
International Journal of Computer Vision 59(3), 259–284, 2004
c© 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

SoftPOSIT: Simultaneous Pose and Correspondence Determination

PHILIP DAVID
University of Maryland Institute for Advanced Computer Studies, College Park, MD 20742, USA;

Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783-1197, USA

DANIEL DEMENTHON, RAMANI DURAISWAMI AND HANAN SAMET
University of Maryland Institute for Advanced Computer Studies, College Park, MD 20742, USA

Received November 21, 2002; Revised September 3, 2003; Accepted November 18, 2003

Abstract. The problem of pose estimation arises in many areas of computer vision, including object recognition,
object tracking, site inspection and updating, and autonomous navigation when scene models are available. We
present a new algorithm, called SoftPOSIT, for determining the pose of a 3D object from a single 2D image when
correspondences between object points and image points are not known. The algorithm combines the iterative
softassign algorithm (Gold and Rangarajan, 1996; Gold et al., 1998) for computing correspondences and the
iterative POSIT algorithm (DeMenthon and Davis, 1995) for computing object pose under a full-perspective camera
model. Our algorithm, unlike most previous algorithms for pose determination, does not have to hypothesize small
sets of matches and then verify the remaining image points. Instead, all possible matches are treated identically
throughout the search for an optimal pose. The performance of the algorithm is extensively evaluated in Monte
Carlo simulations on synthetic data under a variety of levels of clutter, occlusion, and image noise. These tests
show that the algorithm performs well in a variety of difficult scenarios, and empirical evidence suggests that the
algorithm has an asymptotic run-time complexity that is better than previous methods by a factor of the number
of image points. The algorithm is being applied to a number of practical autonomous vehicle navigation problems
including the registration of 3D architectural models of a city to images, and the docking of small robots onto larger
robots.

Keywords: object recognition, autonomous navigation, POSIT, softassign

1. Introduction

This paper presents an algorithm for solving the model-
to-image registration problem, which is the task of de-
termining the position and orientation (the pose) of a
three-dimensional object with respect to a camera co-
ordinate system, given a model of the object consisting
of 3D reference points and a single 2D image of these
points. We assume that no additional information is
available with which to constrain the pose of the object
or to constrain the correspondence of object features to
image features. This is also known as the simultaneous
pose and correspondence problem.

Automatic registration of 3D models to images is an
important problem. Applications include object recog-
nition, object tracking, site inspection and updating,
and autonomous navigation when scene models are
available. It is a difficult problem because it comprises
two coupled problems, the correspondence problem
and the pose problem, each easy to solve only if the
other has been solved first:

1. Solving the pose (or exterior orientation) problem
consists of finding the rotation and translation of
the object with respect to the camera coordinate sys-
tem. Given matching object and image features, one

260 David et al.

can easily determine the pose that best aligns those
matches. For three to five matches, the pose can
be found in closed form by solving sets of polyno-
mial equations (Fischler and Bolles, 1981; Haralick
et al., 1991; Horaud et al., 1989; Yuan, 1989). For
six or more matches, linear and approximate non-
linear methods are generally used (DeMenthon and
Davis, 1995; Fiore, 2001; Hartley and Zisserman,
2000; Horn, 1986; Lu et al., 2000).

2. Solving the correspondence problem consists of
finding matching object and image features. If the
object pose is known, one can relatively easily de-
termine the matching features. Projecting the ob-
ject in the known pose into the original image, one
can identify matches among the object features that
project sufficiently close to an image feature. This
approach is typically used for pose verification,
which attempts to determine how good a hypoth-
esized pose is (Grimson and Huttenlocher, 1991).

The classic approach to solving these coupled prob-
lems is the hypothesize-and-test approach (Grimson,
1990). In this approach, a small set of object feature to
image feature correspondences are first hypothesized.
Based on these correspondences, the pose of the ob-
ject is computed. Using this pose, the object points
are back-projected into the image. If the original and
back-projected images are sufficiently similar, then the
pose is accepted; otherwise, a new hypothesis is formed
and this process is repeated. Perhaps the best known
example of this approach is the RANSAC algorithm
(Fischler and Bolles, 1981) for the case that no infor-
mation is available to constrain the correspondences
of object points to image points. When three corre-
spondences are used to determine a pose, a high prob-
ability of success can be achieved by the RANSAC
algorithm in O(M N 3 log N) time when there are M
object points and N image points (see Appendix A for
details).

The problem addressed here is one that is encoun-
tered when taking a model-based approach to the object
recognition problem, and as such has received consid-
erable attention. (The other main approach to object
recognition is the appearance-based approach (Murase
and Nayar, 1995) in which multiple views of the object
are compared to the image. However, since 3D models
are not used, this approach doesn’t provide accurate ob-
ject pose.) Many investigators (e.g., Cass, 1994, 1998;
Ely et al., 1995; Jacobs, 1992; Lamdan and Wolfson,
1988; Procter and Illingworth, 1997) approximate the

nonlinear perspective projection via linear affine ap-
proximations. This is accurate when the relative depths
of object features are small compared to the distance
of the object from the camera. Among the pioneer con-
tributions were Baird’s tree-pruning method (Baird,
1985), with exponential time complexity for unequal
point sets, and Ullman’s alignment method (Ullman,
1989) with time complexity O(N 4 M3 log M).

The geometric hashing method (Lamdan and
Wolfson, 1988) determines an object’s identity and
pose using a hashing metric computed from a set of
image features. Because the hashing metric must be
invariant to camera viewpoint, and because there are
no view-invariant image features for general 3D point
sets (for either perspective or affine cameras) (Burns
et al., 1993), this method can only be applied to planar
scenes.

In DeMenthon and Davis (1993), we proposed an ap-
proach using binary search by bisection of pose boxes
in two 4D spaces, extending the research of Baird
(1985), Cass (1992), and Breuel (1992) on affine trans-
forms, but it had high-order complexity. The approach
taken by Jurie (1999) was inspired by our work and
belongs to the same family of methods. An initial vol-
ume of pose space is guessed, and all of the correspon-
dences compatible with this volume are first taken into
account. Then the pose volume is recursively reduced
until it can be viewed as a single pose. As a Gaussian er-
ror model is used, boxes of pose space are pruned not
by counting the number of correspondences that are
compatible with the box as in DeMenthon and Davis
(1993), but on the basis of the probability of having an
object model in the image within the range of poses
defined by the box.

Among the researchers who have addressed the full
perspective problem, Wunsch and Hirzinger (1996) for-
malize the abstract problem in a way similar to the
approach advocated here as the optimization of an ob-
jective function combining correspondence and pose
constraints. However, the correspondence constraints
are not represented analytically. Instead, each object
feature is explicitly matched to the closest lines of sight
of the image features. The closest 3D points on the lines
of sight are found for each object feature, and the pose
that brings the object features closest to these 3D points
is selected; this allows an easier 3D to 3D pose problem
to be solved. The process is repeated until a minimum
of the objective function is reached.

The object recognition approach of Beis and
Lowe (1999) uses view-variant 2D image features to

SoftPOSIT: Simultaneous Pose and Correspondence Determination 261

index 3D object models. Off-line training is performed
to learn 2D feature groupings associated with large
numbers of views of the objects. Then, the on-line
recognition stage uses new feature groupings to index
into a database of learned object-to-image correspon-
dence hypotheses, and these hypotheses are used for
pose estimation and verification.

The pose clustering approach to model-to-image reg-
istration is similar to the classic hypothesize-and-test
approach. Instead of testing each hypothesis as it is
generated, all hypotheses are generated and clustered
in a pose space before any back-projection and testing
takes place. This later step is performed only on poses
associated with high-probability clusters. The idea
is that hypotheses including only correct correspon-
dences should form larger clusters in pose space than
hypotheses that include incorrect correspondences.
Olson (1997) gives a randomized algorithm for pose
clustering whose time complexity is O(M N 3).

The method of Beveridge and Riseman (1992, 1995)
is also related to our approach. Random-start local
search is combined with a hybrid pose estimation al-
gorithm employing both full-perspective and weak-
perspective camera models. A steepest descent search
in the space of object-to-image line segment correspon-
dences is performed. A weak-perspective pose algo-
rithm is used to rank neighboring points in this search
space, and a full-perspective pose algorithm is used to
update the object’s pose after making a move to a new
set of correspondences. The time complexity of this al-
gorithm was empirically determined to be O(M2 N 2).

When there are M object points and N image points,
the dimension of the solution space for this problem is
M +6 since there are M correspondence variables and
6 pose variables. Each correspondence variable has the
domain {1, 2, . . . , N , ∅} representing a match of an ob-
ject point to one of the N image points or to no image
point (represented by ∅), and each pose variable has
a continuous domain determined by the allowed range
of object translations and rotations. Most algorithms
don’t explicitly search this M + 6-dimensional space,
but instead assume that pose is determined by cor-
respondences or that correspondences are determined
by pose, and so search either an M-dimensional or a
6-dimensional space. The SoftPOSIT approach is dif-
ferent in that its search alternates between these two
spaces.

The SoftPOSIT approach to solving the model-
to-image registration problem applies the formalism
proposed by Gold, Rangarajan and others (Gold and

Rangarajan, 1996; Gold et al., 1998) when they solved
the correspondence and pose problem in matching two
images or two 3D objects. We extend it to the more
difficult problem of registration between a 3D object
and its perspective image, which they did not address.
The SoftPOSIT algorithm integrates an iterative pose
technique called POSIT (Pose from Orthography
and Scaling with ITerations) (DeMenthon and Davis,
1995), and an iterative correspondence assignment
technique called softassign (Gold and Rangarajan,
1996; Gold et al., 1998) into a single iteration loop.
A global objective function is defined that captures
the nature of the problem in terms of both pose and
correspondence and combines the formalisms of both
iterative techniques. The correspondence and the
pose are determined simultaneously by applying a
deterministic annealing schedule and by minimizing
this global objective function at each iteration step.

Figure 1 shows an example computation of
SoftPOSIT for an object with 15 points. Notice that
it would be impossible to make hard correspondence
decisions for the initial pose (frame 1), where the ob-
ject’s image does not match the actual image at all.
The deterministic annealing mechanism keeps all the
options open until the two images are almost aligned.
As another example of SoftPOSIT, Fig. 2 shows the
trajectory of the perspective projection of a cube being
aligned to an image of a cube.

In the following sections, we examine each step of
the method. We then provide pseudocode for the al-
gorithm. We then evaluate the algorithm using Monte
Carlo simulations with various levels of clutter, oc-
clusion and image noise, and finally we apply the
algorithm to some real imagery.

2. A New Formulation of the POSIT Algorithm

One of the building blocks of SoftPOSIT is the POSIT
algorithm, presented in detail in DeMenthon and Davis
(1995), which determines pose from known corre-
spondences. The presentation given in DeMenthon and
Davis (1995) requires that an object point with a known
image be selected as the origin of the object coordinate
system. This is possible with POSIT because corre-
spondences are assumed to be known. Later, however,
when we assume that correspondences are unknown,
this will not be possible. Hence, we give a new for-
mulation of the POSIT algorithm below that has no
preferential treatment of the object origin, and then we

262 David et al.

Figure 1. Evolution of perspective projections for a 15-point object (solid lines) being aligned by the SoftPOSIT algorithm to an image (dashed
lines) with one occluded object point and two clutter points. The iteration step of the algorithm is shown under each frame.

SoftPOSIT: Simultaneous Pose and Correspondence Determination 263

Figure 2. The trajectory of the perspective projection of a cube
(solid lines) being aligned by the SoftPOSIT algorithm to an image
of a cube (dashed lines), where one vertex of the cube is occluded.
A simple object is used for the sake of clarity.

present a variant of this algorithm, still with known
correspondences, using the closed-form minimization
of an objective function. It is this objective function
which is modified in the next section to analytically
characterize the global pose-correspondence problem
(i.e., without known correspondences) in a single
equation.

Consider a pinhole camera of focal length f and
an image feature point p with Euclidean coordinates
x and y and homogeneous coordinates (wx, wy, w).
The point p is the perspective projection of the 3D
object point P with homogeneous coordinates P =
(X, Y, Z , 1)T in the frame of reference of the object
whose origin is at P0 in the camera frame (see Fig. 3).
The Euclidean coordinates of P in the object frame are
represented by the vector P̃ = (X, Y, Z)T from P0 to
P .

In our problem, there is an unknown coordinate
transformation between the object and the camera, rep-
resented by a rotation matrix R = [R1 R2 R3]T and a
translation vector T = (Tx , Ty, Tz)T. The vectors RT

1 ,
RT

2 , RT
3 are the row vectors of the rotation matrix; they

are the unit vectors of the camera coordinate system
expressed in the object coordinate system. The transla-
tion vector T is the vector from the center of projection
O of the camera to the origin P0 of the object. The coor-
dinates of the perspective image point p can be shown

Figure 3. Camera geometry. A camera with center of projection O ,
focal length f , image center c, and image plane �, projects object
point P onto image point p. T is the translation between the camera
frame and the object frame, whose origin is at P0 with respect to the
camera frame. The coordinates of point P with respect to the object
frame are given by the 3-vector P̃.

to be related to the coordinates of the object point P by

wx

wy

w

 =

f RT
1 f Tx

f RT
2 f Ty

RT
3 Tz

 [

P̃
1

]
.

The homogeneous image point coordinates are defined
up to a multiplicative constant; therefore the validity
of the equality is not affected if we multiply all the
elements of the perspective projection matrix by 1/Tz .
We also introduce the scaling factor s = f/Tz (the
reason for this terminology becomes clear below). We
obtain

[
wx

wy

]
=

[
sRT

1 sTx

sRT
2 sTy

][
P̃

1

]
(1)

with

w = R3 · P̃/Tz + 1. (2)

In the expression for w the dot product R3 · P̃ rep-
resents the projection of the vector P̃ onto the optical
axis of the camera. Indeed, in the object coordinate
system where P is defined, R3 is the unit vector of the
optical axis. When the depth range of the object along
the optical axis of the camera is small with respect to
the object distance, R3 · P̃ is small with respect to Tz ,
and therefore w is close to 1. In this case, perspective

264 David et al.

projection gives results that are similar to the following
transformation:[

x

y

]
=

[
sRT

1 sTx

sRT
2 sTy

][
P̃

1

]
. (3)

This expression defines the scaled orthographic projec-
tion p′ of the 3D point P . The factor s is the scaling fac-
tor of this scaled orthographic projection. When s = 1,
this equation expresses a transformation of points from
an object coordinate system to a camera coordinate sys-
tem, and uses two of the three object point coordinates
in determining the image coordinates; this is the defini-
tion of a pure orthographic projection. With a factor s
different from 1, this image is scaled and approximates
a perspective image because the scaling is inversely
proportional to the distance Tz from the camera center
of projection to the object origin P0 (s = f/Tz).

The general perspective equation (Eq. (1)) can be
rewritten as

[X Y Z 1]

[
sR1 sR2

sTx sTy

]
= [wx wy]. (4)

Assume that for each image point p with coordinates
x and y the corresponding homogeneous coordinate w

has been computed at a previous computation step and
is known. Then we are able to calculate wx and wy,
and the previous equation expresses the relationship
between the unknown pose components sR1, sR2, sTx ,
sTy , and the known image components wx and wy and
known object coordinates X , Y , Z of P̃. If we know M
object points Pk , k = 1, . . . , M , with Euclidean coor-
dinates P̃k = (Xk, Yk, Zk)T, their corresponding image
points pk , and their homogeneous components wk , then
we can then write two linear systems of M equations
that can be solved for the unknown components of vec-
tors sR1, sR2 and the unknowns sTx and sTy , provided
the rank of the matrix of object point coordinates is at
least 4. Thus, at least four of the points of the object for
which we use the image points must be noncoplanar.
After the unknowns sR1 and sR2 are obtained, we can
extract s, R1, and R2 by imposing the condition that R1

and R2 must be unit vectors. Then we can obtain R3 as
the cross-product of R1 and R2:

s = (|sR1||sR2|)1/2 (geometric mean),

R1 = (sR1)/s, R2 = (sR2)/s,

R3 = R1 × R2,

Tx = (sTx)/s, Ty = (sTy)/s, Tz = f/s.

An additional intermediary step that improves perfor-
mance and quality of results consists of using unit vec-
tors R′

1 and R′
2 that are mutually perpendicular and

closest to R1 and R2 in the least square sense. These
vectors can be found by singular value decomposition
(SVD) (see the Matlab code in DeMenthon and David
(2001)).

How can we compute the wk components in Eq. (4)
that determine the right-hand side rows (wk xk, wk yk)
corresponding to image point pk? We saw that setting
wk = 1 for every point is a good first step because it
amounts to solving the problem with a scaled ortho-
graphic model of projection. Once we have the pose
result for this first step, we can compute better esti-
mates for the wk using Eq. (2). Then we can solve the
system of Eq. (4) again to obtain a refined pose. This
process is repeated, and the iteration is stopped when
the process becomes stationary.

3. Geometry and Objective Function

We now look at a geometric interpretation of this
method in order to propose a variant using an ob-
jective function. As shown in Fig. 4, consider a pin-
hole camera with center of projection at O , optical
axis aligned with Oz, image plane � at distance f
from O , and image center (principal point) at c. Con-
sider an object, the origin of its coordinate system
at P0, a point P of this object, a corresponding im-
age point p, and the line of sight L of p. The image
point p′ is the scaled orthographic projection of object
point P . The image point p′′ is the scaled orthographic
projection of point PL obtained by shifting P to the
line of sight of p in a direction parallel to the image
plane.

One can show (see Appendix B) that the image plane
vector from c to p′ is

cp′ = s(R1 · P̃ + Tx , R2 · P̃ + Ty).

In other words, the left-hand side of Eq. (4) represents
the vector cp′ in the image plane. One can also show
that the image plane vector from c to p′′ is cp′′ =
(wx, wy) = wcp. In other words, the right-hand side
of Eq. (4) represents the vector cp′′ in the image plane.
The image point p′′ can be interpreted as a correction
of the image point p from a perspective projection to
a scaled orthographic projection of a point PL located
on the line of sight at the same distance as P . P is on
the line of sight L of p if, and only if, the image points

SoftPOSIT: Simultaneous Pose and Correspondence Determination 265

Figure 4. Geometric interpretation of the POSIT computation. Im-
age point p′, the scaled orthographic projection of object point P ,
is computed by the left-hand side of Eq. (4). Image point p′′, the
scaled orthographic projection of point PL on the line of sight of p,
is computed by the right-hand side of this equation. The equation
is satisfied when the two points are superposed, which requires that
the object point P be on the line of sight of image point p. The
plane of the figure is chosen to contain the optical axis and the line
of sight L . The points P0, P , P ′, and p′ are generally out of this
plane.

p′ and p′′ are superposed. Then cp′ = cp′′, i.e. Eq. (4)
is satisfied.

When we try to match a set of object points Pk ,
k = 1, . . . , M , to the lines of sight Lk of their image
points pk , it is unlikely that all or even any of the points
will fall on their corresponding lines of sight, or equiva-
lently that cp′

k = cp′′
k or p′

kp′′
k = 0. The least squares

solution of Eq. (4) for pose enforces these constraints.
Alternatively, we can minimize a global objective func-
tion E equal to the sum of the squared distances
d2

k =| p′
kp′′

k | 2 between image points p′
k and p′′

k :

E =
∑

k

d2
k =

∑
k

|cp′
k − cpk

′′|2

=
∑

k

((Q1 · Pk − wk xk)2 + (Q2 · Pk − wk yk)2)

(5)

where we have introduced the vectors Q1, Q2, and
Pk with four homogeneous coordinates to simplify the

subsequent notation:

Q1 = s(R1, Tx),

Q2 = s(R2, Ty),

Pk = (P̃k, 1).

We call Q1 and Q2 the pose vectors.
Referring again to Fig. 4, notice that p′p′′ =

sP′P′′ = sPPL. Therefore minimizing this objective
function consists of minimizing the scaled sum of
squared distances of object points to lines of sight,
when distances are taken along directions parallel to
the image plane. This objective function is minimized
iteratively. Initially, the wk are all set to 1. Then the fol-
lowing two operations take place at each iteration step:

1. Compute the pose vectors Q1 and Q2 assuming the
terms wk are known (Eq. (5)).

2. Compute the correction terms wk using the pose
vectors Q1 and Q2 just computed (Eq. (2)).

We now focus on the optimization of the pose vectors
Q1 and Q2. The pose vectors that will minimize the
objective function E at a given iteration step are those
for which all the partial derivatives of the objective
function with respect to the coordinates of these vectors
are zero. This condition provides 4 × 4 linear systems
for the coordinates of Q1 and Q2 whose solutions are

Q1 =
(∑

k

PkPT
k

)−1(∑
k

wk xkPk

)
, (6)

Q2 =
(∑

k

PkPT
k

)−1(∑
k

wk ykPk

)
. (7)

The matrix L = (
∑

k PkPT
k) is a 4 × 4 matrix that can

be precomputed.
With either method, the point p′′ can be viewed as

the image point p “corrected” for scaled orthographic
projection using w computed at the previous step of
the iteration. The next iteration step finds the pose such
that the scaled orthographic projection of each point P
is as close as possible to its corrected image point.

4. Pose Calculation with Unknown
Correspondences

When correspondences are unknown, each image fea-
ture point p j can potentially match any of the object

266 David et al.

feature points Pk , and therefore must be corrected using
the value of w specific to the coordinates of Pk :

wk = R3 · P̃k/Tz + 1. (8)

Therefore for each image point p j and each object point
Pk we generate a corrected image point p′′

jk , aligned
with the image center c and with p j , and defined by

cp′′
jk = wkcpj. (9)

We make use of the squared distances between these
corrected image points p′′

jk and the scaled orthographic
projections p′

k of the points Pk whose positions are
provided by

cp′
k =

[
Q1 · Pk

Q2 · Pk

]
. (10)

These squared distances are

d2
jk = |p′

k p′
jk|2 = (Q1 · Pk − wk x j)

2

+ (Q2 · Pk − wk y j)
2, (11)

where x j and y j are the image coordinates of the image
point p j , Pk is the vector (P̃k, 1), and Q1 and Q2 are
pose vectors introduced in the previous section and re-
computed at each iteration step. The term wk is defined
by Eq. (8).

The simultaneous pose and correspondence problem
can then be formulated as a minimization of the global
objective function

E =
N∑

j=1

M∑
k=1

m jk
(
d2

jk − α
)

=
N∑

j=1

M∑
k=1

m jk((Q1 · Pk − wk x j)
2

+ (Q2 · Pk − wk y j)
2 − α) (12)

where the m jk are weights, equal to 0 or 1, for each
of the squared distances d2

jk , and where M and N are
the number of object and image points, respectively.
The m jk are correspondence variables that define the
assignments between image and object feature points;
these must satisfy a number of correspondence con-
straints as discussed below. The α term encourages the
match of p j to Pk when d2

jk < α (provided the cor-
respondence constraints are satisfied), and it penalizes
this match when d2

jk > α. This moves the minimum

away from the trivial solution m jk = 0 for all j and
k. Note that when all the assignments are well-defined,
i.e., m jk are equal to 0 or 1, and when α = 0, this ob-
jective function becomes equivalent to that defined in
Eq. (5).

This objective function is minimized iteratively, with
the following three operations at each iteration step:

1. Compute the correspondence variables assuming
everything else is fixed (see below).

2. Compute the pose vectors Q1 and Q2 assuming ev-
erything else is fixed (see below).

3. Compute the correction terms wk using the pose
vectors Q1 and Q2 just computed (as described in
the previous section).

This iterative approach is related to the general
expectation-maximization (EM) algorithm (Moon,
1996). In EM, given a guess for the unknown param-
eters (the pose in our problem) and a set of observed
data (the image points in our problem), the expected
value of the unobserved variables (the correspondence
matrix in our problem) is estimated. Then, given this
estimate for the unobserved variables, the maximum
likelihood estimates of the parameters are computed.
This process is repeated until these estimates converge.

4.1. Pose Problem

We now focus on the problem of finding the optimal
poses Q1 and Q2, assuming the correspondence vari-
ables m jk are known and fixed. As in the previous sec-
tion, the pose vectors that will minimize the objective
function E at a given iteration step are those for which
all the partial derivatives of the objective function with
respect to the coordinates of these vectors are 0. This
condition provides 4 × 4 linear systems for the coordi-
nates of Q1 and Q2 whose solutions are

Q1 =
(

M∑
k=1

m ′
kPkPT

k

)−1(N∑
j=1

M∑
k=1

m jkwk x j Pk

)
,

(13)

Q2 =
(

M∑
k=1

m ′
kPkPT

k

)−1(N∑
j=1

M∑
k=1

m jkwk y j Pk

)
,

(14)

with m ′
k = ∑N

j=1 m jk . The terms PkPT
k are 4 × 4 ma-

trices. Therefore computing Q1 and Q2 requires the in-
version of a single 4 × 4 matrix, L = (

∑M
k=1 m ′

kPkPT
k),

SoftPOSIT: Simultaneous Pose and Correspondence Determination 267

a fairly inexpensive operation (note that because the
term in column k and slack row N + 1 (see be-
low) is generally greater than 0, m ′

k = ∑N
j=1 m jk is

generally not equal to 1, and L generally cannot be
precomputed).

4.2. Correspondence Problem

We next find the optimal values of the correspondence
variables m jk assuming that the parameters d2

jk in the
expression for the objective function E are known and
fixed. Our aim is to find a zero-one assignment (or
match) matrix, m = {m jk}, that explicitly specifies the
matchings between a set of N image points and a set of
M object points, and that minimizes the objective func-
tion E . m has one row for each of the N image points p j

and one column for each of the M object points Pk . The
assignment matrix must satisfy the constraint that each
image point match at most one object point, and vice
versa. By adding an extra row and column to m, slack
row N + 1 and slack column M + 1, these constraints
can be expresses as m jk ∈ {0, 1} for 1 ≤ j ≤ N + 1
and 1 ≤ k ≤ M + 1,

∑M+1
i=1 m ji = 1 for 1 ≤ j ≤ N ,

and
∑N+1

i=1 mik = 1 for 1 ≤ k ≤ M . A value of 1 in the
slack column M +1 at row j indicates that image point
p j has not found any match among the object points.
A value of 1 in the slack row N + 1 at column k indi-
cates that the object point Pk is not seen in the image
and does not match any image feature. The objective
function E will be minimum if the assignment matrix
matches image and object points with the smallest dis-
tances d2

jk . This problem can be solved by the iterative
softassign technique (Gold and Rangarajan, 1996; Gold
et al., 1998). The iteration for the assignment matrix m
begins with a matrix m0 = {m0

jk} in which element
m0

jk is initialized to exp(−β(d2
jk − α)), with β very

small, and with all elements in the slack row and slack
column set to a small constant. See Gold et al. (1998)
for an analytical justification. The exponentiation has
the effect of ensuring that all elements of the assign-
ment matrix are positive. The parameter α determines
how far apart two points must be before they are con-
sidered unmatchable. It should be set to the maximum
allowed squared distance between an image point and
the matching projected object point. This should be a
function of the noise level in the image. With normally
distributed x and y noise of zero mean and standard de-
viation σ , the squared distance between a true 2D point
and the measured 2D point has a χ2 distribution with
2 degrees of freedom (Hartley and Zisserman, 2000,

p. 549). Thus, to ensure with probability 0.99 that a
measured point is allowed to match to a true point, we
should take α = 9.21 × σ 2. Since initial pose esti-
mates can be very inaccurate, the initial distances d2

jk
for correct correspondences will likely be greater than
α. However, no correspondences will be initially ruled
out as β is initially very small; a small β makes all m0

jk
nearly equal with slightly larger values being assigned
to correspondences having small d2

jk . As β increases,
and presumably the accuracy of the pose as well, the
influence of α becomes more significant until the end
of the iteration where correspondences with d2

jk > α

are rejected.
The continuous matrix m0 converges toward the dis-

crete assignment matrix m due to two mechanisms that
are used concurrently:

1. First, a technique due to Sinkhorn (1964) is applied.
When each row and column of a square correspon-
dence matrix is normalized (several times, alternat-
ingly) by the sum of the elements of that row or
column respectively, the resulting matrix has posi-
tive elements with all rows and columns summing
to 1.

2. The term β is increased as the iteration proceeds. As
β increases and each row or column of m0 is renor-
malized, the terms m0

jk corresponding to the small-
est d2

jk tend to converge to 1, while the other terms
tend to converge to 0. This is a deterministic an-
nealing process (Geiger and Yuille, 1991) known as
softmax (Bridle, 1990). This is a desirable behavior,
since it leads to an assignment of correspondences
that satisfy the matching constraints and whose sum
of distances is minimized.

This combination of deterministic annealing and
Sinkhorn’s technique in an iteration loop was called
softassign by Gold and Rangarajan (1996) and Gold
et al. (1998). The matrix m resulting from an itera-
tion loop that comprises these two substeps is the as-
signment that minimizes the global objective function
E = ∑J

j=1

∑K
k=1 m jk(d2

jk − α). As the pseudocode in
Algorithm 1 shows, these two substeps are interleaved
in the iteration loop of SoftPOSIT, along with the sub-
steps that find the optimal pose and correct the image
points by scaled orthographic distortions.

At the end of the SoftPOSIT iteration, the matrix
m will be very close to a true zero-one assignment
matrix. If desired, one can obtain discrete correspon-
dences from this matrix and then apply any algorithm

268 David et al.

Algorithm 1 SoftPOSIT pseudocode.

1. Inputs:

(a) List of M object points, Pk = (Xk, Yk, Zk, 1)T = (P̃k, 1), 1 ≤ k ≤ M ,
(b) List of N image points, p j = (x j , y j), 1 ≤ j ≤ N .

2. Initialize:

(a) Slack elements of assignment matrix m0 to γ = 1/(max{M, N } + 1),
(b) β to β0 (β0 ≈ 0.0004 if nothing is known about the pose, and is larger if an initial pose can be guessed),
(c) Pose vectors Q1 and Q2 using the expected pose or a random pose within the expected range,
(d) wk = 1, 1 ≤ k ≤ M .

3. Do A until β > βfinal (βfinal ≈ 0.5) (Deterministic annealing loop)

(a) Compute squared distances d2
jk = (Q1 · Pk − wk x j)2 + (Q2 · Pk − wk y j)2, 1 ≤ j ≤ N , 1 ≤ k ≤ M .

(b) Compute m0
jk = γ exp (−β (d2

jk − α)), 1 ≤ j ≤ N , 1 ≤ k ≤ M .
(c) Do B until ‖mi − mi−1‖ small (Sinkhorn’s method)

i. Normalize nonslack rows of m: mi+1
jk = mi

jk/
∑M+1

k=1 mi
jk , 1 ≤ j ≤ N , 1 ≤ k ≤ M + 1.

ii. Normalize nonslack columns of m: mi+1
jk = mi+1

jk /
∑N+1

j=1 mi+1
jk , 1 ≤ j ≤ N + 1, 1 ≤ k ≤ M .

(d) End Do B

4. Compute the 4 × 4 matrix L = (
∑M

k=1 m ′
kPkPT

k) with m ′
k = ∑N

j=1 m jk .
5. Compute L−1.
6. Compute Q1 = (Q1

1, Q2
1, Q3

1, Q4
1)T = L−1(

∑N
j=1

∑M
k=1 m jkwk x j Pk).

7. Compute Q2 = (Q1
2, Q2

2, Q3
2, Q4

2)T = L−1(
∑N

j=1

∑M
k=1 m jkwk y j Pk).

8. Compute s = (‖(Q1
1, Q2

1, Q3
1)‖‖(Q1

2, Q2
2, Q3

2)‖)1/2.
9. Compute R1 = (Q1

1, Q2
1, Q3

1)T/s, R2 = (Q1
2, Q2

2, Q3
2)T/s, R3 = R1 × R2.

10. Compute Tx = Q4
1/s, Ty = Q4

2/s, Tz = f/s.
11. Compute wk = R3 · P̃k/Tz + 1, 1 ≤ k ≤ M .
12. β = βupdateβ (βupdate ≈ 1.05) .
13. End Do A
14. Outputs:

(a) Rotation matrix R = [R1 R2 R3]T,
(b) Translation vector T = (Tx , Ty, Tz),
(c) Assignment matrix m = {m jk} between the list of image points and the list of object points.

that computes pose from known correspondences to
obtain the most accurate pose possible.

The SoftPOSIT algorithm has a number of ad-
vantages over conventional nonlinear optimization al-
gorithms. Typical nonlinear constrained optimization
problems are defined by the minimization of an ob-
jective function on a feasible region that is defined
by equality and inequality constraints. The simulta-
neous pose and correspondence problem requires the

minimization of an objective function subject to the
constraint that the final assignment matrix must be a
zero-one matrix whose rows and columns each sum
to one. A constraint such as this would be impossible
to express using equality and inequality constraints.
SoftPOSIT uses deterministic annealing to convert this
discrete problem into a continuous one that is indexed
by the control parameter β. This has two advantages.
First, it allows solutions to the simpler continuous

SoftPOSIT: Simultaneous Pose and Correspondence Determination 269

problem to slowly transform into a solution to the
discrete problem. Secondly, many local minima are
avoided by minimizing an objective function that is
highly smoothed during the early phases of the opti-
mization but which gradually transforms into the orig-
inal objective function and constraints at the end of the
optimization.

5. Random Start SoftPOSIT

The SoftPOSIT algorithm performs a search starting
from an initial guess for the object’s pose. The global
objective function that this search attempts to mini-
mize (Eq. (12)) has many local optima. The determin-
istic annealing process initially smooths this objective
function, which eliminates shallow local optima and
greatly improves SoftPOSIT’s chances of finding the
global optimum if it is near the initial guess. How-
ever, one cannot expect to smooth the objective func-
tion to the extent that it has a single local optimum at the
same location as the global optimum of the unsmoothed
objective function: too much smoothing can hide the
global optimum and lead the search away from this
optimum just as quickly as no smoothing at all. Thus,
the search performed by SoftPOSIT is local, and there
is no guarantee of finding the global optimum given a
single initial guess.

Given an initial pose that lies in a valley of the
smoothed objective function, we expect the algorithm
to converge to the minimum associated with that val-
ley. To examine other valleys, we must start with points
that lie in them. The size and shape of these valleys
depends on a number of factors including the param-
eters of the annealing schedule (β0 and βupdate), the
complexity of the 3D object, the amount of object oc-
clusion, the amount of image clutter, and the image
measurement noise. A common method of searching
for a global optimum, and the one used here, is to
run the local search algorithm starting from a number
of different initial guesses, and keep the first solution
that meets a specified termination criterion. Our initial
guesses span the range [−π, π] for the three Euler ro-
tation angles, and a 3D space of translations known to
contain the true translation. We use a pseudo-random
number generator to generate random 6-vectors in a
unit 6D hypercube. (Using a quasi-random (Morokoff
and Caflisch, 1994) coverage of the hypercube did
not improve the performance of the algorithm.) These
points are then scaled to cover the expected ranges
of translation and rotation. The rest of this section

describes the search termination criterion that we
use.

5.1. Search Termination

Ideally, one would like to repeat the search from a new
starting point whenever the number of object-to-image
correspondences determined by the search is not max-
imal. With real data, however, one usually does not
know what this maximal number is. Instead, we repeat
the search when the number of object points that match
image points is less than some threshold tm . Due to
occlusion and imperfect image feature extraction algo-
rithms, not all object points will be detected as features
in an image of that object. Let the fraction of detected
object features be

pd = number of object points detected as image features

total number of object points
.

In the Monte Carlo simulations described below, pd is
known. With real imagery, however, pd must be esti-
mated based on the scene complexity and on the reli-
ability of the image processing algorithm in detecting
object features.

We terminate the search for better solutions when the
current solution is such that the number of object points
that match any image point is greater than or equal to
the threshold tm = ρpd M , where ρ determines what
percent of the detected object points must be matched
(0 < ρ ≤ 1), and M is the total number of object points,
so that pd M is the number of detected object points. ρ

accounts for measurement noise that typically prevents
some detected object features from being matched even
when a good pose is found. In the experiments dis-
cussed below, we take ρ = 0.8. This test is not perfect,
as it is possible for a pose to be very accurate even when
the number of matched points is less than this threshold;
this occurs mainly in cases of high noise. Conversely,
a wrong pose may be accepted when the ratio of clutter
features to detected object points is high. It has been
observed, however, that these situations are relatively
uncommon.

We note that Grimson and Huttenlocher (1991) have
derived an expression for a threshold on the number
of matched object points necessary to accept a local
optimum; their expression is a function of the numbers
of image and object points and of the sensor noise, and
guarantees with a specified probability that the globally
optimal solution has been found.

270 David et al.

5.2. Early Search Termination

The deterministic annealing loop of the SoftPOSIT al-
gorithm iterates over a range of values for the annealing
parameter β. In the experiments reported here, β is ini-
tialized to β0 = 0.0004 and is updated according to
β = 1.05 × β, and the annealing iteration ends when
the value of β exceeds 0.5. (The iteration may end ear-
lier if convergence is detected.) This means that the
annealing loop can run for up to 147 iterations. It is
usually the case that, by viewing the original image
and, overlaid on top of it, the projected object points
produced by SoftPOSIT, a person can determine very
early (e.g., around iteration 30) whether or not the al-
gorithm is going to converge to the correct pose. It
is desired that the algorithm make this determination
itself, so that whenever it detects that it seems to be
heading down an unfruitful path, it can end the cur-
rent search for a local optimum and restart from a new
random initial condition, thereby saving a significant
amount of processing time.

A simple test is performed at each iteration of
SoftPOSIT to determine if it should continue with the
iteration or restart. At the i th step of the SoftPOSIT
iteration, the match matrix mi = {mi

j,k} is used to
predict the final correspondences of object to image
points. Upon convergence of SoftPOSIT, one would
expect image point j to correspond to object point k
if mi

j,k > mi
u,v for all u �= j and all v �= k (though

this is not guaranteed). The number of predicted cor-
respondences at iteration i , ni , is just the number of
pairs (j, k) that satisfy this relation. We then define the
match ratio at step i as ri = ni/(pd K) where pd is the
fraction of detected object features as defined above.

The early termination test centers around this
match ratio measure. This measure is commonly used
(Grimson and Huttenlocher, 1991) at the end of a local
search to determine if the current solution for corre-
spondence and pose is good enough to end the search
for the global optimum. We, however, use this metric
within the local search itself. Let C denote the event
that the SoftPOSIT algorithm eventually converges to
the correct pose. Then the algorithm restarts after the
i th step of the iteration if P(C | ri) < λP(C), where
0 < λ ≤ 1. That is, the search is restarted from a
new random starting condition whenever the posterior
probability of eventually finding a correct pose given ri

drops to less than some fraction of the prior probability
of finding the correct pose. Notice that a separate pos-
terior probability function is required for each iteration

step because the ability to predict the eventual outcome
using ri changes as the iterations progress. Although
this test may result in the termination of some local
searches which would have eventually produced good
poses, it is expected that the total time required to find
a good pose will be less. Our experiments show that
this is indeed the case; we obtain a speedup by a factor
of 2.

Early termination is achieved by stopping the itera-
tion when ri falls below a threshold that is a function
of the iteration step i . For each i , this threshold is the
value of ri for which P(C | ri) = λP(C). The posterior
probability function for the i th step of the iteration can
be computed from P(C), the prior probability of find-
ing a correct pose on one random local search, and from
P(ri | C) and P(ri | C̄), the probabilities of observing
a particular match ratio on the i th iteration step given
that the eventual pose is either correct or incorrect, re-
spectively:

P(C | ri) = P(C)P(ri | C)

P(C)P(ri | C) + P(C̄)P(ri | C̄)
.

P(C), P(C̄), P(ri | C), and P(ri | C̄) are estimated in
Monte Carlo simulations of the algorithm in which the
number of object points and the levels of image clut-
ter, occlusion, and noise are all varied. The details of
these simulations are described in Section 6. To esti-
mate P(ri | C) and P(ri | C̄), the algorithm is repeat-
edly run on random test data. For each test, the values
of the match ratio ri computed at each iteration are
recorded. Once a SoftPOSIT iteration is completed,
ground truth information is used to determine whether
or not the correct pose was found. If the pose is correct,
the recorded values of ri are used to update histograms
representing the probability functions P(ri | C); oth-
erwise, histograms representing P(ri | C̄) are updated.
Upon completing this training, the histograms are nor-
malized. P(C) is easily estimated based on the percent
of the random tests that produced the correct pose. We
also have P(C̄) = 1 − P(C). Two of these estimated
probability functions are shown in Fig. 5.

6. Experiments

The two most important questions related to the perfor-
mance of the SoftPOSIT algorithm are (a) How often
does it find a “good” pose? and (b) How long does
it take? Both of these issues are investigated in this
section.

SoftPOSIT: Simultaneous Pose and Correspondence Determination 271

Figure 5. Probability functions estimated for (a) the first iteration, and (b) the 31st iteration, of the SoftPOSIT algorithm.

6.1. Monte Carlo Evaluation

The random-start SoftPOSIT algorithm has been ex-
tensively evaluated in Monte Carlo simulations. The
simulations and the performance of the algorithm are
discussed in this section. The simulations are charac-
terized by the five parameters: nt , M , pd , pc, and σ .
nt is the number of independent random trials to per-
form for each combination of values of the remain-
ing four parameters. M is the number of points (ver-
tices) in a 3D object. pd is the probability that the
image of any particular object point will be detected
as a feature point in the image. pd takes into account
occlusion of the 3D object points as well as the fact
that real image processing algorithms do not detect all
desired feature points, even when the corresponding
3D points are not occluded. pc is the probability that
any particular image feature point is clutter, that is,
is not the image of some 3D object point. Finally, σ

is the standard deviation of the normally distributed
noise in the x and y coordinates of the non-clutter
feature points, measured in pixels for a 1000 × 1000
image, generated by a simulated camera having a
37-degree field of view (a focal length of 1500 pix-
els). The current tests were performed with nt = 100,
M ∈ {20, 30, 40, 50, 60, 70, 80}, pd ∈ {0.4, 0.6, 0.8},
pc ∈ {0.2, 0.4, 0.6}, and σ ∈ {0.5, 1.0, 2.5}. (Be-
cause corner detection algorithms typically claim ac-
curacies of 1/10th of a pixel (Brand and Mohr,
1994), these values of σ are conservative.) With

these parameters, 18,900 independent trials were per-
formed.

For each trial, a 3D object is created in which the
M object vertices are randomly located in a sphere
centered at the object’s origin. Because this algorithm
works with points, not with line segments, it is only the
object vertices that are important in the current tests.
However, to make the images produced by the algo-
rithm easier to understand, we draw each object vertex
as connected by an edge to the two closest of the re-
maining object vertices. These connecting edges are
not used by the SoftPOSIT algorithm. The object is
then rotated into some arbitrary orientation, and trans-
lated to some random point in the field of view of the
camera. Next, the object is projected into the image
plane of the camera; each projected object point is de-
tected with probability pd . For those points that are
detected, normally distributed noise with mean zero
and standard deviation σ is added to both the x and
y coordinates of the feature points. Finally, randomly
located clutter feature points are added to the true (non-
clutter) feature points, so that 100 × pc percent of the
total number of feature points are clutter; to achieve
this, Mpd pc/(1− pc) clutter points must be added. The
clutter points are required to lie in the general vicinity
of the true feature points. However, to prevent the clut-
ter points from replacing missing true feature points,
each clutter point must be further than

√
2σ from any

projected object point, whether or not the point was
detected. Figure 6 shows a few examples of cluttered

272 David et al.

Figure 6. Typical images of randomly generated objects and images. The black points are projected object points and the white points (circles)
are clutter points. The black lines, which connect the object points, are included in these pictures to assist the reader in understanding the pictures;
they are not used by the algorithm. The number of points in the objects are 20 for (a), 30 for (b), 40 for (c), 50 for (d) and (e), 60 for (f) and
(g), 70 for (h), and 80 for (i). In all cases shown here, pd = 1.0 and pc = 0.6. This is the best case for occlusion (none), but the worst case for
clutter. In the actual experiments, pd and pc vary.

images of random objects that are typical of those used
in our experiments.

In our experiments, we consider a pose to be good
when it allows tm (defined in Section 5.1) or more of the
M object points to be matched to some image point. The
number of random starts (random initial pose guesses)
for each trial was limited to 10,000. Thus, if a good
pose is not found after 10,000 starts, the algorithm gives
up. (As discussed below, far fewer starts are typically
required for success.) Figures 7 and 8 show a number of
examples of poses found by SoftPOSIT when random
6-vectors are used as the initial guesses for pose.

Figure 9 shows the success rate of the algorithm (per-
cent of trials for which a good pose was found in 10,000
starts, given no knowledge of the correct pose) as a
function of the number of object points for σ = 2.5
and for all combinations of the parameters pd and pc.
(The algorithm performs a little better for σ = 0.5 and
σ = 1.0.) It can be seen from this figure that, for more
than 92% of the different combinations of simulation
parameters, a good pose is found in 90% or more of the
associated trials. For the remaining 8% of the tests, a
good pose is found in 75% or more of the trials. Over-
all, a good pose was found in 96.4% of the trials. As

SoftPOSIT: Simultaneous Pose and Correspondence Determination 273

Figure 7. Projected objects and cluttered images for which SoftPOSIT was successful. The small circles are the image points (including
projected object and clutter) to which the objects must be matched. The light gray points and lines show the projections of the objects in the
initial poses (random guesses) which lead to good poses being found. The black points and lines show the projections of the objects in the good
poses that are found. The black points that are not near any circle are occluded object points. Circles not near any black point are clutter. Again,
the gray and black lines are included in these pictures to assist the reader in understanding the pictures; they are not used by the algorithm. The
Monte Carlo parameters for these tests are pd = 0.6, pc = 0.4, σ = 2.5, M = 30 for (a) and (b), M = 50 for (c) and (d).

expected, the higher the occlusion rate (lower pd) and
the clutter rate (higher pc), the lower the success rate.
For the high-clutter tests, the success rate increases as
the number of object points decreases. This is due to
the algorithm’s ability to more easily match a small
number of object points to clutter than a large number
of object points to the same level of clutter.

Figure 10 shows the average number of random starts
required to find a good pose. These numbers generally
increase with increasing image clutter and occlusion.

However, for the reason given in the previous para-
graph, the performance for small numbers of object
points is better at higher levels of occlusion and clut-
ter. Other than in the highest occlusion and clutter case,
the mean number of starts is about constant or increases
very slowly with increasing number of object points.
Also, there does not appear to be any significant in-
crease in the standard deviation of the number of ran-
dom starts as the number of object points increases.
The mean number of starts over all of the tests is

274 David et al.

Figure 8. More complex objects and cluttered images for which SoftPOSIT was successful. The Monte Carlo parameters for these tests are
pd = 0.6, pc = 0.4, σ = 2.5 and M = 70 for (a) and (b), M = 80 for (c) and (d).

approximately 500; the mean exceeds 1100 starts only
in the single hardest case. Figure 11 shows the same
data but plotted as a function of the number of image
points. Again, except for the two highest occlusion and
clutter cases, the mean number of starts is about con-
stant or increases very slowly as the number of image
points increases.

6.2. Run Time Comparison

The RANSAC algorithm (Fischler and Bolles, 1981)
is the best known algorithm to compute object pose
given 3D object and 2D image points when correspon-
dences are not known in advance. In this section, we

compare the expected run time1 of SoftPOSIT to that of
RANSAC for each of the simulated data sets discussed
in Section 6.1.

The mean run time of SoftPOSIT on each of these
data sets was recorded during the Monte Carlo exper-
iments. As will be seen below, to have run RANSAC
on each of these data sets would have required a pro-
hibitive amount of time. This was not necessary, how-
ever, since we can accurately estimate the number of
random samples of the data that RANSAC will exam-
ine when solving any particular problem. The expected
run time of RANSAC is then the product of that number
of samples with the expected run time on one sample
of that data.

SoftPOSIT: Simultaneous Pose and Correspondence Determination 275

Figure 9. Success rate as a function of the number of object points
for fixed values of pd and pc . (Note that pd and pc are denoted by D
and C , respectively, in the legend of this figure and in the next few
figures.)

The computational complexity of a pose problem de-
pends on the three parameters M , pd , and pc defined
in Section 6.1. (Recall that pd and pc determine N ,
the number of image points.) For each combination of
these three parameters, we need to determine the ex-
pected run time of RANSAC for a single sample of
three object points and three image points2 from that
data. This was accomplished by running RANSAC on
many random samples generated using the same set of

Figure 10. Number of random starts required to find a good pose as a function of the number of object points for fixed values of pd and pc .
(a) Mean. (b) Standard deviation.

three complexity parameters. The time per sample for
a given problem complexity is estimated as the total
time used by RANSAC to process those samples (ex-
cluding time for initialization) divided by the number
of samples processed.

We now estimate how many samples RANSAC will
examine for problems of a particular complexity. In
Appendix A, we compute the probability, p, as a func-
tion of M , pd , and pc, that a random sample of three
object points and three image points consists of three
correct correspondences. Then, the number of random
samples of correspondence triples that must be exam-
ined by RANSAC in order to ensure with probability z
that at least one correct correspondence triple will be
examined is

s1(z, p) = log(1 − z)

log(1 − p)
.

Some implementations of RANSAC will halt as soon
as the first good sample is observed, thus reducing the
run time of the algorithm. In this case, the expected
number of random samples that will be examined in
order to observe the first good sample is

s2(p) = 1

p
.

Note that for all values of M , pd , and pc that
we consider here, and for z ≥ 0.75 (the smallest

276 David et al.

Figure 11. Number of random starts required to find a good pose as a function of the number of image points for fixed values of pd and pc .
(a) Mean. (b) Standard deviation.

observed success rate for SoftPOSIT), s2(p) < s1(z, p).
A RANSAC algorithm using s2 will always be faster
than one using s1, but it will not be as robust since
robustness increases with the number of samples ex-
amined. In the following, the run times of SoftPOSIT
and RANSAC are compared using both s1 and s2

to determine the number of samples that RANSAC
examines.

For a data set with complexity given by M , pd , and
pc, SoftPOSIT has a given observed success rate which
we denote by zsoftPOSIT(M, pd , pc) (see Fig. 9). Since
we did not run RANSAC on this data, we can’t com-
pare the success rates of SoftPOSIT and RANSAC
for a given fixed amount of run time. However, we
can compare the mean run time required by both
to achieve the same rate of success on problems of
the same complexity by estimating the run time of
RANSAC when its required probability of success is
z = zsoftPOSIT(M, pd , pc). These run times are shown in
Figs. 12 and 13. From these figures, it can be seen that
the RANSAC algorithm requires one to three orders of
magnitude more run time than SoftPOSIT for problems
with the same level of complexity in order to achieve
the same level of success. Furthermore, for the majority
of the complexity cases, run time as a function of input
size increases at a faster rate for the RANSAC algo-
rithms than for the SoftPOSIT algorithm. The totality
of Monte Carlo experiments described in Section 6.1
required about 30 days for SoftPOSIT to complete.

From this analysis it can be estimated that a RANSAC
algorithm which examines s1 samples would require
about 19.4 years to complete the same experiments,
and a RANSAC algorithm which examines s2 samples
would require about 4.5 years. Clearly, it would not
have been practical to run RANSAC on all of these
experiments.

6.3. Algorithm Complexity

The run-time complexity of a single invocation of Soft-
POSIT is O(M N) where M is the number of object
points and N is the number of image points; this is be-
cause the number of iterations on all of the loops in the
pseudocode in Algorithm 1 are bounded by a constant,
and each line inside a loop is computed in time at most
O(M N). As shown in Figs. 10 and 11, the mean number
of random starts (invocations of SoftPOSIT) required
to find a good pose in the worst (hardest) case, to en-
sure a probability of success of at least 0.95, appears to
be bounded by a function that increases linearly with
the size of the input; in the other cases, the mean num-
ber of random starts is approximately constant. That
is, the mean number of random starts is O(N), as-
suming that M < N , as is normally the case. Then
the run-time complexity of SoftPOSIT with random
starts is O(M N 2). This is a factor of N better than the
complexity of any published algorithm that solves the

SoftPOSIT: Simultaneous Pose and Correspondence Determination 277

Figure 12. Comparison of the mean run times of SoftPOSIT to those of RANSAC for problems with 20–40% clutter and 20–60% object
occlusion. The SoftPOSIT run times are marked with triangles. The RANSAC run times are marked with circles for the case that the number of
samples is determined by s1, and with squares for the case that the number of samples is determined by s2.

278 David et al.

Figure 13. Comparison of the mean run times of SoftPOSIT to those of RANSAC for problems with 60% clutter and 20–60% object occlusion.
The SoftPOSIT run times are marked with triangles. The RANSAC run times are marked with circles for the case that the number of samples
is determined by s1, and with squares for the case that the number of samples is determined by s2.

simultaneous pose and correspondence problem under
a full perspective camera model.

6.4. Experiments with Images

6.4.1. Autonomous Navigation Application. The
SoftPOSIT algorithm is being applied to the prob-
lem of autonomous vehicle navigation through a city
where a 3D architectural model of the city is registered
to images obtained from an on-board video camera.
Thus far, the algorithm has been applied only to im-
agery generated by a commercial virtual reality system.
Figure 14 shows an image generated by this system and
a object model projected into that image using the pose
computed by SoftPOSIT.

Image feature points are automatically located in
the image by detecting corners along the boundary of
bright sky regions. Because the 3D object model has
over 100,000 data points, we use a rough pose estimate
(such as might be generated by an onboard navigation
system) to cull the majority of object points that don’t
project into the estimated field of view. Then the object
points that do fall into this estimated field are further
culled by keeping only those that project near the de-
tected skyline. So far, the results have been very good.
Although this is not real imagery, the virtual reality
system used is very sophisticated, and as such, should
give a good indication of how the system will perform
on real imagery, which we are currently in the process
of acquiring.

SoftPOSIT: Simultaneous Pose and Correspondence Determination 279

Figure 14. Registration of a 3D city model to an image generated by a virtual reality system. Using the initial guess for the model’s pose,
the 3D model vertices that project near the detected skyline in the image are selected to be matched to image points along this skyline. (a)
Original image from the virtual reality system. (b) Selected model lines and points (white) projected into this image using the pose computed
by SoftPOSIT.

6.4.2. Robot Docking Application. The robot dock-
ing application requires that a small robot drive onto
a docking platform that is mounted on a larger robot.
Figure 15 shows a small robot docking onto a larger
robot. In order to accomplish this, the small robot must
determine the relative pose of the large robot. This is

done by using SoftPOSIT to align a 3D model of the
large robot to corner points extracted from an image of
the large robot.

The model of the large robot consists of a set of 3D
points that are extracted from a triangular faceted model
of the robot which was generated by a commercial

280 David et al.

Figure 15. A small robot docking onto a larger robot.

Figure 16. An image of the large robot as seen from the small robot’s point of view. Long straight lines detected in the image are shown in
white, and their intersections, which ideally should correspond to vertices in the 3D object, are shown as white circles with black centers.

SoftPOSIT: Simultaneous Pose and Correspondence Determination 281

Figure 17. The initial guess at the robot’s pose (a) that leads to the correct pose as shown in (b).

CAD system. To detect the corresponding points in
the image, lines are first detected using a combination
of the Canny edge detector, the Hough transform, and
a sorting procedure used to rank the lines produced by
the Hough transform. Corners are then found at the
intersections of those lines that satisfy simple length,
proximity, and angle constraints. Figure 16 shows the

lines and corner points detected in one image of the
large robot. In this test there are 70 points in the ob-
ject; 89% of these are occluded (or not detected in
the image), and 58% of the image points are clutter.
Figure 17(a) shows the initial guess generated by Soft-
POSIT which led to the correct pose being found, and
Fig. 17(b) shows this correct pose.

282 David et al.

7. Conclusions

We have developed and evaluated the SoftPOSIT al-
gorithm for determining the poses of objects from im-
ages. The correspondence and pose calculation com-
bines into one efficient iterative process the softassign
algorithm for determining correspondences and the
POSIT algorithm for determining pose. This algorithm
will be used as a component in an object recognition
system.

Our evaluation indicates that the algorithm performs
well under a variety of levels of occlusion, clutter,
and noise. The algorithm has been tested on synthetic
data for an autonomous navigation application, and
we are currently collecting real imagery for further
tests with this application. The algorithm has also been
tested in an autonomous docking application with good
results.

The complexity of SoftPOSIT has been empirically
determined to be O(M N 2). This is better than any
known algorithm that solves the simultaneous pose and
correspondence problem for a full perspective camera
model. More data should be collected to further vali-
date this claim.

Future work will involve extending the SoftPOSIT
algorithm to work with lines in addition to points. We
are also interested in performing a more thorough com-
parison of the performance of SoftPOSIT to that of
competing algorithms.

Appendix A: The Complexity of the
Hypothesize-And-Test Approach

The asymptotic run time complexity of the general
hypothesize-and-test approach to model-to-image reg-
istration is derived in this appendix. We first define a
few parameters:

M is the number of 3D object points,
N is the number of image points,
pd is the fraction of object points that are present (non-

occluded) in the image,
R is the desired probability of success (i.e., of finding

a good pose).

Given a set of data with outlier rate w, it is well
known (Fischler and Bolles, 1981) that the number k
of random samples of the data of size n that must be
examined in order to ensure with probability z that at

least one of those samples is outlier-free is

k = log(1 − z)

log(1 − (1 − w)n)
.

We need to determine how this number of samples de-
pends on M , N , pd , and R for the hypothesize-and-test
algorithm for large values of M and N .

Because we assume that the hypothesize-and-test al-
gorithm has no a priori information about which cor-
respondences are correct, correspondences are formed
from randomly chosen object and image points. We as-
sume that three correspondences are used to estimate
the object’s pose. Let S = pd M be the number of de-
tected (non-occluded) object points in the image. For a
correspondence to be correct, two conditions must be
satisfied: the object point must be non-occluded and the
image point must correspond to the object point. The
probability that the nth (n = 1, 2, 3) randomly chosen
correspondence is correct given that all previously cho-
sen correspondences are also correct is the probability
that these two conditions are satisfied, which is

S − n + 1

M − n + 1
· 1

N − n + 1
.

Then the probability that any sample consists of three
correct correspondences is

S(S − 1)(S − 2)

M(M − 1)(M − 2)N (N − 1)(N − 2)
≈ S3

M3 N 3

=
(

pd

N

)3

.

The probability that each of T random samples is bad
(i.e., each includes at least one incorrect correspon-
dence) is (

1 −
(

pd

N

)3)T

.

Thus to ensure with probability R that at least one of
the randomly chosen samples consists of three correct
correspondences, we must examine T samples where

1 −
(

1 −
(

pd

N

)3)T

≥ R.

Solving for T, we get

T ≥ log(1 − R)

log
(
1 − (pd

N

)3) .

SoftPOSIT: Simultaneous Pose and Correspondence Determination 283

Noting that (pd/N)3 is always less that 10−4 in our
experiments, and using the approximation log(1−x) ≈
−x for x small, the number of samples that need to be
examined is

T ≈
(

N

pd

)3

log

(
1

1 − R

)
.

Since each sample requires O(M log N) time for back-
projection and verification (assuming an O(log N)
nearest neighbor algorithm (Arya et al., 1998) is used to
search for image points close to each projected object
point), the complexity of the general hypothesize-and-
test algorithm is

(
N

pd

)3

log

(
1

1 − R

)
× O(M log N) =O(M N 3 log N).

Appendix B: Scaled Orthographic Image Points

Here we give a geometric interpretation of the rela-
tion between perspective and scaled orthographic im-
age points. Consider Fig. 4. A plane �′ parallel to the
image plane � is chosen to pass through the origin P0

of the object coordinate system. This plane cuts the
camera axis at H (OH = Tz). The point P projects
into P ′ on plane �′, and the image of P ′ on the image
plane � is called p′.

A plane �′′, also parallel to the image plane �,
passes through point P and cuts the line of sight L
at PL . The point PL projects onto the plane �′ at P ′′,
and the image of P ′′ on the image plane � is called p′′.

The plane defined by line L and the camera axis is
chosen as the plane of the figure. Therefore, the image
points p and p′′ are also in the plane of the figure.
Generally P0 and P are out of the plane of the figure,
and therefore p′ is also out of the plane of the figure.

Consider again the equations of perspective
(Eqs. (1), (2)):

[
wx

wy

]
=

[
sRT

1 sTx

sRT
2 sTy

][
P̃

1

]
. (15)

with w = R3 · P̃/Tz + 1. We can see that cp′ =
s(R1 · P̃ + Tx , R2 · P̃ + Ty). Indeed, the terms in paren-
theses are the x and y camera coordinates of P and
therefore also of P ′, and the factor s scales down these
coordinates to those of the image p′ of P ′. In other
words, the column vector produced by the right-hand

side of Eq. (15) represents the vector cp′ in the image
plane.

On the other hand, cp′′ = (wx, wy) = wcp. Indeed
the z-coordinate of P in the camera coordinate system
is R3 · P̃ + Tz , i.e. wTz . It is also the z-coordinate of
PL . Therefore OPL = wTzOp/ f . The x and y camera
coordinates of PL are also those of P ′′, and the factor
s = f/Tz scales down these coordinates to those of
the image p′′ of P ′′. Thus cp′′ = wcp. In other words,
the column vector of the left-hand side of Eq. (15) rep-
resents the vector cp′′ in the image plane. The image
point p′′ can be interpreted as a correction of the im-
age point p from a perspective projection to a scaled
orthographic projection of a point PL located on the
line of sight at the same distance as P . P is on the line
of sight L of p if, and only if, the image of p′ and p′′

are superposed. Then cp′′ = wcp; it is this geometric
event that Eq. (15) expresses analytically.

Acknowledgments

The support of NSF grants EAR-99-05844, IIS-00-
86162, and IIS-99-87944 is gratefully acknowledged.
We would also like to thank the UCLA Urban Simula-
tion Laboratory for providing the 3D city model used in
some of our experiments, and the anonymous reviewers
for their assistance in improving this paper.

Notes

1. All algorithms and experiments were implemented in Matlab on a
2.4 GHz Pentium 4 processor running the Linux operating system.

2. Three correspondences between object and image points is the
minimum necessary to constrain the object to a finite number of
poses.

References

Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., and Wu,
A. 1998. An optimal algorithm for approximate nearest neighbor
searching. Journal of the ACM, 45(6):891–923.

Baird, H.S. 1985. Model-Based Image Matching Using Location.
MIT Press: Cambridge, MA.

Beis, J.S. and Lowe, D.G. 1999. Indexing without invariants in 3D
object recognition. IEEE Trans. Pattern Analysis and Machine
Intelligence, 21(10):1000–1015.

Beveridge, J.R. and Riseman, E.M. 1992. Hybrid weak-perspective
and full-perspective matching. In Proc. IEEE Conf. Computer Vi-
sion and Pattern Recognition, Champaign, IL, pp. 432–438.

Beveridge, J.R. and Riseman, E.M. 1995. Optimal geometric model
matching under full 3D perspective. Computer Vision and Image
Understanding, 61(3):351–364.

284 David et al.

Brand, P. and Mohr, R. 1994. Accuracy in image measure. In Proc.
SPIE, Videometrics III, Boston, MA, pp. 218–228.

Breuel, T.M. 1992. Fast recognition using adaptive subdivisions of
transformation space. In Proc. IEEE Conf. on Computer Vision
and Pattern Recognition, Champaign, IL, pp. 445–451.

Bridle, J.S. 1990. Training stochastic model recognition as networks
can lead to maximum mutual information estimation of parame-
ters. In Proc. Advances in Neural Information Processing Systems,
Denver, CO, pp. 211–217.

Burns, J.B., Weiss, R.S., and Riseman, E.M. 1993. View variation of
point-set and line-segment features. IEEE Trans. Pattern Analysis
and Machine Intelligence, 15(1):51–68.

Cass, T.A. 1992. Polynomial-time object recognition in the presence
of clutter, occlusion, and uncertainty. In Proc. European Conf.
on Computer Vision, Santa Margherita Ligure, Italy, pp. 834–
842.

Cass, T.A. 1994. Robust geometric matching for 3D object recog-
nition. In. Proc. 12th IAPR Int. Conf. on Pattern Recognition,
Jerusalem, Israel, vol. 1, pp. 477 –482.

Cass, T.A. 1998. Robust affine structure matching for 3D object
recognition. IEEE Trans. on Pattern Analysis and Machine Intel-
ligence, 20(11):1265–1274.

DeMenthon, D. and Davis, L.S. 1993. Recognition and tracking of
3D objects by 1D search. In Proc. DARPA Image Understanding
Workshop, Washington, DC, pp. 653–659.

DeMenthon, D. and Davis, L.S. 1995. Model-based object pose
in 25 lines of code. International Journal of Computer Vision,
15(1/2):123–141.

DeMenthon, D., David, P., and Samet, H. 2001. SoftPOSIT: An al-
gorithm for registration of 3D models to noisy perspective images
combining softassign and POSIT. University of Maryland, College
Park, MD, Report CS-TR-969, CS-TR 4257.

Ely, R.W., Digirolamo, J.A., and Lundgren, J.C. 1995. Model sup-
ported positioning. In Proc. SPIE, Integrating Photogrammetric
Techniques with Scene Analysis and Machine Vision II, Orlando,
FL.

Fiore, P.D. 2001. Efficient linear solution of exterior orientation.
IEEE Trans. on Pattern Analysis and Machine Intelligence,
23(2):140–148.

Fischler, M.A. and Bolles, R.C. 1981. Random sample consensus:
A paradigm for model fitting with applications to image analysis
and automated cartography. Comm. Association for Computing
Machinery, 24(6):381–395.

Geiger, D. and Yuille, A.L. 1991. A common framework for im-
age segmentation. International Journal of Computer Vision,
6(3):227–243.

Gold, S. and Rangarajan, A. 1996. A graduated assignment algorithm
for graph matching. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 18(4):377–388.

Gold, S., Rangarajan, A., Lu, C.-P., Pappu, S., and Mjolsness, E.
1998. New algorithms for 2D and 3D point matching: Pose es-
timation and correspondence. Pattern Recognition, 31(8):1019–
1031.

Grimson, E. 1990. Object Recognition by Computer: The Role of
Geometric Constraints. MIT Press: Cambridge, MA.

Grimson, E. and Huttenlocher, D.P. 1991. On the verification of hy-
pothesized matches in model-based recognition. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 13(12):1201–1213.

Haralick, R.M., Lee, C., Ottenberg, K., and Nolle, M. 1991. Anal-
ysis and Solutions of the three point perspective pose estimation
problem. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition, Maui, HI, pp. 592–598.

Hartley, R. and Zisserman, A. 2000. Multiple View Geometry in Com-
puter Vision. Cambridge University Press: Cambridge, UK.

Horaud, R., Conio, B., Leboulleux, O., and Lacolle, B. 1989. An
analytic solution for the perspective 4-point problem. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition, San
Diego, CA, pp. 500–507.

Horn, B.K.P. 1986. Robot Vision. MIT Press: Cambridge, MA.
Jacobs, D.W. 1992. Space efficient 3-D model indexing. In Proc.

IEEE Conf. on Computer Vision and Pattern Recognition, Cham-
paign, IL, pp. 439–444.

Jurie, F. 1999. Solution of the simultaneous pose and correspondence
problem using gaussian error model. Computer Vision and Image
Understanding, 73(3):357–373.

Lamdan, Y. and Wolfson, H.J. 1988. Geometric hashing: A general
and efficient model-based recognition scheme. In Proc. IEEE Int.
Conf. on Computer Vision, Tampa, FL, pp. 238–249.

Lu, C.-P., Hager, G.D. and Mjolsness, E. 2000. Fast and globally
convergent pose estimation from video images. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 22(6):610–622.

Moon, T.K. 1996. The expectation-maximization algorithm. IEEE
Signal Processing Magazine, 13(6):47–60.

Morokoff, W.J. and Caflisch, R.E., 1994. Quasi-random sequences
and their discrepancies. SIAM Journal Scientific Computing,
15(6):1251–1279.

Murase, H. and Nayar, S.K. 1995. Visual learning and recognition
of 3-D objects from appearance. Int. Journal of Computer Vision,
14(1):5–24.

Olson, C.F. 1997. Efficient pose clustering using a randomized algo-
rithm. Int. Journal of Computer Vision, 23(2):131–147.

Procter, S. and Illingworth, J. 1997. ForeSight: Fast object recogni-
tion using geometric hashing with edge-triple features. In Proc.
Int. Conf. on Image Processing, vol. 1, Santa Barbara, CA, pp.
889–892.

Sinkhorn, R. 1964. A relationship between arbitrary positive matrices
and doubly stochastic matrices. Annals Mathematical Statistics,
35(2):876–879.

Ullman, S. 1989. Aligning pictorial descriptions: An approach to
object recognition. Cognition, 32:193–254.

Wunsch, P. and Hirzinger, G. 1996. Registration of CAD models
to images by iterative inverse perspective matching. In Proc. Int.
Conf. on Pattern Recognition, vol. 1, Vienna, Austria, pp. 78–83.

Yuan, J.-C. 1989. A general photogrammetric method for determin-
ing object position and orientation. IEEE Trans. on Robotics and
Automation, 5(2):129–142.

