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e Earley Algorithm

o Complexity of Earley

e Key to Efficiency

Dynamic Programming and Parsing

Use a table of size n+ 1. The table entries sit in
the gaps between the words:

e Completed constituents

e In-progress constituents

e Predicted constituents

Dynamic Programming

We want an alorithm that fills a table with solu-
tions to subproblems that:

e Does not do repeated work

e Does top-down search with bottom-up filtering
(sort of)

Solves the left-recursion problem

e Solves an exponential problem in O(n3) time.

States

S — e VP
NP — Det ¢ Nominal
VP — V NP e




States cont.

Keep track of:

e What word it is currently processing.

e Where it is in the processing of the current
rule.

e Where it should return to when done w/ cur-
rent rule.

[Figure 10.15]

Graphical States

States cont.

Parse: “Book that flight.”

S — e VP, [0,0]
NP — Det ¢ Nominal, [1,2]
VP — V NP e, [0,3]

Each State s;: <dotted rule>, [<back pointer>,<current
posn>]

Success

Start — a e, [nil,n]




Parsing

e New predicted states are based on existing ta-
ble entries that predict a certain constituent
at that spot.

e New in-progress states are created by updating
older states.

e New complete states are created when the dot
moves to the end.

Toward an Efficient Parsing Algorithm:
Earley (1970)

Top-down parser with bottom-up filtering.

e Ambiguity

e Left recursion

e Repeated parsing of subtrees

What is the key to addressing these issues?
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Memoization and Dynamic Programming

e Use tables to keep track of previously solved
sub-problems.

e Dynamic programming algorithms: oriented around
systematically filling these tables.

e Memoization: achieves the same results but
allows the algorithm to do so more efficiently.
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States and State Sets

Dotted Rule: State s; is represented as <dotted
rule>, [<back pointer>, <current posn>]

Define: State Set S]- to be a collection of states
s; with the same <current position>.
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Earley Algorithm

[Figure 10.16]
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Basic operations of the Earley Algorithm

e Predictor

e Completer

e Scanner
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Earley Algorithm (easier to read!)

e Add initial state in dotted form: S,
Start — e S, [nil,0]

e Apply predict/complete until no more states
are added (closure under predict/complete).

e For each word W; (i = 1,...,n), build state
set S; (Main Loop):

— Apply scan to S;_4

— Close state set i under predict/complete

— If state set 7 is empty, reject; else, continue

e If state set n includes state Start — S e, [nil,n]
then accept; else reject.

14

SCAN Operation
A — a e B S, [1,7]

S]-+1: A — a Bef, [i,j+1]
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PREDICT Operation
S]’Z A— aeB ﬁ, [Z,]]

Sji B — e 7, [7.4]
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[Figure 10.17a]

Example
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COMPLETE Operation

(Much more complicated! Relies heavily on return
address.)

St B — 6 e, [4,k]
Sy A — a B e, [ik],
where:

S;i A— ae B, [ij]
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Example (continued)

[Figure 10.17b]
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Example (continued)

[Figure 10.17c]
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1. How

2. How

Complexity Analysis of Earley

many state sets will there be?

big can the state sets get?
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Grammar: S — NP VP, NP — N, VP — V NP

Another Earley Algorithm Example

Input: I saw Mary

So

Word: NIL

S

Word: I (N)

So

Word: saw (V,N)

S3

Word: Mary (N)

Sentence Accepted.
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Analysis of SCAN, PREDICT, COMPLETE

e Scan:

S;t A— a e B j, [ij]

Sj+1:

A— aBep [i,j+ 1]

e Predict:
Sji A— ae B j, [ij]
Sj: B — e v, [5,4]

o Complete:
Syt B — &6 e, [1,k]
Skt A — a B e 3, [i,k],
where:
Sjt A — a e B j, [ij]
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Effect of Ambiguity on Earley Processing
Time

How many ways can we complete a phrase of a
given rule in a given state?

Example: 1 saw the man on the hill

the hill

VP — V NP e, [j,]

VP — V NP PP e, [k,

S — NP VP s, [1,7] (from state set j)
S — NP VP e, [m,:] (from state set k)

Unambiguous grammar: O(n2).
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Key to Efficiency for Earley

Why efficient?

Other parsers?

e NO grammar conversion.

Additional efficiency measures

Efficient for unambiguous grammars.
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Effect of Grammar Size on
Earley Processing Time

Why is grammar size included?
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Local Ambiguity

Suppose we're parsing the VP ‘“gave Mary a book”
using the following rules:

S—VP

VP—-V
VP—V NP
VP—V NP PP
VP—-V NP NP
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Left Recursion
Global Ambiguity

What about parsing the NP “a flight from denver
Suppose we're parsing the VP "I shot an elephant to boston” with the following rules:

in my pajamas” ...
NP — NP PP

[Figure 10.11] NP — Det Nominal
NP — ProperNoun
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Left Recursion

A— e AB
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