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Problems resulting in the Helmholtz equation 

Conventional acoustics  

(wave equation):  

While here we are interested with acoustics, many parabolic and 

hyperbolic problems in frequency domain (time harmonic solutions) 

result in the Helmholtz equation 

Sommerfeld radiation condition (infinite domains) 

Relaxating media (complex fluids)   

wavenumber 

Complex wavenumber  
Heat/mass diffusion   

Electrodynamics  

(Maxwell equations)   

Pair of the Helmholtz equations  

for the Debye potentials  

Quantum mechanics  

(Shroedinger & Klein -Gordon 

equations)   

Real or purely imaginary 

wavenumber (Yukawa 

potential)  



Boundary Integral Equations 

Greenôs identity: 

Single layer potential: 

Double layer potential: 

Greenôs function: 

Combined (Burton-Miller) BIE: 

Derivatives of single and double layer potentials: 

S 

n 

(Closed surfaces, for direct BEM)  

Generic boundary conditions: 

(a, b, g are given) 

b = 0: Dirichlet 

a = 0: Neumann 

a,b = const: Robin 
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Boundary Integral Equations 
(Arbitrary surfaces, for indirect BEM)  

S 
n- 

f+, q+ 

Solution as a sum of single and double layer potentials: 

BIE (jump conditions): 

n+ 

+ Generic boundary conditions on each side 
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Discretization 

For complex shapes 

(large surface area) 

the number of 

boundary elements 

can be much larger 

Sphere 
Stanford 

bunny 

D 

Computational domain 

Å Sampling by several 

elements per wavelength 

necessary for accuracy (say 

5-10); 

 

Å So, the number of 

elements, Nel = O((kD)2); 

 

Å This grows proportional to 

the square of the acoustic 

frequency; 

 

Å And to the square of  the 

domain size; 

 

Å E.g. Human head + torso 

acoustic scattering 

computation at 20 kHz 

requires meshes with Nel ~ 

500,000 ï 1,000,000. 
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Standard and Fast Multipole accelerated BEM 
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Task Standard BEM FM BEM 

Reformulate the problem in 

terms of BIE      
Discretize the boundary  

    
Compute and store boundary 

integrals  

Full storage, 

memory ~(kD) 4 

Partial storage, 

memory ~(kD) 2 

Solve linear system  If direct ~(kD) 6, 

iterative ~N iter  (kD)4 

Iterative ~N iter (kD)2, 

efficient FMM 

preconditioner  

Max solvable problem size (PC): N~ 3·104 (kD~102) N~ 3·106 (kD~103) 

Before going to details of the FM BEM, look at the table  



What the FMM does? 
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Å Computes N x N matrix-vector product, Ax, for 

cost less than O(N2) (ideally O(N) or O(NlogN)); 

 

Å The catch is in the controlled accuracy (which 

can be machine precision, or lower resulting in 

substantial speedups); 

 

Å The matrix is decomposed into sparse and 

dense parts, A = Asparse + Adense; 

 

Å The sparse matrix represents interaction of 

closely located elements (some neighborhoods); 

Asparsex can be computed in O(N) operations and 

may require O(N) memory; 

 

Å The dense matrix represents interaction of far 

elements (outside the neighborhoods); Adensex 

can be computed in O(NlogaN)) operations and 

requires O(log N)) memory if done efficiently; 

 

Basics of the FMM 

and specifics for the 

Helmholtz equation 

can be found in our 

book 



Peculiarities of our direct FMBEM 
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Å BEM itself is an approximate method, due to 

Å  geometric discretization errors (e.g. flat boundary elements); 

Å  approximate computation of boundary integrals (use of collocation 

methods); 

Å  iteration tolerance (large systems cannot be solved directly); 

 

Å The FMM can be tuned to provide a consistent accuracy;  

 

Å Non-singular integrals can be computed using a low order quadrature 

(center point or trapezoidal quadratures); 

 

Å Diagonal elements of singular operators can be computed for the cost of 4 

FMM runs, using a novel method of test functions described in the paper; 

 

Å Low accuracy/low cost FMM can be used for preconditioning in the inner 

loop of flexible GMRES iterative method; 

 

Å A new version of the FMM scaled close to O((kD)2) for kD up to 103 is 

developed and tested. 

Gumerov & Duraiswami, JASA, 2009 



Performance of the direct FMBEM 
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Gumerov & Duraiswami, JASA, 2009 

kD = 0.1 ï 500, plane wave scattering off a sphere 

kD = 104 

(ka = 30) 

Comparison with 

analytical solution 

Incident plane wave 

240,002 vertices 

480,000 elements 

Practical FMM is scaled close to O((kD)2). 

The BEM is scaled as O((kD)2.4) due to the 

increasing number of iterations at the increasing kD. 



Scaling of the FMM with frequency 
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Å There exist some versions of the FMM 

for the Helmholtz equation which are 

scaled as O(N), but applicable only for 

low frequencies, so they are scaled 

poorly with respect to kD 

 

Å To achieve scaling close to O((kD)2) 

only O(p2)-type translation methods can 

be used in the FMM (based on the 

diagonal forms of the translation 

operators)  

 

Å Such algorithms use high/low frequency 

switches for wideband computations 

(p is the series truncation number in the 

FMM, so the contribution of elements in the 

far field is represented via p2 terms) 

High/low frequency switches 

used in Gumerov & Duraiswami, 

JASA, 2009. 

switch 



Computation of the head related transfer 

function (HRTF) for audible frequency range 
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Head+Torso 

Head (Kemar) 

Pinnae 

(mesh generated using 

data from a CT-scan) 

Gumerov, OôDonovan, Duraiswami, Zotkin, JASA, 2010 

Comparison of computations and 

experiments (Azimuth  = 0o) 

Elevation 

Experiment 
Head Head+Torso 

Elevation Elevation 

FMBEM 

Mesh: 

117,596 

elements 

Mesh: 

445,276 

elements 

F
re

q
u

e
n

c
y
, 

H
z
 

(The total run time through the 

entire frequency range is 70 

hours on a 4 core PC with 

8GB RAM) 



Indirect FMBEM for Helmholtz Equation 
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Å All kind of boundary integrals (regular, nearly singular, 

weakly singular, singular, and hypersingular) for the 

neighborhoods are computed analytically; 

 

Å Larger storage is needed for accurate BEM computations, 

but this is still O(N). 

 

Å Details will be presented in upcoming paper of Gumerov, 

Adelman, Duraiswami, ICA/POMA 2013 (accepted)/ and 

extended version to be submitted to JASA 2013  

 



Computation of acoustic bidirectional 

reflectance distribution function (BRDF) for 

wavy surfaces via Indirect FMBEM 
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Flat 

Sin 

Sound hard Sound hard/Sound soft 

dB 

dB dB 

dB 

f 

q 

f = 2 kHz, 

q ô = 31.5o, 

fô = 181.5o. 

 

diameter = 2.655 m, 

amplitude= 0.0256 m. 

period = 0.177 m 

Sinusoidal surface 

Incident wave: 

(Case of Sakuma, et Al, 2009) 

Gumerov, Duraiswami, ASA Meeting 159, 2010 



Indirect FMBEM simulations of scattering 

from a parabolic antenna and a sphere 
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Mesh Computed surface pressure Computed pressure 

in the domain  


