Natural Language Processing
CMSC 723 (spring, 2001)

April 11, 2001

e Review of Dynamic Programming
e Dotted Rule Notation

e Earley Algorithm

o Complexity of Earley

e Key to Efficiency

Dynamic Programming and Parsing

Use a table of size n+ 1. The table entries sit in
the gaps between the words:

e Completed constituents

e In-progress constituents

e Predicted constituents

Dynamic Programming

We want an alorithm that fills a table with solu-
tions to subproblems that:

e Does not do repeated work

e Does top-down search with bottom-up filtering
(sort of)

Solves the left-recursion problem

e Solves an exponential problem in O(n3) time.

States

S — e VP
NP — Det ¢ Nominal
VP — V NP e




States cont.

Keep track of:

e What word it is currently processing.

e Where it is in the processing of the current
rule.

e Where it should return to when done w/ cur-
rent rule.

[Figure 10.15]

Graphical States

States cont.

Parse: “Book that flight.”

S — e VP, [0,0]
NP — Det ¢ Nominal, [1,2]
VP — V NP e, [0,3]

Each State s;: <dotted rule>, [<back pointer>,<current
posn>]

Success

Start — a e, [nil,n]




Parsing

e New predicted states are based on existing ta-
ble entries that predict a certain constituent
at that spot.

e New in-progress states are created by updating
older states.

e New complete states are created when the dot
moves to the end.

Toward an Efficient Parsing Algorithm:
Earley (1970)

Top-down parser with bottom-up filtering.

e Ambiguity

e Left recursion

e Repeated parsing of subtrees

What is the key to addressing these issues?

11

Memoization and Dynamic Programming

e Use tables to keep track of previously solved
sub-problems.

e Dynamic programming algorithms: oriented around
systematically filling these tables.

e Memoization: achieves the same results but
allows the algorithm to do so more efficiently.

10

States and State Sets

Dotted Rule: State s; is represented as <dotted
rule>, [<back pointer>, <current posn>]

Define: State Set S]- to be a collection of states
s; with the same <current position>.

12




Earley Algorithm

[Figure 10.16]

13

Basic operations of the Earley Algorithm

e Predictor

e Completer

e Scanner

15

Earley Algorithm (easier to read!)

e Add initial state in dotted form: S,
Start — e S, [nil,0]

e Apply predict/complete until no more states
are added (closure under predict/complete).

e For each word W; (i = 1,...,n), build state
set S; (Main Loop):

— Apply scan to S;_4

— Close state set i under predict/complete

— If state set 7 is empty, reject; else, continue

e If state set n includes state Start — S e, [nil,n]
then accept; else reject.

14

SCAN Operation
A — a e B S, [1,7]

S]-+1: A — a Bef, [i,j+1]

16




PREDICT Operation
S]’Z A— aeB ﬁ, [Z,]]

Sji B — e 7, [7.4]

17

[Figure 10.17a]

Example

19

COMPLETE Operation

(Much more complicated! Relies heavily on return
address.)

St B — 6 e, [4,k]
Sy A — a B e, [ik],
where:

S;i A— ae B, [ij]

18

Example (continued)

[Figure 10.17b]

20




Example (continued)

[Figure 10.17c]

21

1. How

2. How

Complexity Analysis of Earley

many state sets will there be?

big can the state sets get?

23

Grammar: S — NP VP, NP — N, VP — V NP

Another Earley Algorithm Example

Input: I saw Mary

So

Word: NIL

S

Word: I (N)

So

Word: saw (V,N)

S3

Word: Mary (N)

Sentence Accepted.

22

Analysis of SCAN, PREDICT, COMPLETE

e Scan:

S;t A— a e B j, [ij]

Sj+1:

A— aBep [i,j+ 1]

e Predict:
Sji A— ae B j, [ij]
Sj: B — e v, [5,4]

o Complete:
Syt B — &6 e, [1,k]
Skt A — a B e 3, [i,k],
where:
Sjt A — a e B j, [ij]

24




Effect of Ambiguity on Earley Processing
Time

How many ways can we complete a phrase of a
given rule in a given state?

Example: 1 saw the man on the hill

the hill

VP — V NP e, [j,]

VP — V NP PP e, [k,

S — NP VP s, [1,7] (from state set j)
S — NP VP e, [m,:] (from state set k)

Unambiguous grammar: O(n2).

25

Key to Efficiency for Earley

Why efficient?

Other parsers?

e NO grammar conversion.

Additional efficiency measures

Efficient for unambiguous grammars.

27

Effect of Grammar Size on
Earley Processing Time

Why is grammar size included?

26

Local Ambiguity

Suppose we're parsing the VP ‘“gave Mary a book”
using the following rules:

S—VP

VP—-V
VP—V NP
VP—V NP PP
VP—-V NP NP

28




Left Recursion
Global Ambiguity

What about parsing the NP “a flight from denver
Suppose we're parsing the VP "I shot an elephant to boston” with the following rules:

in my pajamas” ...
NP — NP PP

[Figure 10.11] NP — Det Nominal
NP — ProperNoun

29 31

Left Recursion

A— e AB

30




