values for the exploit developers may also be underrepresented, since some exploits developed and 
vulnerabilities found were not reported or recorded in our data due to sensitivities or ongoing operational use at 
the time of collection. 
6  The low count for August is statistically significant, while the high count for January is not as significant. The 
probability of any month having eight or fewer findings is 20 percent. The probability that it is August and there 
are eight or fewer vulnerabilities reported is more significant, at 2.4 percent. With 192 results, our null hypothesis 

Table B.1
Average Recorded Career Length of Bug Hunters and BUSBY Exploit Developers

Including or 
Excluding “One and 
Done” Researchers Bug Huntersa 

BUSBY Exploit Developers  
(2002–2016)

Including 281.97 days = ~0.77 years (n = 635) 1405.28 days = ~3.85 years (n = 21)

Excluding 912.45 days = ~2.49 years (n = 284) 1639.33 days = ~4.49 years (n = 18)

a As recorded in Microsoft Security Bulletins, 1997–2016.
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One possible explanation could be that this is a month when many of those that 
work for BUSBY are on summer holiday.7 While not statistically significant, March 
also shows a dip. January is a big month for these bug hunters. Perhaps New Year’s 
resolutions to find exploitable bugs contribute to the boom—or it could be that colder 
months mean that more people are indoors and with nothing to do but to discover 
exploitable vulnerabilities. March is a low month for all types of analysts: Spring break 
or the start of warmer weather and longer days may be a reason for the dip.

that each discovery happens in the month of August is probability 1/12. In this case, we would expect roughly 
16 discoveries to be in August (192/12 = 16). However, there were only eight discoveries in August, which has a 
p-value of 0.0181. This very low p-value suggests very strong evidence that the true probability of a discovery in 
August is less than 1/12. Conversely, the 23 discoveries in January has a p-value of 0.05034, meaning that it is 
not very likely that the probability of a discovery in January is much larger than 1/12. 
7  Another explanation is that they might be attending the BlackHat and DEFCON security conferences.

Figure B.3
Seasonality of Vulnerability Researchers: Months When Exploitable Vulnerabilities Were 
Found by BUSBY Vulnerability Researchers (n = 21)
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APPENDIX C

How Mitigations Have Affected Exploitability: Heap Versus 
Stack Exploitation Case Study

Exploitability of memory corruption vulnerabilities has also shifted over time—
particularly between the heap and stack. Before 2007, it was harder to exploit the heap 
than the stack—mostly because of differences in complexity (the stack is generally 
simpler to understand and manipulate than the heap).1 Because of this, exploits based 
on stack overflows were more common, and, as such, security vendors focused on cre-
ating mitigations for the stack (e.g., stack cookies, stack canaries, stack address space 
layout randomization [ASLR]). This pushed exploit developers to focus on the heap—a 
harder problem at its core, but with less mitigations at the time, leading to better suc-
cess once corruption paths could be figured out. By 2010, more heap protections had 
emerged, evening out the bias. 

Although what got exploited (heap versus stack) changed over time, the rate 
of developing memory corruption vulnerabilities did not change (including time to 
develop an exploit), nor did it affect which vulnerabilities were discovered. Figure C.1 
shows how BUSBY exploit developers shifted with developing exploits for memory cor-
ruption vulnerabilities. 

1  This is mostly due to the fact that the heap has multiple types of memory that can get corrupted, and it can 
be difficult to know which process is being affected. Even the simplest heap overflow means dealing with singly 
and doubly linked lists, and working with parts of code that are connected in various ways (i.e., how things are 
connected logically, as well as in reality). A corruption or overflow in the stack is much simpler; the stack simply 
goes up and down, and the algorithm to determine what memory is getting used is simpler to determine. 
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Figure C.1
Type of Memory Corruption, Counts by Year (n = 101)
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APPENDIX D

Close Collisions

A close collision is said to occur when vulnerabilities are very close to each other in 
code space, but only one of them is discovered, leaving the remaining vulnerability 
publicly unknown and able to be exploited. Sometimes, new vulnerabilities are discov-
ered as a result of examining the code space that is disclosed in an advisory or CVE, 
and finding new vulnerabilities. Other times, a CVE will be released that is very close 
(i.e., in similar code space) to an already existing vulnerability, but the existing vulner-
ability still remains alive. 

As one example, when it was discovered that font vulnerabilities were used in 
Stuxnet, many security researchers started to look for them, essentially wiping out 
a whole class of vulnerabilities. Some security researchers feel that, even if there are 
still font vulnerabilities in existence, it is not operationally worth it to find and exploit 
them, since so many others are looking, and the vulnerability will likely not remain 
publicly unknown for long. 

As another example, one of BUSBY’s exploits was found due to an exploit devel-
oper examining the details of a newly released vulnerability advisory, and finding other 
similar—and still publicly unknown (i.e., alive)—vulnerabilities. 

Twenty-four of BUSBY’s exploits are close collisions. As of our information cut-
off date (March 1, 2016), just over a third (9) were still alive (1 is a code refactor), even 
though security patches and CVEs have been issued for vulnerabilities in the same 
code space. More than half (13) are dead (via Security Patch).1 

Close collisions can even happen within the same company: Five of BUSBY’s 
exploits were overlaps with others. Three were the same vulnerability, but just different 
algorithms, and only discovered to be the same when the CVE/advisory came out.2 
These three were all found by the same analyst (D). Two others were the same vulner-
ability—one for 32-bit systems and the other for 64-bit systems—and were found and 
exploited three years apart from each other (2005 and 2008). Those were also found 
by the same analyst (P). 

1  The remaining two are uncertain status to see whether they are still alive.
2  Two were found and exploited within a month of each other, the third was found more than a year later.
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APPENDIX E

Purchasing a Zero-Day Exploit: Some Cost and Pricing 
Considerations

In this appendix, we attempt to put a monetary value on finding a vulnerability and 
developing an exploit. We focus solely on time to find a vulnerability (research time), 
time to develop an exploit (exploit development time), and salary as the measure of 
cost. Certainly, other aspects of supply and demand can factor into the value of an 
exploit (as outlined in Chapter Three). As such, this analysis should be used as a start-
ing point to refine the cost to develop an exploit. 

Time to Find a Vulnerability

Time to find a vulnerability can vary based on setup, part of code examined, and age 
of code examined. This research time was not recorded in our data, but we spoke with 
six different teams, companies, or individuals who either performed or were involved 
with exploit development to get their first-hand input.1 One exploit development com-
pany reported that it was very rare for their search time to exceed two months and that 
their average time spent looking was about a month. Another company estimated two 
to three weeks for audit time.

For those who create exploits, finding a vulnerability is usually done on an 
as-needed basis, either because a customer requested an exploit or the exploit developer 
needs a “place filler” (i.e., the developer had three Linux kernel vulnerabilities but two 
have been patched, so she or he needs to find more to have ready to go). 

The longest time in the vulnerability search timeline is in the setup—for example, 
ensuring that a fuzzer—a code analysis tool—is tuned to the application it is testing, 
making sure that the file formats and architecture are correct, or getting the right 
configurations and infrastructure set up. For those who fuzz, once the fuzzing tool 
is set up, it can be very fast to find vulnerabilities—one person gave an estimate of 

1  This included two teams of exploit developer organizations, one group at a large commercial company that 
writes exploits for internal testing purposes, a former manager of a large exploit development defense contractor, 
a highly sought-after white hat vulnerability researcher, and a former vulnerability broker. 
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seconds—largely because the vulnerabilities found by fuzzers are mostly on the sur-
face.2 Auditing or reviewing code by hand can take much longer—days, weeks, or 
sometimes months—often because the researchers are going deep in the code base. 

Time to find a vulnerability can depend on what part of the code is being 
examined,3 what particular product is being examined, whether past tools or tech-
niques for vulnerability detection can be used on new products,4 and what mitigations 
might exist on the product.5 The fastest-found vulnerabilities are usually in newer, 
smaller targets or lesser-known software, because the low-hanging vulnerabilities have 
not yet been found.

Often, vulnerability researchers will spend some time (estimates run from a week 
to a month) looking for exploitable vulnerabilities in a product; if nothing fruitful is 
found, they will set the project aside and come back to it later, or they may cycle it over 
to one of their colleagues for a fresh look. With a few exceptions,6 this cycling might 
happen two or three times (maxing out at three months) before the product is put on 
the shelf and the researchers move onto something else.

Time to Develop an Exploit

As discussed in Chapter Three, we found that, while time to develop an exploit ranges, 
the majority of exploits in our dataset took between 6 and 37 days (with a median of 
22 days, minimum of 1 day, and maximum of 955 days).

2  In one study, researchers found that fuzzers found less than 2 percent of bugs in a product that they injected 
with vulnerabilities (Kirda et al., no date, slide 24).
3  For example, finding a vulnerability in the kernel can often require a minimum of three to four weeks of 
auditing before finding an exploitable vulnerability.
4  For example, using the same tools or techniques across different open source browsers. 
5  For example, Microsoft’s Enhanced Mitigation Experience Toolkit (EMET) or Control Flow Guard (CFG), 
which make it difficult to get code running on operating systems or browsers. To bypass these types of mitiga-
tions, the exploit developers might need to use or create other exploits. This adds to the research time. 
6  An exception is if a customer is requesting an exploit for a specific product and asks the developers to keep 
looking. Even then, the research is not continuous. If the exploit developers have not found anything after a few 
months of looking (and cycling through a handful of exploit developers), they may wait until a new version of 
the product comes out and spend a week looking for new vulnerabilities or code paths to previously unreachable 
vulnerabilities. Another exception is if the exploit developers are hired for a long-term effort on a platform (e.g., a 
particular type of virtual machine). They may be contracted to spend half a year looking for vulnerabilities. This 
type of long-term effort may result in many vulnerabilities found, only a few of which get exploited, but the rest 
are noted for future use if the set of vulnerabilities in the exploit get discovered and patched. Yet another example 
for extending the research timeline is if the product is critical to a company’s business model (providing incentive 
for the in-house researchers to focus on it as long as possible). One group said they had been looking at a product 
for 18 months.
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Cost Analysis: How Much Does an Exploit Cost to Develop?

Focusing solely on the cost of a developer in terms of salary, we use our estimates for 
time to find a vulnerability and data on time to develop an exploit to create a floor 
value of cost to exploit. 

Base rate for exploit developer: We start with an average yearly salary of an exploit 
developer, X. This translates into a cost of 1.4X for an employer.7 Using an average of 
261 workdays in a year (U.S. Office of Personnel Management, 2016), the average 
daily rate of a full-time employed exploit developer is (1.4/261)X. 

Cost to find a vulnerability: Based on the estimates received from the various 
exploit development companies, the range of time to find a vulnerability is two weeks 
to three months, with the average around a month.

Cost to develop an exploit, having found a vulnerability: Time to develop an exploit 
ranges, but the majority of exploits in our dataset took between 6 and 37 days (with a 
median of 22 days, minimum of 1 day, and maximum of 955 days).

Using $150,000 as the average salary of an exploit developer,8 40 percent as the 
overhead cost to the employer, the average time to find a vulnerability (30 days, trans-
lated into ~21.45 working days), and the median time to develop an exploit (22 days, 
translated into ~15.73 working days), considering only the salary of an exploit devel-
oper, an average estimated total cost of labor per exploit is roughly $29,914.95. 

At the most basic level, it appears that any serious attacker can always get an 
affordable zero-day for almost any target, though other tangible costs (acquiring prod-
ucts to find the vulnerabilities in, setting up test infrastructure, renting work space, 
etc.) and intangible costs (premium of a high-demand, low-supply product, etc.) can 
cause the price to rise dramatically. And, to be clear, our analysis does not take into 
account the cost or time of failing to find vulnerabilities or to develop a fully function-
ing exploit. Furthermore, given the wide range of time to both find vulnerabilities and 
develop exploits, the true range of cost can vary widely. 

Pricing to Sell

As mentioned previously, there are different efforts and levels of skill that go into find-
ing and exploiting different vulnerabilities. Some believe that the cost of an exploit 

7  Estimates for additional cost of an employee to an employer range from 18 to 40 percent. (See Salary.com, 
2016; Pagliery, 2013; Hadzima, 2005). We use 40 percent as a conservative estimate, especially since this just 
considers the obvious benefits like physical space and health insurance. There might be other benefits (such as free 
food or generous vacation options) that could drive it even higher. 
8  We examined job posts online for exploit developers and obtained ranges from various exploit developers and 
vulnerability researchers. One exploit developer also shared that junior exploit developers might make closer to 
$50,000 per year, and more experienced exploit developers are often in the $120,000–$140,000 range.
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should increase for vulnerabilities that are more difficult to find and exploit (for exam-
ple, harnessing a race condition); others believe the impact and severity of the vulner-
ability should be most important in determining cost.9 Another factor is the reach and 
market share of the product in which the vulnerability is found. 

Different markets likely have different payout schemes. Some have stated that 
prices in the gray (or government) and black markets are ten times those in the white 
market, largely because the gray and black markets are often trading in fully functional 
and reliable exploits, while those in the white market often just want the information 
about the vulnerability (Libicki, Ablon, and Webb, 2015). With a few exceptions, the 
white and gray markets do not intersect, mostly because there are different incentives 
for each.

Prices for zero-day vulnerabilities and exploits on the gray (and black) markets 
are hard to come by. As one broker said, “The first rule of [the] zero-days biz is to 
never discuss prices publicly” (quoted in Greenberg, 2015), but some limited informa-
tion can be publicly found through limited publications, leaks, or, in some cases, news 
stories.10 But even then, prices can vary. One vulnerability research firm we spoke to 
noted that their prices for exploits are three to five times those quoted in Zerodium’s 
published price list (Zerodium, 2016).11 Someone familiar with buying and selling 
zero-day vulnerabilities claimed that gray market prices of exploits for the Tor Browser 
Bundle were two orders of magnitude higher than prices paid on the white market for 
Firefox vulnerabilities. Others we spoke to noted that it is often common practice for 
exploit developers and brokers to exaggerate what they charge for exploits to anyone 
that might put it in print, in an effort to set the tone for the market. While “unicorn” 
exploits exist—such as iPhone full-chain exploits—they are not the norm, and rarely 
hit the $1 million mark. Instead, most exploits in the gray or government market are 
sold between $50,000–$100,000, and can go up to $150,000–$300,000, depending 
on the exploit. This is compared with exploits in the black market that go for less: A 
Flash exploit can fetch $30,000–$50,000.

Prices for zero-day vulnerabilities on the white market (e.g., bug bounties) are 
more readily available. Each bounty program or company has slightly different ways 
of formatting or presenting what they pay out, and how payouts are determined varies 

9  That said, Allodi (2014) found that CVSS score may not be most indicative of use in the wild, and CVSS score 
or reported severity by CVE may not be accurate.
10  For example, Miller (2007) wrote a paper that gave some initial insights into zero-day prices. Greenberg 
(2012) had reported on prices for zero-day exploits, as did several news agencies. Reuters reported on the sale of 
a zero-day vulnerability to the FBI (Hosenball, 2016). Leaks of the Hacking Team’s emails revealed prices for 
several zero-day vulnerabilities (Tsyrklevich, 2015). And one news article reported that the U.S. government had 
spent $25 million dollars in 2013 on exploits (Gellman and Nakashima, 2013).
11  Zerodium is a company that specializes in finding zero-day vulnerabilities and selling them to governments 
and corporations. Zerodium was founded by the CEO of former gray market company VUPEN, which special-
ized in finding zero-day vulnerabilities and selling them to government agencies. 
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on a number of factors. Some have published papers or articles on their particular 
taxonomy or method for determining payout as well as who has received how much 
payout.12 Payouts for vulnerabilities average $300–$650 per vulnerability through bug-
bounty platforms and can run into the thousands or hundreds of thousands, depend-
ing on the individual organization or company.13 

In general, for any market, payment structure generally comes down to a few 
factors: how easy or hard it is to find the vulnerability (if hard, payout is greater), how 
many other vulnerabilities have been found in the product (if few, then vulnerabilities 
may be sparse, and the payout is greater), and the impact (if an exploit can go further 
than just remote code execution, but also bypass a mitigation, escape a sandbox, or 
remotely jailbreak [for mobile devices], then the payout is greater). 

In the end, for those who sell their exploits, the entity that purchases the vul-
nerability can often be the ultimate decider of what to purchase and for how much, 
regardless of how long it took to find (or exploit) the vulnerability or what type of vul-
nerability it is.

12  For example, Bugcrowd released its Defensive Vulnerability Pricing Model, where pricing for vulnerabilities 
is based on a number of factors, including impact of the vulnerability and security maturity of an organization 
(BugCrowd, 2015). Synack developed a taxonomy, where bug bounty amounts are determined by ease of discov-
ery and threat classification (Shieber, 2014). HackerOne has published guidelines for payout of vulnerabilities 
for companies wishing to start their own bug bounty (HackerOne, 2016). Microsoft has an “honor roll” of bug 
bounty hunters (Microsoft Tech Center, 2016a). 
13  HackerOne reported that researchers using its platform earn an average of $650 per flaw that is found (Kharpal, 
2015), and BugCrowd reported that its average payout per bug was $294.70 (BugCrowd, 2016). The U.S. Depart-
ment of Defense’s “Hack the Pentagon” initiative paid researchers $100–$15,000 (Ferdinando, 2016). Apple’s 
bug bounty program (announced August 2016) has a maximum reward of $200,000 (Finkle, 2016). Microsoft 
offered a grand prize of $100,000 for bypass mitigation techniques (Microsoft Tech Center, 2016b).
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APPENDIX F

Additional Figures and Tables

This appendix provides additional figures, tables, and charts referenced throughout 
this report. 

Table F.1
Frequencies of Exploit-Level Characteristics Among 127 Identified Exploits

Characteristic N (%)

Vulnerability Type  

Logic 36 (28.4%)

Memory Corruption 64 (50.4%)

Memory Mismanagement 20 (15.8%)

Mixed 6 (4.7%)

Other 1 (0.8%)

Platform Affected  

Linux 33 (26%)

Mixed 4 (3.2%)

OSX 8 (6.3%)

Open Source 13 (10.2%)

Other 3 (2.4%)

PHP 8 (6.3%)

Unix-based 10 (7.9%)

Windows 48 (37.8%)

Source Type  

Open 50 (39.4%)

Closed 70 (55.1%)

Mixed 1 (0.8%)

Unknown 6 (4.7%)

Class Type  

Client-side 12 (9.5%)

Local 50 (39.4%)

Mixed 12 (9.5%)

Other 10 (7.9%)

Remote 43 (33.9%)



90    Zero Days, Thousands of Nights: The Life and Times of Zero-Day Vulnerabilities and Their Exploits

Table F.2 provides the number of exploits still living at the beginning of one-year 
intervals, the number observed to die, and the number lost to follow up due to censor-
ing (i.e., at the end of our sample time of 2002–2016, these were vulnerabilities that 
were still alive, but we could not say anything about their survival probability).

Figure F.1 shows the exponential, Weibull, and log-normal survival models for 
their fit to our data by comparing their estimated survival plots to the Kaplan-Meier 
plots. All three parametric models lie within the confidence band around the Kaplan-
Meier curve, though they tend to overestimate the Kaplan-Meier curve in the first two 
years. Subsequently, each approximates the Kaplan-Meier curve’s general shape, with 
differing rates of decay starting in year five. We chose the exponential model, shown 
in red. We used the decay parameter from the exponential model to plot exponen-
tial survival curves (i.e., where the curve eventually reaches or gets very close to zero 
survivability—something that we could not do with the data alone) along with 95 per-
cent confidence intervals of the overall data, as well as by specific exploit characteristics.

Figure F.2 shows the smoothed hazard function corresponding to the life table 
plot. Higher values indicate where danger of death is highest. 

The pointwise 95 percent confidence band is included to help put these bumps 
and dips into perspective: As shown in Figure F.2, the confidence band is generally 
wide relative to the sizes of the bumps and dips, which indicates that the hazard is 
fairly constant over time, and there is not strong evidence that any particular number 

Table F.2
Life Table, All Data

Interval 
Start Year

Interval End 
Year

Beginning 
Total Deaths Censored

Survival Probability  
(95% CI)

0 1 127 26 5 0.79 (0.71, 0.85)

1 2 96 10 7 0.71 (0.62, 0.78)

2 3 79 8 9 0.63 (0.54, 0.71)

3 4 62 5 7 0.58 (0.48, 0.66)

4 5 50 6 10 0.50 (0.40, 0.59)

5 6 34 3 10 0.45 (0.34, 0.55)

6 7 21 1 3 0.42 (0.32, 0.53)

7 8 17 3 7 0.33 (0.21, 0.46)

8 9 7 0 4 0.33 (0.21, 0.46)

9 10 3 1 1 0.20 (0.04, 0.44)

10 11 1 0 1 0.20 (0.04, 0.44)
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Figure F.1
Comparing Parametric Models to Kaplan-Meier (n = 127)
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Figure F.2
Smoothed Hazard Function
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or years since birth is more hazardous for death than others. The further out in time we 
look, the wider the confidence band and the less certain we become of the true shape 
of that hazard function. That the hazard is approximately constant is good justifica-
tion for our use of the exponential survival model for estimating life expectancy, as the 
exponential model is built on the assumption of a constant hazard. In our case, that 
hazard value is 0.145 (95 percent confidence interval: 0.113, 0.186), which visually is 
right along that horizontal corridor in Figure F.2. It is this hazard value of 0.145, along 
with its own confidence bounds, that we have used to generate the exponential model-
based estimates of expected lifetime.

We used Cox proportional hazards regression modeling to determine the hazard 
ratio for each characteristic. 

The hazard function itself can be interpreted as the instantaneous probability of 
death at any given time t, assuming a vulnerability had gone undetected up to that 
point in time. The hazard ratio associated with a given characteristic is the fraction 
formed by dividing the hazard for one group at time t by that of a comparison (or 
referent) group at the same moment. It is similar in concept to a relative risk, where a 
large number indicates more danger of an event compared with the referent group, and 
a lower number indicates less. A hazard ratio of one indicates that members of both 
groups are equally likely to fail at any given time. For example, if the hazard of fail-
ure at two years for memory corruption is 0.14, and the hazard of failure for memory 
mismanagement vulnerabilities is 0.11, then the ratio of these two is the hazard ratio 
of 1.27. Moreover, with a Cox proportional hazards model, we assume that this rela-
tionship between the hazard functions is constant over time; the hazard of failure may 
rise and fall for both of these types of vulnerabilities, but that the ratio between them 
is constant over time. The hazard of failure for memory corruption vulnerabilities is 
always 1.27 times greater than that of the memory mismanagement vulnerabilities. 
The modeling procedure also allows us to test this ratio for statistical significance, 
where we compare it to a null hypothesis value of 1.0, meaning that the hazard func-
tions are always equal. 

For each characteristic, we chose one category to be the referent category, whose 
hazard function would serve as the denominator in hazard ratios like the one described 
above.1 Three different models were calculated to obtain:

1. unadjusted hazard ratio  
2. fully adjusted hazard ratio 
3. partially adjusted hazard ratio.

1  It is often advantageous to choose a referent group that has a large number of records, so you get as much 
power as possible for the tests of each of the individual hazard ratio (against the null hypothesis value of 1, which 
means the hazards are equal). From a scientific standpoint though, one can also choose the type that is considered 
the “most normal” to more easily comprehend estimates that are relative to that type. We chose a combination of 
both (large number of records and “most normal”).
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In the unadjusted model, each characteristic (vulnerability type, platform affected, 
source type, class type) was evaluated separately, to see whether any property within 
those characteristics indicates a long or short life. The p-values found here appeared on 
the graphs in Figure 3.7.2 In the fully adjusted model, each characteristic is adjusted for 
simultaneously in a common model. In the partially adjusted model, we removed the 
“platform affected” category, because source type is heavily correlated to the platform 
affected (e.g., all Windows is closed source) and just performed regression adjusting for 
vulnerability type, source type, and class type. The higher the hazard ratio, the higher 
hazard of death, or higher probability of being detected, compared with the reference 
category. For example, examining exploit class type, at any given time that the exploits 
are still alive and publicly unknown, a client-side exploit is 1.02 times more likely to 
die than a remote exploit, whereas a local exploit is 72 percent as likely to be detected, 
for any moment in time. 

Table F.3 shows the hazard ratio for each characteristic. In all three hazard ratio 
estimates, the p-values are too large to draw any concrete conclusions or indicate that 
these results are statistically significant. Correspondingly large confidence intervals 
around each estimate include the null hypothesis value of one, which as the p-values 
also indicate, tell us that we cannot rule out the null hypothesis value of 1 in any of the 
hazard ratio estimates. 

2  A low p-value (i.e., 0.1 or smaller) would indicate that the results are statistically significant. Given the high 
p-values, we are unable to infer any meaningful associations between exploit characteristics and the risk of death. 
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Table F.3
Hazard Ratio Estimates Obtained from Cox Proportional Hazards Modeling, with and 
Without Adjustment for Characteristics as Shown

Exploit 
Characteristics

Unadjusted 
Hazard Ratio 

(separate 
models) P-Value

Fully Adjusted 
Hazard Ratio P-Value

Partially 
Adjusted 

Hazard Ratio P-Value

Vulnerability 
Type

  0.646   0.518   0.458

Logic 1.17  
(0.50, 2.75)

0.715 0.91 (0.36, 
2.34)

0.846 0.87 (0.36, 
2.11)

0.757

Memory 
Corruption

1.27  
(0.59, 2.74)

0.549 0.84 (0.34, 
2.05)

0.697 0.83 (0.35, 
1.98)

0.680

Memory 
Mismanagement

1 (referent) - 1 (referent) - 1 (referent) -

Mixed or Other 2.12  
(0.69, 6.53)

0.191 2.04 (0.59, 
7.09)

0.264 1.88 (0.61, 
5.84)

0.273

Platform 
Affected

  0.991   0.688    

Linux 0.78  
(0.41, 1.48)

0.447 0.48 (0.18, 
1.30)

0.149    

Mixed 0.89  
(0.12, 6.58)

0.905 1.44 (0.18, 
11.31)

0.728    

OSX 1.26  
(0.44, 3.65)

0.668 1.30 (0.41, 
4.12)

0.652    

Open Source 0.92  
(0.40, 2.14)

0.845 0.53 
(0.18, 1.59)

0.259    

Other 1.15 
(0.27, 4.91)

0.853 0.60 
(0.11, 3.17)

0.549    

PHP 1.09 
(0.33, 3.62)

0.892 1.60 
(0.24, 10.72)

0.626    

Unix-based 1.07 
(0.41, 2.83)

0.887 0.61 
(0.19, 1.97)

0.412    

Windows 1 
(referent)

- 1 
(referent)

-    

Source Typea   0.732   0.148   0.469

Open 1.09 
(0.66, 1.82)

0.732 1.93 
(0.79, 4.67)

0.148 1.24 
(0.70, 2.19)

0.469

Closed 1 
(referent)

- 1 
(referent)

- 1 
(referent)

-

Class Type   0.224   0.224   0.239

Client-side 1.02 
(0.46, 2.27)

0.969 0.93 
(0.40, 2.20)

0.872 1.04 
(0.46, 2.37)

0.925

Local 0.72 
(0.41, 1.27)

0.255 0.62 
(0.30, 1.32)

0.214 0.60 
(0.31, 1.17)

0.134

Mixed 0.64 
(0.25, 1.69)

0.373 0.65 
(0.24, 1.78)

0.406 0.61 
(0.23, 1.62)

0.318

Other 0.26 
(0.06, 1.12)

0.071 0.15 
(0.03, 0.83)

0.030 0.23 
(0.05, 1.04)

0.057

Remote 1 
(referent)

- 1 
(referent)

- 1 
(referent)

-

a One exploit of mixed source type and six of unknown source types were excluded from analysis.
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Table F.4
Vulnerability Types by Time Interval, Percentages (n = 192) 

Life Status

365-Day 
Interval 

(median, std 
deviation)

90-Day 
Interval

(median, std 
deviation)

30-Day Interval
(median, std 
deviation)

Expanded Groups      

Immortal 11.54 (22.2) 12.79 (26.3) 12.79 (26.79)

Living 47.745 (13.98) 49.38 (16.48) 48.84 (16.56)

Undisclosed Code 
Refactor

4.23 (6.85) 4.9 (8.19) 4.72 (8.66)

Disclosed Code 
Refactor

11.52 (5.33) 10.43 (5.54) 11.01 (5.63)

Security Patch 4.52 (5.28) 0.85 (3.3) 0 (2.02)

Public Disclosure 0 (0.52) 0 (0.26) 0 (0.16)

Killed by BUSBY 0 (4.24) 0 (3.59 0 (2.05)

Unknown 17.49 (6.71) 18.6 (7.47) 18.8 (7.62)

Collapsed Groups

Living 66.86 (11.48) 69.11 (11.37) 69.45 (11.87)

Dead in this window 5.765 (6.79) 0.87 (5.3) 0 (3.05)

Disclosed Code 
Refactor

11.52 (5.33) 10.43 (5.54) 11.01 (5.63)

Unknown 17.49 (6.71) 18.6 (7.47) 18.8 (7.62)
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Figure F.3
365-Day Time Interval, with Percentages per Group and Interval
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APPENDIX G

More Information About the Data

Our data spans many categories. Below are frequency counts for our data, to provide a 
sense of the richness and breadth of information. 

Due to sensitivities, we do not include a table of all vendors that were affected, and 
instead provide the following summary: This dataset includes exploits for 64 vendors, 
with a range of 1 to 55 exploits per vendor. Microsoft (n = 55), Linux (n = 39), Apple 
(n = 14), and SUN/Oracle (n = 11) each had the most number of exploits, while the 
majority of the other vendors each had one or two exploits. These include well-known 
vendors such as Mozilla, LinkSys, Google, Citrix, AOL, Ethereal, Adobe, Alt-N Tech-
nologies, CryptoCat, and RealPlayer/RealServer, as well as some lesser-known vendors.

Table G.1
Data Frequency Counts

Row Labels Count

Life Status

Living 66

Code Refactor 21

Immortal 13

Killed by BUSBY 8

Other—feature not patchable; no longer relevant; 
relocated to different part of code

3

Public Disclosure/Made Public 6

Security Patch 69

Team Check 16

Unknown 5

Total 207

Vulnerability Type (high level)

Hidden features 1

Logic 57
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Row Labels Count

Logic, cryptographic 1

Logic; memory mismanagement 7

Logic; memory mismanagement; memory corruption 2

Memory corruption 106

Memory corruption; memory mismanagement 2

Memory mismanagement 29

Memory mismanagement; denial of service 1

Undetermined (crash) 1

Total 207

Vulnerability Type (low level)

Allows you to remap memory in way you shouldn’t 1

API misuse 3

Arbitrary free 1

Association context 1

Authentication bypass 5

Auto execution 1

BSS Overflow (like a Stack Overflow) 1

Bypass 1

Call-gate mismanagement—not checking parameters 2

Command Injection 3

Context swap; stack misalignment 1

Data overflow 1

Design misuse 1

Directory traversal; input validation 1

DNS cache poisoning 1

Environment Insertion (can insert other programs to 
execute)

1

Executable file upload 1

Fault handling (CPU) 1

File normalization error (interpretation of values 
different on different platforms)

1

File read prim (i.e., can read any file on the system) 1

File read prim (i.e., can read any file on the system); SQLi; 
path injection

1

Heap overflow 58

Table G.1—continued
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Row Labels Count

Heap overflow (as a result of integer overflow) 1

Hypervisor integrity issue 1

Information disclosure; kernel mismanagement 1

Information leak 3

Information leak; heap overflow 1

Integer mismanagement 1

Integer overflow 2

Integer truncation (so can be either heap or stack 
overflow)

1

Invalid pointer dereference 1

IO control based on write primitives 1

IPC integrity (interprocess communication) 1

Keyspace reduction 1

Leads to info leak 1

Left hardcoded admin password 1

Logic (race condition) that triggers memory corruption 1

Name validation 1

Null dereference 12

Object injection/ deserialization 4

Out of bounds write 1

Permissions on kernel device 1

Privilege escalation 2

Privilege file read 1

Privilege mismanagement 2

Privilege spoofing 1

Race condition 16

Race condition that leads to invalid pointer dereference 1

Race condition; allows you to manipulate memory 1

Race condition; out of bounds read; heap overflow 1

Race condition; use after free 1

Reference condition 2

Reference condition—that leads to object 
mismanagement

1

Reference condition overwrap 1

Register/memory mismanagement 1

Table G.1—continued
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Row Labels Count

Remote code injection 1

SQLi 1

Stack overflow 40

Stack overflow (x2); memory 1

Stack overflow; heap overflow 1

Type confusion/object mismanagement 1

Unsecure environment variables (so can eventually take 
advantage of protected environment variables)

1

Use after free 2

Uses unverified supply pointer value (blindly follows a 
pointer)

2

XSS 1

Total 207

Exploit Class

Bypass 1

Client-side 25

Client-side, remote 3

Client-side, remote, denial of service 1

Context dependent 8

Crypto 1

Denial of service 3

Infoleak 3

Local 76

Local, remote 5

Local, sandbox escape 1

Network 1

Physical access hardware 1

Remote 71

Sandbox/Hypervisor Escape 6

SQLi 1

Total 207

Platform Affected

Android 3

Embedded 1

FreeBSD 3

Table G.1—continued
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Row Labels Count

Java 1

JavaScript 1

Linux 56

N/A 3

Open source 16

OSX 18

PHP 11

Solaris 9

UNIX 2

Windows 93

Totala 217

Source Code Type

No information available 8

Closed 123

Mix 2

Open 74

Total 207

a Some exploits work on multiple platforms. For 10 exploits, 2 or more 
platforms were affected.

Table G.1—continued
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APPENDIX H

Glossary

In the list below, we provide a list of terms and definitions to supplement the reader’s 
understanding of software vulnerabilities and exploits. We include in this list the vul-
nerability types and exploit types that we used to categorize the exploits in our dataset, 
as described in Chapter Three.

As mentioned in Chapter Three, vulnerability types are not mutually exclusive 
and often become intertwined, or even interdependent, especially when considering 
full exploit chains, which often rely on a variety of vulnerability primitives spanning 
multiple classifications. A web application attack that initially relies on a logic vul-
nerability might trigger a memory corruption or inject objects into the underlying 
framework process memory space. Furthermore, “logic” as a vulnerability type is very 
broad and could be segmented into several other categories. A logic flaw, such as a race 
condition, may result in low-level issues, such as memory corruption, and memory 
mismanagement, but it may also result in higher-level issues, such as database query 
injection. Generally speaking, however, one can distinguish between low-level memory 
vulnerabilities that are process-critical (i.e., they crash a process) and high-level logic 
vulnerabilities that allow an attacker to influence program behavior but that do not 
necessarily risk underlying process availability.

Alive (zero-day 
classification)

Publicly unknown vulnerability.

black market The trade or traffic of hacking tools, hacking services, and 
the fruits of hacking for malicious intent. Vulnerabilities are 
sold for criminal use or illicit purposes and remain private.

buffer overflow A condition that occurs when a program attempts to put 
more data in a buffer than it can hold or when a program 
attempts to put data in a memory area past a buffer (Open 
Web Application Security Project [OWASP], undated-a).

bug Software flaw.
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bug bounty A program established to provide a reward for finding and 
reporting a bug or vulnerability in a particular computer 
software product (Techopedia, undated). May also refer to 
the reward itself.

client-side (exploit 
class type)

A type of local exploit that requires human interaction to 
complete an action. 

code churn Code that gets updated (or refactored) to new versions. Vul-
nerabilities may still be present in past versions. Similar to 
Code Refactor.

Code Refactor (zero-
day classification)

A likely publicly unknown vulnerability for past versions of 
a product that is no longer exploitable in current versions 
due to code revisions; the product is still maintained (so a 
security patch sometime in the future is still possible for the 
past versions). Such zero-days are also known as zombies.

collision, collision rate A collision occurs when a two (or more) researchers indepen-
dently find the same vulnerability. The collision rate is the 
likelihood of this happening. The collision rate is sometimes 
also referred to as the overlap rate.   

Common 
Vulnerabilities and 
Exposures

A dictionary of common names (i.e., CVE Identifiers) for 
publicly known cybersecurity vulnerabilities (MITRE, 
undated).

Dead (zero-day 
classification)

Publicly known vulnerability.

denial of service An attack focused on making a resource (site, application, 
server) unavailable for the purpose it was designed (OWASP, 
undated-b).

exploit Malicious code that takes advantage of software vulnerabili-
ties to infect, disrupt, or take control of a computer without 
the user’s consent and typically without their knowledge 
(Microsoft, 2013). An exploit provides initial access and 
often the ability for code execution by taking advantage of 
some vulnerability in a system process, and then facilitates 
an implant or implant’s payload.

fuzzing, fuzzer Fuzzing refers to automatic software testing, usually to find 
vulnerabilities. A fuzzer is a program that performs such 
testing.
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government market See gray market.

gray market A market for vulnerabilities in which vulnerabilities remain 
private, are used for either offensive or defensive purposes, 
and may eventually get disclosed to the affected vendor, 
though that is not guaranteed because they are typically first 
sold to a government, military, or defense contractor. The 
gray market is also referred to as the government market.

heap An area of pre-reserved computer main storage (memory) 
that a program process can use to store data in some variable 
amount that won’t be known until the program is running 
(Techtarget, undated-a).

Immortal (zero-day 
classification)

A publicly unknown vulnerability for the version of the 
product it was created for; that product is no longer main-
tained (so a security patch will never be issued).

implant A program that solidifies and maintains access initially pro-
vided by an exploit (i.e., achieves persistence) and delivers 
some effect to the system. 

kernel A program that constitutes the central core of a computer 
operating system. It has complete control over everything 
that occurs in the system (linfo, undated).

Living (zero-day 
classification)

A publicly unknown vulnerability for current versions of the 
product; not found and publicly noted by anyone else (as 
far as it is known); those in defensive roles are likely actively 
looking for it.

local (exploit class 
type)

An exploit that requires prior access to a vulnerable system 
(e.g., privilege escalation)

logic (vulnerability 
type)

Vulnerabilities for which the base primitive is based on a 
flaw in higher-level program logic (e.g., race conditions).

memory corruption 
(vulnerability type)

Vulnerabilities for which the base primitive is based on low-
level corruption of process memory (e.g., buffer overflow).

memory 
mismanagement 
(vulnerability type)

Vulnerabilities for which the base primitive is based on low-
level mismanagement of process memory (e.g., use after 
free).
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overlap, overlap rate When a two (or more) researchers independently find the 
same vulnerability, the vulnerability is said to have overlap. 
The overlap rate, also known as the collision rate, is the likeli-
hood that a vulnerability has overlap. 

penetration testing A test to determine how a system reacts to an attack, 
whether or not a system’s defenses can be breached, and 
what information can be acquired from the system (Krutz 
and Vines, 2006).

primitive The basic building blocks of vulnerabilities, which can often 
be used in multiple exploits.

proof of concept 
(PoC)

A demonstration that a fully functional exploit is possible 
on a target system. However, a PoC does not include final 
steps to make the exploit weaponized (this is done by clients 
armed with specifications about a target environment and 
containing the necessary obfuscation or evasion capabilities). 
One PoC test is the ability to cause the calculator program 
(calc.exe) to open up on a desktop (the “pop calc” test).

remote (exploit class 
type)

An exploit that does not require prior access to a vulnerable 
system. A remote exploit may or may not allow an operator 
to perform additional tasks, as the system that the attacker 
gets onto may have low-level privileges. Often, a success-
ful operation requires a combination of a local or client-side 
exploit and remote exploit.

remote code execution The ability to trigger arbitrary code execution from one 
machine on another (Wikipedia, undated-a).

sandbox, sandboxing A tightly controlled environment that restricts permissions 
on what can be run (to prevent malicious code from execut-
ing or accessing something it should not, for example).

sandbox escape Code that can escape a sandbox.

stack A data area or buffer used for storing requests that need to 
be handled (Techtarget, undated-b).

vulnerability A software, hardware, procedural, or human weakness that 
may provide an attacker with an open door with which to 
exploit. A type of bug that creates a security weakness in the 
design, implementation, or operation of a system or applica-
tion (NRC, 1999).
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white market A market for vulnerabilities in which the vulnerabilities are 
returned immediately to the affected vendor (often moving 
them into the public knowledge space), for defensive pur-
poses. Includes bug-bounty programs, vendors, vulnerability 
feeds, and groups such as Google’s Project Zero. 

zero-day vulnerability Exploitable vulnerabilities that a software vendor is unaware 
of and for which no patch or fix has been publicly released.

zombie See Code Refactor.
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