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ABSTRACT

The sound reaching the acoustic sensor in a realistic environment
contains not only the part arriving directly from the sound source
but also a number of environmental re ections. The effect of those
on the sound is equivalent to a convolution with the room im-
pulse response and can be undone via deconvolution – a technique
known as matched lter processing. However, the lter is usu-
ally pre-computed in advance using known room geometry and
source/receiver positions, and any deviations from those cause the
performance to degrade signi cantly. In this work, an algorithm is
proposed to compute the matched lter automatically using an audio
camera – a microphone array based system that provides real-time
audio images (essentially plots of steered response power in various
directions) of environment. Acoustic sources, as well as their sig-
ni cant re ections, are revealed as peaks in the audio image. The
re ections are associated with sound source(s) using an acoustic
similarity metric, and an approximate matched lter is computed to
align the re ections in time with the direct arrival. Preliminary ex-
perimental evaluation of the method is performed. It is shown that in
case of two sources the re ections are identi ed correctly, the time
delays recovered agree well with those computed from geometric
constraints, and that the output SNR improves when the re ections
are added coherently to the signal obtained by beamforming directly
at the source.

Index Terms— Architectural acoustics, matched lters, acoustic
arrays, acoustic position measurement, deconvolution.

1. INTRODUCTION

The signal recorded at a microphone in a room incorporates the di-
rect arrival of the sound from the source as well as the multiple
weaker copies of the same signal that are created by sound re ections
off the room walls. The effect of the environment on the signal can
be characterized by a linear time-domain lter known as the room
impulse response (RIR). The RIR length is often substantial (may be
as much as a few seconds). While it can be computed using either
simple geometric computations [1] [2], more advanced ray-tracing
techniques [3] [4], or even numeric methods for the complicated
scatterer shapes [5], the computations are expensive. Further, RIR
inversion in an attempt to derive a deconvolution lter is a numeri-
cally unstable procedure [6] [7], and in order to derive useful results
the RIR computation must be done with very high accuracy, which
is impossible to achieve in realistic environments. Moreover, any
source displacement by as much as a few centimeters requires RIR
recomputation in order to keep higher frequencies coherent, and it is
hard to obtain the three-dimensional position information necessary
for RIR computation in realistic environment.

Another approach to enhance the desired signal in a mixture is
to use spatial sound processing (beamforming) with a microphone
array [8]. In a microphone array, several microphones are placed
in a number of locations in space, and the signals arriving at those
are ltered and summed up so that the signals originating from a
desired location (e.g., a source) are ampli ed compared to the rest.
Beamforming usually assumes that the location of interest is given
and requires recomputation of the lters with the change of the lo-
cation some approaches also adaptively modify the lters in order
to suppress unwanted interference, where the interference is broadly
de ned as anything uncorrelated with the source signal [9]. This is
obviously ineffective in removing the reverberant parts of the signal
[10]. Note that in case of microphone array the RIR is speci c for
each microphone in the array.

A combination of beamforming and RIR deconvolution is
known as matched lter array (MFA) processing [11]. MFA can
be thought as beamforming aimed not only at the sound source itself
but also at its re ections. To do the MFA processing, knowledge of
RIR for each microphone in the array is also necessary it can be ei-
ther computed analytically using a room model and source/receiver
positions or measured in the actual environment where beamform-
ing has to be applied. An MFA analog of simple delay-and-sum
beamforming is obtained by truncating and inverting the RIR and
inserting xed time delay to make the resulting lter causal. In a
simulated multi-path environment, simulations of MFA shows the
SNR of the beamformer remaining independent of number of prop-
agation paths, as these are compensated automatically by the inverse
ltering. However, accurate knowledge of RIR is still necessary for
the processing, and MFA performance degrades quickly with RIR
inaccuracies caused by uncertainty in source position [12].

Due to complications associated with exact tracking of the tar-
get in three-dimensional environment, in many applications such
as source localization and speech recognition the reverberative pat-
terns imposed by the environment are seen as undesirable. How-
ever, MFA processing is one example of how the reverberation can
be used constructively. Another approach studied in the past uses
subspace methods to recover the signal [13] [14] these algorithms
tend to be quite expensive computationally. In the current work, a
method is proposed to identify the signi cant re ections automat-
ically thus, an approximation of the inverse RIR is computed on
the y. More speci cally, an “audio camera” [15] (a 64-channel
spherical microphone array) is used to compute the “audio image”
– a map of acoustic energy distribution in the space surrounding the
array, similarly to what is done in steered response power (SRP)
beamforming [16]. The acoustic sources, as well as their signi -
cant re ections, manifest themselves as peaks in the audio image.
These peaks are found using gradient ascent and are grouped into
several sets based on acoustic similarity measure. Time delays be-
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Fig. 1. An audio camera used for acoustic imaging – a 64-channel
spherical microphone array with a video camera embedded.

tween signals in each group are found, and beamformer outputs from
the identi ed re ective directions are delayed appropriately and are
summed up coherently. The algorithm was tested on sample two-
speaker data obtained in a conference room using speech from the
TIMIT database [17], and the results were found to be consistent
with expectations.

2. AUDIO IMAGING

The audio camera used for this work is shown in Figure 1. It is
a 64-channel spherical microphone array with a video camera built
in. The symmetric con guration allows for digital steering of the
beampattern in arbitrary direction without distorting the beampattern
shape. An elegant beamformer for the spherical array framework
was rst described in [18] and then re ned by many (e.g., [19] [20]).
The beamformer operates by decomposing the acoustic wave eld
into a number of spherical modes corresponding to elementary solu-
tions of the acoustic wave propagation equation and then combining
the modes with weights derived from the desired beampattern. In
the current implementation, high-resolution real-time audio imag-
ing of the space is achieved by operating a number of independent
beamformers in parallel on graphical processing hardware (GPU).
By beamforming in many directions and plotting the energy in the
output signal as a function of direction, an “audio image” is created.
Sample audio image is shown in Figure 2. The projection equations
of the audio camera are essentially the same as for common (video)
central projection camera [21], which allows one to use many al-
gorithms developed for computer vision (such as multi-camera cal-
ibration or epipolar constraints) with audio camera or with multiple
modalities. In particular, visual analysis of acoustic energy distrib-
ution in the space can be performed by calibrating audio and video
cameras in the common reference frame and overlapping evolving
audio and visual images of the environment [22].

Fig. 2. Sample audio image. A source can be seen at approximately
(40, -100) (elevation, azimuth).

3. CLASSIFICATION OF IMAGE PEAKS

Using the audio camera, the acoustic image is formed. Overlaid
audio-video images are shown to the user, and he/she selects the
target of interest on the image with the graphical user interface. A
gradient ascent is run on the image to identify peaks. The algorithm
is similar to the mean-shift algorithm. For greater accuracy, sub-
pixel estimates of the true peak locations are found by interpolation
near the peak position. A list of peaks in the image is then created,
and the peak that is closest to the target location is assumed to be the
true source location corresponding to the direct sound arrival.

The time-domain signals corresponding to all the peaks in the
audio image are then computed by applying the standard beamform-
ing procedure [18] to the directions of the peaks. These can corre-
spond either to the re ections of the desired source, to other sources,
or to their re ections. In order to determine their origin correctly,
an acoustic similarity measure is used. Various similarity functions
can be considered in particular, if the sound expected is speech, the
task becomes similar to the speaker veri cation, for which the stan-
dard mel-frequency cepstral coef cients (MFCC) are often a good
choice [23]. MFCC are computed by taking a short-time Fourier
transform of the signal, summing up the power in logarithmically-
spaced frequency bands, and then taking a discrete cosine transform
of the power values. Thirteen MFCC coef cients are used for clas-
si cation. The coef cients are normalized individually across the
time dimension and are fed to the vector quantization (VQ) training
procedure [24] with the codebook size of 16 to build the codebook
for the target (direct) signal (i.e., the signal computed by applying
the beamformer to the true source location). The VQ coding error is
then evaluated for signals corresponding to all the peaks in the en-
ergy map, yielding a matching score. Thresholding on the matching
score is used to determine if the signal is suf ciently similar to the
desired one. Signals that are similar enough are assumed to be the
re ections of the desired source.

4. OUTPUT SIGNAL COMPUTATION

After identifying the re ections originating from the desired source,
the algorithm proceeds with coherent summation of the signals cor-
responding to those, similarly to the matched lter processing. In or-
der to do that, it is necessary to estimate the time delays between the
direct signal and the re ections. One possible approach is to com-
pute generalized cross-correlation function however, it was found to
be unreliable in reverberant conditions. Another time-delay estima-
tion algorithm that is more robust but also more computationally ex-
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Fig. 3. Audio images for the single male speaker (top), single female
speaker (middle), and both speakers active at the same time (bottom).
Note that the bottom image structure is the combination of the top
and the middle images.

pensive is based on adaptive eigenvalue decomposition (AED) [25].
A modi ed AED algorithm was used for time delay estimation in
this evaluation. Once the time delays are found, the re ection sig-
nals are advanced appropriately and are added to the direct signal.

5. PRELIMINARY EXPERIMENTAL EVALUATION

We will illustrate the steps in our algorithm in the context of a two-
speaker example that was acquired in a conference room. The con-
ference room dimensions were approximately 6.4 m × 4 m × 2.4
m. A large oval table dominated the center of the room. The side
walls were fairly reverberant. The oor was treated with carpet. The
ceiling was covered with standard ceiling tiles and lighting xtures.

Two loudspeakers were placed on tripods in the room at the op-
posite ends of the conference table. Two sample sentences (one by
male speaker and another by female speaker) from the TIMIT data-
base were played via the loudspeakers. Figure 3 shows the audio
images obtained in three scenarios: single male speaker active (top),
single female speaker active (middle), and both speakers active at the
same time. The reverberative patterns are visible in the top and in the
middle plots. Furthermore, the patters are seen to overlap in the bot-
tom plot, showing that the reverberation structure for each individual
speaker can be recovered (at least visually) when two speakers are
active. To verify this, the similarity function described earlier was

Fig. 4. Evaluation of time delays between the original signal and the
re ected versions of it. The values obtained are in very good agree-
ment with true time delays computed using geometric constraints.

computed between the direct source and the re ections. It was found
that the re ective peaks in the combined image are correctly asso-
ciated with the corresponding source (i.e., for each re ection signal,
the matching score is higher for the corresponding originating source
than for the other source).

After obtaining the similarity metric, the audio image peaks are
organized into groups according to the originating source, and the
time-delay estimation algorithm is run. The output of the time delay
evaluation is shown in Figure 4. To verify the algorithm, the po-
sitions of the sources and of the array in the room were measured
and the “true” values for time delays were computed using simple
geometric re ection models. It was found that the obtained values
are each within 4 samples of the time delays estimated by the algo-
rithm. Finally, the beamformed signals are summed up coherently
by applying the time delays found.

A plot of the processed signal from the single female speaker
recording is shown in Figure 5. In each plot, the data is scaled to full
plotting range for details clarity. Addition of the re ections to the
original signal increases the signal magnitude because of the scal-
ing, this is not seen directly but is visible as substantial decrease of
the noise level during the beginning silence and in the pauses be-
tween individual words, indicating successful dereverberation. The
results for the case of two simultaneously active speakers are hard to
visualize because the spoken sentences overlap however, informal
listening tests show improvement in speaker separation compared to
the single beamformer focused directly at the source. We are cur-
rently working on processing larger data set in order to objectively
assess SNR improvement and on acquiring data for two speakers
who are active in turns to make visualization easier.

6. CONCLUSIONS

We have described a technique for automatic identi cation of re-
ections of a sound source off the enclosure walls in order to col-
lect those re ections and to sum them up coherently, similarly to
the matched lter array processing proposed before but without the
need to actually simulate (or measure) and invert room impulse re-
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Fig. 5. A single female speaker experiment showing the signal dere-
verberated using the proposed approximate MFA lter in compar-
ison with the single-channel recording and with the original clean
waveform.

sponse. The technique operates by isolating the prominent peaks in
the audio image of the room acquired by audio camera and grouping
them using the similarity metric (MFCC in this particular case). The
time delays between the signals within a group are found, and the
signals are summed up coherently. Essentially, the proposed method
employs multiple beamformers operating not only on the original
source but also on its re ections, enabling one to improve the signal-
to-noise ratio in multi-path environments in comparison with tra-
ditional beamforming. The experimental evaluation shows that the
technique is feasible and that the results obtained are consistent with
the expectations. Further evaluations are currently in progress.
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