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ABSTRACT

Many interactive multimedia applications require the ability to
track the 3-D motion of participants in a room. Particle filters are
attractive for this since they do not require solution of the inverse
problem of obtaining the state from measurements, and since the
tracking can be easily extended to integrate multimodal measure-
ments. We extend our previous work on smart videoconferencing
to include a multimodal tracker of the session participants using
multiple cameras and microphone arrays. We verify the correct-
ness and robustness of the multimodal tracker using synthetic and
real data. We also present practical details of how such a system
can be implemented using off-the-shelf hardware and computers.

1. INTRODUCTION
Our perception of the environment is a strong function of our loca-
tion relative to objects being perceived. It changes with our orien-
tation, body posture, whether we are seated or standing, etc. Ap-
plications in virtual and augmented reality (VR/AR) that seek to
create convincing experiences require an ability to track the mo-
tion of a person (especially the head, where most of the sensing
modalities are) as he moves through a 3-D space. Applications
that seek to provide telepresence (e.g., videoconferencing) need to
determine the spatial distribution of people. This information must
be obtained at a relatively high rate to minimize cognitive disso-
nance in VR applications and to quickly follow the motion of an
active speaker in videoconferencing.

Multiple modalities can be used to acquire such positional in-
formation, including multi-perspective video based localization of
inserted markers or of feature points obtained from image pro-
cessing, audio localization using speech or transmitters placed on
moving objects, magnetic tracking of installed tags, etc. Integrat-
ing information obtained from multiple sensors and across many
time-steps can lead to improvements in both the accuracy and the
sampling rate, and lead to a practical design for smart videocon-
ferencing or VR/AR systems. The goal of the present paper is to
achieve such integration for audio and video data via use of par-
ticle filters to perform 3-D tracking. The data are obtained using
multiple cameras and microphone arrays. The algorithms are im-
plemented in an enhanced version of a smart videoconferencing
system presented earlier [1].

In §2 of the paper provides a brief introduction to the tracking
algorithm; §3 introduces the video and audio tracking algorithms
and their combination. In §4 we present some practical details of
our system. In §5 we present results that verify the correctness and
usefulness of the multimodal tracker using both synthetic and real
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data. We show results of several successful tracking experiments in
different environments including results of a person moving with
an ultrasonic sound source in a quiet room (with sound-absorbing
walls), a flying echolocating bat in the same room, and a speaker
in a typical office room. We also show that our algorithm is ca-
pable of successful handling of temporary absence of some mea-
surements (the target being occluded from one or both cameras, or
absence of audio data). §6 concludes the paper.

2. THE TRACKING ALGORITHM
The particle filtering tracker, known also as a CONDENSATION
tracker, was first introduced for vision based tracking in [3]. The
mathematical framework of the tracker provides a way of updating
the variables in the state vector Xs of the tracked object (e.g., co-
ordinates, velocities, Euler angles, color histogram etc.), on the ba-
sis of the measurement/observation vector Xm that consists of the
values obtained from the sensors. The (unknown) true state vector
for any given time corresponds to a point in a state space. Instead
of working with actual values of the state vector, the method works
with the probability distribution function (pdf) on the state space
that represents the uncertainty in the knowledge of the state vector.
The tracker maintains an explicit approximate pdf by computing
its value at a set of randomly selected sample points (called parti-
cles) in the state space, and thus is able to work well when Kalman
filtering fails due to the underlying pdf being non-Gaussian. A fur-
ther advantage of the technique, which is likely to be more impor-
tant in practice, and that is the focus of the present paper, is that
since the technique does not require the construction of explicit
inverse solutions, it allows one to mix modalities/measurements
during the tracking relatively easily.

Algorithm overview: The particle set update algorithm used in
this paper is very similar to the original algorithm, though it is
pertinent to note there are several improvements of the original al-
gorithm published. These include importance sampling [4], strati-
fied sampling [5] and quasi-random sampling [6]. In the algorithm
used in this paper, every particle in the set {xi}, i = 1...N, in the
state spaceX has a weight πi associated with it. This set is called
properly weighted if it approximates the true pdf P (x), so that for
every integrable functionH(x)

EP (x)(H(x)) = lim
N→∞

P
N H(xi)πiP

N πi
. (1)

Given a properly weighted set of particles at time t with equal
weights, it is possible to update it to reflect the new measurements
obtained at time t+ δt. The update algorithm is as follows:

1. Propagate each particle xi in time using the object motion
model to obtain an updated particle set {x∗i }.



2. Obtain a new measurement vector Xm and evaluate
the posterior probability density π∗i on {x∗i }, π∗i =
p(x∗i |Xm), which measures the probability of x∗i given
Xm. This can be written using Bayes’ rule:

p(x∗i |Xm) =
p(Xm|x∗i )p(x∗i )

p(Xm)
(2)

in which p(Xm) is the prior probability of measurement,
which is assumed to be a known constant, and p(x∗i ) =
1/N . Thus, p(x∗i |Xm) = Kp(Xm|x∗i ) for some constant
K, and p(Xm|x∗i ) can be computed without inversion of
the measurement equations.

3. Resample from {x∗i } with probabilities π∗i , and generate a
new properly weighted set {x0i} with equal weights 1/N
for each particle. Repeat steps 1-3 for subsequent times.

Instantiation of the particle filter In this section, we describe
the state and measurement vectors, the motion model and the pos-
terior estimation functions used. The state Xs consists of the co-
ordinates and velocities of the tracked point: Xs = [x y z ẋ ẏ ż].
The motion model which is used to propagate it in time is

x(t+ δt) = x(t) + ẋ(t)δt, ẋ(t+ δt) = ẋ(t) + F δt, (3)

and similar expressions for y, z, ẏ, ż. The F in the equation is a
random acceleration applied to the particles and is dependent on
the expected range of the object velocity. It provides an element of
robustness to the tracker.

The measurement vector is made up of a video part consisting
of the pairs (ûi, v̂i) of image coordinates of feature points on the
tracked object for every camera in the system, and an audio part
that consists of the values of time differences of arrivals (TDOA)
τ̂ij of the acoustic source signal between different microphone
pairs in the microphone array. Thus, N video cameras produce
2N components of the observation vector for each feature point,
and for M microphones the number of audio observations is CM2
per source. The transformation that converts the world coordinates
into the image coordinates is pre-computed by a calibration proce-
dure (described below), and is used to “project” the state vector to
the image coordinate space and compute the posterior probability
of the state given the observations. The corresponding transforma-
tion from the state space to the audio observation space is easy to
compute and is also described below.

We define the video and audio error measures and the posterior
probability as

²2v(Xs,Xm) =
1

N

NX
i=1

[(ui − ûi)2 + (vi − v̂i)2], (4)

²2a(Xs,Xm) =
1

CM2

X
∀i,j i<j

(τij− τ̂ij)2, (5)

Here (ui, vi) are the image coordinates obtained by projecting the
sample 3-D point locations x using the “projection function” Φv ,
while τij is the TDOA induced between microphones i and j for
the source at the sample location x. Using these errors we can
define the final component of the tracker, which is the likelihood
function that determines how likely it is that a particular observa-
tion vectorXm at time t is caused by an object stateXs.

p(Xm|Xs) =
exp

³
− ²2v
2σ2v

´
√
2πσv

exp
³
− ²2a
2σ2a

´
√
2πσa

. (6)

The parameters σv and σa are the audio/video standard deviations.
Loosely speaking, they define how much trust is put on an individ-
ual measurement. If the measurements are known to be inaccurate,
larger values of σa and σv should be used. However, if the value
used is too large the filter is slow to learn the observed motion.
Note that the p(Xm|Xs) is a product of Gaussians formed from
individual measurements. If at some time part of video or audio
observation vector is unavailable, then that part of p(Xm|Xs) is
simply set to a constant, and the update is performed using the
marginalized values.

Video Tracking Our video setup consist of two video cameras
in two corners of the room. We approximate the camera projec-
tion equations using the Direct Linear Transformation (DLT). The
DLT uses a 3x4 matrix P to take the 3-D coordinates x into image
coordinates (ui, vi) in camera i as½

ui
vi

¾
=

(
p11x+p12y+p13z+p14
p31x+p32y+p33z+1
p21x+p22y+p23z+p24
p31x+p32y+p33z+1

)
. (7)

Obtaining the coefficients pij is the calibration step for the video
measurements. To do this, we used a Peak calibration frame with
25 white balls on a black frame that is approximately [2m]3. The
3-D coordinates of all balls, (xj , yj , zj), are known to an accuracy
of ~5 mm. The frame is placed in the region visible from both
cameras, and the corresponding image coordinates of balls (ui, vi)
obtained. The 25 point correspondences are plugged into the DLT
equations to obtain an overdetermined system of 50 equations in
11 unknowns, which is solved using least-squares. Knowing the
coefficients Equation (7) can be used to project the sample state
locations to the measurement space and determine the error (4)
and probability (6).

Audio tracking The audio algorithms for estimating the TDOAs
(the audio measurements) have been described in our earlier work
[1, 2]. Given the location of the sample points in the state space we
can project them into the measurement space by explicitly comput-
ing the TDOAs using

τij =
||x−mj ||− ||x−mi||

c
, (8)

wheremi andmj are the coordinates of ith and jth microphones,
and c the sound speed. Obtaining these quantities is the audio
calibration problem. Algorithms to obtain the source location from
a set of TDOAs have been described in [1] and [8]. They were used
to verify the tracker performance.

3. EXPERIMENTAL SETUPS
Videoconferencing setup For the videoconferencing trials, two
color Sony EVI-D30 cameras were used at a resolution of
320×240 with Matrox Meteor II frame grabbers. The videocon-
ferencing room audio setup is the same as in [1]. Two arrays of
seven Panasonic button microphones each are used. Each array
has one microphone at the center and six along the circumference
of a circle of diameter 12”. The microphones are connected to
a custom-made low-noise low-distortion preamplifier based on a
AD797 chip, and the signal is digitized at 22.05 kHz per channel
using a PowerDAQ board. To ensure a good match between the
audio and video coordinate systems the calibration frame is set up
with its X and Z axis parallel to the room walls. The distance
from the origin of the audio coordinate system to the central ball
of the frame is obtained by direct measurement.



Implementation of the videoconferencing system The track-
ing system for the videoconferencing is implemented on a dual
PIII-933MHz PC running Windows NT 4.0. Multithreaded pro-
gramming allows utilization of both processors. The controlling
software runs in a loop, performing audio capture and analysis,
video capture and analysis, and state update via the particle filter.
Algorithms described in [1] are used to control the third camera
which is used to transmit images to the remote site at the full frame
rate (30 fps). The processing power and the bus throughput of the
single computer limits the tracking rate. Our ongoing research is
exploring the use of a cluster of computers networked via giga-
bit ethernet to speed up the process [9]. This should significantly
improve the fidelity of the tracker and make it suitable for use in
virtual reality applications to track human location and pose [7].

Quiet room setup To assist biologists studying bat behavior [8],
while at the same time collecting interesting data for verifying the
joint-tracking algorithm performance, we acquired multi-channel
audio and video recordings of a flying echolocating bat hunting
a tethered mealworm prey, using a quiet room. In this room the
video is recorded using two Kodak MotionCorder digital infrared
cameras at a resolution of 640×480 and 240 fps. Near-infrared il-
lumination was used during the recording, as the biologists wished
to ensure that the bat flew using echolocation alone. The video
stream was recorded at the digital video recorder with embedded
timestamps. The bat and the ultrasonic sound source used in the
quiet room produce ultrasonic chirps of 20 kHz - 50 kHz. To cap-
ture these signals seven Knowles FG3329 microphones were ar-
ranged on a horizontal plane in an L-shaped frame. The signal
was preamplified using a home-made circuit and digitized at 140
kHz per channel using a IoTech Wavebook board. The positions
of the individual microphones for audio processing were obtained
from the video images (they are visible in the image as small dots),
which introduced some calibration error in the audio results in this
setup.

4. RESULTS
We performed the evaluation of the developed multimodal tracker
on several sets of synthetic and real data obtained using the two
setups. The synthetic data were used to verify the algorithm per-
formance when ground truth is available. We are able to show that
the performance of a multi-modal tracker is better that the perfor-
mance of both the audio and the video trackers taken separately.

Synthetic Data We created a synthetic dataset by simulating an
object moving in a spiral motion over the trajectory given by

x = sin(2πt), y = 2.0− t, z = cos(2πt) (9)

where t ∈ [0, 1]. The frame rate was set to 240 fps, the audio sam-
pling frequency to 140 kHz, and all geometric parameters of the
system were taken to be those of the setup in the quiet room. In
every frame, we obtained the feature-point coordinates in image
frames and the values of TDOAs. Then zero-mean Gaussian noise
with variances of 3 pixels and 10 samples was added respectively
to the image coordinates and TDOA values were. The tracker was
initialized with the correct source position at t = 0 and zero veloc-
ity. The σv and σa for the tracker were set to 3 pixels and 10 sam-
ples, corresponding to the true measurement noise. (Any change
in these values resulted in an increase in the estimation error). We
performed several runs of the tracker with different number of par-
ticles. Average distances between the estimated and true object
positions are shown in Figure 1.
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Figure 1: Performance vs log number of particles

It can be seen that the performance improves with the number
of particles. The audio tracker performance alone is not very good.
This can be attributed to the fact that all the microphones lie in
the same horizontal plane which decreases the accuracy of object
height determination. The performance of video tracker alone is
better, and the performance for the combined tracker is improved
even more. The smallest tracking error obtained in experiments
is approximately 1.64cm, which is 2.5 times less than the error
obtained for single-frame video object detection (about 3.83cm),
which shows the effect of learning the object motion parameters.
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Figure 2: Bat flight path and microphone locations (quiet room).

Tracking ultrasonic sources in the quiet room Obtaining cor-
respondences from images in the quiet room was relatively easy
due to the experimental set-up. The images are taken with near-
infrared light since the biologists who use this room want the bat
being imaged to only use echolocation to detect its prey. In ad-
dition the walls are covered with black audio-absorbing material.
Thus, only a few bright spots are seen in the infrared image, and
simple background subtraction suffices to determine correspond-
ing points. In the case of trials with a flying bat, the head of the
bat is visible and was hand selected in each image frame. We also
acquired data of a person carrying an ultrasonic sound source in
the room. Here some reflecting tape was placed on the source, and
its image could be easily located using background subtraction.
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Figure 3: The trajectory of the ultrasonic sound source (quiet
room)

The object position in the frame for both cameras and TDOA
values were used as input to our tracker. The quantity F in Eq. (3)
was set to N (0, 10). In addition, the video trajectory and audio
data points was determined from video and audio data indepen-
dently. In Figures 2 and 3, the video trajectory, audio data points
corresponding to the individual echolocating bat calls and the out-
put of the tracker are shown for two trials. The results show that
the independently obtained video and audio trajectories are in good
agreement. The misalignment between them is likely due to the
fact that the microphone coordinates used in the audio algorithms
were obtained from the video images. These can be inaccurate be-
cause the microphones lie far from the area where the calibration
frame was placed. The output of the multi-modal tracker integrates
the audio and video information and lies between the tracks, as ex-
pected. No ground truth data is available for these runs. We plan
to verify the microphone coordinates by other means or find other
reasons for this bias.
Videoconferencing with occlusions In the videoconferencing
room, we made audio and video recording of a single speaker
moving in several patterns in the field of view of a tracking sys-
tem. Acquiring corresponding feature points between the images
is more complicated here. The image of the head for a person
3.5 meters from the camera is at most 15×15 pixels, so the level
of detail is insufficient to use a face template. We used a sim-
ple background substraction to roughly locate the head of the per-
son. That approach provides sufficient accuracy for videoconfer-
encing purposes since we only require approximate centering of
the frame around the source. However, for the trials presented
here we perform more accurate position estimation by placing a
colored marker on the face of the speaker.

Agreement of the video and audio trajectory to 50 mm is
achieved. A low discretization frequency, relatively small intermi-
crophone distance within the audio arrays and large distance from
the microphone arrays to the speaker contributed to relatively low
accuracy of audio data, so the video data is primary source of in-
formation for the run. The audio error is however less than 10 cm,
which is sufficient to correctly locate the speaker and put her into
a frame for transmission.

We also tested the algorithm robustness to occlusions. Nor-
mally, the speaker is visible to both the tracking cameras. When
only one camera can see the speaker the video information alone
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Figure 4: Multimodal speaker tracking with occlusions

can not be used to recover the speaker coordinates. The multi-
modal tracker however continues to track the speaker correctly us-
ing audio data and marginalizing the video information. In Figure
4 we show the tracking results with a simulated occlusion. For
the part of the track within the area marked “Occlusion”, the video
data from one of the cameras were treated as missing. The track
stays near the video trajectory, although it is influenced more by
audio data. When the video data becomes available again, the
tracking error decreases.

5. CONCLUSIONS
The described tracker allows a natural framework to integrate mul-
timodal information for tracking and performs robustly even when
information from one of the channels is missing (video occlusions
or audio noise). We anticipate continued development of the sys-
tem and achievement of a high frame-rate, high-fidelity, real-time
tracker for videoconferencing and virtual reality applications.
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