Collision Detection Using SDFs

Ross Adelman

12/7/10
Signed Distance Functions (SDF)

\[d(x) > 0 \]

\[d(x) = 0 \]

\[d(x) < 0 \]
Collision Detection

We're looking for this.
Slow Version

1. Construct the smallest box possible that contains both bodies.

2. Calculate $\max(d_1, d_2)$ at the center of the box, where d_1 and d_2 are the SDFs of the bodies.

3. Is the value greater than the size of the box?
 a. Yes? There's no way the bodies are colliding in the box. Stop.
 b. No? Keep going.

4. Divide the box into eight smaller, equally sized ones.

5. Repeat (2) - (4) for each of those boxes.
Fast Version

1. Construct the smallest box possible that contains both bodies.
2. Calculate \(\max(d_1, d_2) \) at the center of the box, where \(d_1 \) and \(d_2 \) are the SDFs of the bodies.
3. Is the value greater than the size of the box?
 a. Yes? There's no way the bodies are colliding in the box. Stop.
 b. No? Keep going.
4. Divide the box into eight smaller, equally sized ones.
5. Calculate \(\max(d_1, d_2) \) at the center of each of these boxes.
6. Pick the one that has the smallest value.
7. Repeat (2) - (6) for this box.
1. Construct the smallest box possible that contains both bodies.

2. Calculate $\max(d_1, d_2)$ at the center of the box, where d_1 and d_2 are the SDFs of the bodies.

3. Is the value greater than the size of the box?
 a. Yes? There's no way the bodies are colliding in the box. Stop.
 b. No? Keep going.

4. Divide the box into eight smaller, equally sized ones.

5. Calculate $\max(d_1, d_2)$ at the center of each of these boxes.

6. Pick the one that has the smallest value.

7. Pick any other of the seven boxes that has a value of $\max(d_1, d_2)$ equal or close to that of the box chosen in (6).

8. Repeat (2) - (6) for this box.
Demos
Questions...?