Homework 3, AMSC698R/CMSC878R/MAIT622

Due September 26, 2006

1 Pre-FMM using Local Expansions

Compute the matrix-vector product
\[\mathbf{v} = \Phi \mathbf{u}, \quad v_j = \sum_{i=1}^{N} \Phi_{ji} u_i, \quad j = 1, ..., M, \] (1)

with absolute error \(\epsilon < 10^{-6} \), where
\[\Phi = \begin{pmatrix} \Phi_{11} & \Phi_{12} & \ldots & \Phi_{1N} \\ \Phi_{21} & \Phi_{22} & \ldots & \Phi_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \Phi_{M1} & \Phi_{M2} & \ldots & \Phi_{MN} \end{pmatrix}, \quad \mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_N \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_M \end{pmatrix}, \] (2)

\[\Phi_{ji} = \frac{1}{y_j - x_i} , \quad i = 1, ..., N, \quad j = 1, ..., M. \] (3)

and \(x_1, ..., x_N \) and \(u_1, ..., u_N \) are uniformly distributed on \([0,1]\), \(M = N - 1 \), and each \(y_j \) is located between the closest \(x_i \)'s on each side, \(j = 1, ..., N - 1 \) using the Pre-FMM that employs \(R \)-expansions near the centers of the target boxes.

1. Draw a rough sketch of the Pre-FMM algorithm.

2. Evaluate the truncation number, \(p(K, N) \), that provides the specified accuracy as a function of the number of boxes \(K \) and of \(N \).

3. Evaluate theoretically the optimal number of boxes \(K_{opt}(N) \) for space division based on the obtained evaluations of \(p \) for specified accuracy.

4. Write a program which provides the \(R \)-expansion coefficients for a given target box (or target box center) and a source in arbitrary position in the domain. Test its accuracy

5. Write a program that implements both straightforward multiplication based on Eq. (1) and Pre-FMM that uses \(R \)-expansions.

6. Provide a graph of the absolute maximum error between the two programs for \(N = 10^3 \), \(K \) varying between 10 and 100, and \(p \) from your theoretical evaluations. Compare the accuracy results with theory. You may find that the theoretical \(p \) may be much larger than the one needed in practice. In this case you may (or may not) reduce \(p \) and use some experimental values to proceed further.

7. Provide a dependence of the CPU time required by the Pre-FMM as a function of \(K \) for \(N = 10^3 \) (10 < \(K < 100 \)). Determine \(K_{opt} \) experimentally and compare with the theoretical evaluations (use the actual \(p \)). Scale \(K_{opt}(N) \) for computations with varying \(N \). Plot your scaled function \(K_{opt}(N) \).

8. Provide a graph of actual error (between the standard and the fast method with \(K = K_{opt}(N) \)) for \(N \) varying between 10\(^2\) and 10\(^3\) and the truncation number used.

9. Provide a graph that compares the CPU time required by the straightforward method and the Pre-FMM for \(N \) varying between 10\(^2\) and 10\(^3\) for straightforward and \(N \) varying between 10\(^2\) and 10\(^4\) for the optimized Pre-FMM. Compare results with theoretical complexities of the algorithms.