Fast Multipole Methods: Fundamentals & Applications
Ramani Duraiswami
Nail A. Gumerov

Course Mechanics
- Background Needed
 - Linear Algebra
 - Matrices, Vectors, Linear Systems, LU Decomposition, Eigenvalue problem, SVD
 - Numerical Analysis
 - (Interpolation, Approximation, Finite Differences, Taylor Series, etc.)
 - Programming
 - Matlab, C/C++ and/or FORTRAN
- Participation essential!

Course Requirements
- Ideally
 - you have a problem in mind
 - would like to explore how FMM could be applied
- At the end of the course you will have a familiarity with
 - Application of FMM to different problems
 - Data structures for FMM, and analysis related to it.
- Course focus is on applying the methods to achieve solution.
 - Theory as needed to proceed

Homework
- Will try to have it every week
- Will not be excessive
- Essential for learning --- must do as opposed to just read.
- Homework handed out last class of a week.
- Due last class of next week
- Thanksgiving week no homework
 - (you can turn in the previous homework after thanksgiving)

Projects & Exams
- There will be a final project that will require you to implement an FMM algorithm in a field of your choice,
 - account for 20% of the grade.
- Project to be chosen around October 14.
 -Implementation (reimplementation) of an FMM algorithm (hints and help will be given)
- Exams
 - intermediate exam worth 10%, week of October 14
 - final exam worth 20%. Finals Week
Class web & Mailing List
- http://www.umiacs.umd.edu/~ramani/cmsc878r
- cmsc878r@umiacs.umd.edu
- Homework will be posted on web
 - No late homework (except by timely prior arrangement)
 - (no web or email submissions)
- Solutions will be posted after homework collected
- Links to papers etc.

Introductions
- Email addresses
- What are your interests?
- What do you want us to cover?
 - An outline is posted at

What is the Fast Multipole Method?
- An algorithm for achieving fast products of particular dense matrices with vectors
- Similar to the Fast Fourier Transform
 - Matrix entries are uniformly sampled complex exponentials
- For FMM, matrix entries are
 - Derived from particular functions
 - Functions satisfy known “translation” theorems
- Name is a bit unfortunate
 - What the heck is a multipole?
 - We will return to this …

Vectors and Matrices
- **d** dimensional column vector \mathbf{x} and its transpose
 \[
 \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{pmatrix} \quad \text{and} \quad \mathbf{x}^T = (x_1 \ x_2 \ \ldots \ x_d)
 \]
- $n \times d$ dimensional matrix \mathbf{M} and its transpose \mathbf{M}^T
 \[
 \mathbf{M} = \begin{pmatrix} m_{11} & m_{12} & m_{13} & \ldots & m_{1d} \\ m_{21} & m_{22} & m_{23} & \ldots & m_{2d} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ m_{n1} & m_{n2} & m_{n3} & \ldots & m_{nd} \end{pmatrix} \quad \text{and} \quad \mathbf{M}^T = \begin{pmatrix} m_{11} & m_{21} & m_{31} & \ldots & m_{n1} \\ m_{12} & m_{22} & m_{32} & \ldots & m_{n2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ m_{1d} & m_{2d} & m_{3d} & \ldots & m_{nd} \end{pmatrix}
 \]

Matrix vector product
- $s_1 = m_{11} \ x_1 + m_{12} \ x_2 + \ldots + m_{1d} \ x_d$
- $s_2 = m_{21} \ x_1 + m_{22} \ x_2 + \ldots + m_{2d} \ x_d$
- …
- $s_n = m_{n1} \ x_1 + m_{n2} \ x_2 + \ldots + m_{nd} \ x_d$
- Matrix vector product is identical to a sum
 \[
 s_i = \sum_{j=1}^{d} m_{ij} x_j
 \]
- So algorithm for fast matrix vector products is also a fast summation algorithm
- **d** products and sums per line
- **N** lines
- Total **Nd** products and **Nd** sums to calculate **N** entries

Fast Fourier Transform
- If entries of matrix are $m_{kn} = e^{2 \pi i k n}$ where k and n are integers
- Then complexity of matrix vector product goes from $O(N^2)$ to $O(N \log N)$
- Allowed several industries to develop …
- A crucial invention of the 2nd half of the 20th century
- (see numerical recipes www.nr.com)
Fast Multipole Methods (FMM)
- Introduced by Rokhlin & Greengard in 1987
- Called one of the 10 most significant advances in computing of the 20th century
- Speeds up matrix-vector products (sums) of a particular type

\[a(x_j) = \sum_{i=1}^{N} a_i \phi(x_j - x_i), \quad \langle x_j \rangle = [\phi_j] \{a_i\} \]
- Above sum requires \(O(MN) \) operations.
- For a given precision \(\epsilon \) the FMM achieves the evaluation in \(O(M+N) \) operations.

- Can accelerate matrix vector products
 - Convert \(O(N^2) \) to \(O(N \log N) \)
- However, can also accelerate linear system solution
 - Convert \(O(N^2) \) to \(O(kN \log N) \)

Linear System Solution
- Solution of most problems in scientific computing reduces to solution of a linear system

\[A x = b \]
- For dense \(A \), direct solution requires \(O(N^3) \) operations
 - For large \(N \) (e.g. \(10^7 \rightarrow 10^8 \)) this is prohibitive
- Iterative methods can achieve solutions in \(k \) steps
- Each step typically involves 2 matrix vector multiplications and thus solution time is

\[O(2k \times \text{cost of matrix-vector multiplication}) \]
- For general dense matrices this cost is \(O(kN^2) \)
- With FMM this cost becomes \(O(kN) \) or \(O(kN \log N) \)
- If \(k \) is independent of \(N \) reduction is significant

Memory complexity
- Sometimes we are not able to fit a problem in available memory
 - Don't care how long solution takes, just if we can solve it
- To store a \(N \times N \) matrix we need \(N^2 \) locations
 - 1 GB RAM = 1024\(^3\) = 1,073,741,824 bytes
 - \(\Rightarrow \) largest \(N \) is 32,768
- "Out of core" algorithms copy partial results to disk, and keep only necessary part of the matrix in memory
- FMM allows reduction of memory complexity as well
 - Elements of the matrix required for the product can be generated as needed

A very simple algorithm
- Not FMM, but has some key ideas
- Consider

\[S(x_j) = \sum_{i=1}^{N} a_i (x_j - y_i)^2 \quad i=1, \ldots, M \]
- Naïve way to evaluate the sum will require \(MN \) operations
- Instead can write the sum as

\[S(x_j) = (\sum_{i=1}^{N} a_i) x_j^2 + (\sum_{i=1}^{N} a_i y_i^2) - 2x_j (\sum_{i=1}^{N} a_i y_i) \]
- Can evaluate each bracketed sum over \(j \) and evaluate an expression of the type

\[S(x_j) = \beta x_j^2 + \gamma - 2x_j \delta \]
- Requires \(O(M+N) \) operations
- Key idea – use of analytical manipulation of series to achieve faster summation

Approximate evaluation
- FMM introduces another key idea or “philosophy”
 - In scientific computing we almost never seek exact answers
 - At best, “exact” means to “machine precision”
- So instead of solving the problem we can solve a "nearby" problem that gives “almost” the same answer
- If this “nearby” problem is much easier to solve, and we can bound the error analytically we are done.
- In the case of the FMM
 - Manipulate series to achieve approximate evaluation
 - Use analytical expression to bound the error
- FFT is exact … FMM can be arbitrarily accurate
Some FMM algorithms

- Molecular and stellar dynamics
 - Computation of force fields and dynamics
- Interpolation with Radial Basis Functions
- Solution of acoustical scattering problems
 - Helmholtz Equation
- Electromagnetic Wave scattering
 - Maxwell’s equations
- Fluid Mechanics: Potential flow, vortex flow
 - Laplace/Poisson equations
- Fast nonuniform Fourier transform

Applications – I Interpolation

- Given a scattered data set with points and values \(\{x_i, f_i \} \)
- Build a representation of the function \(f(x) \)
 - That satisfies \(f(x_i) = f_i \)
 - Can be evaluated at new points
- One approach use “radial-basis functions”
 \[
 f(x) = \sum_{i=1}^{N} \alpha_i R(x-x_i) + p(x)
 \]
 \[
 f_j = \sum_{i=1}^{N} \alpha_i R(x_j-x_i) + p(x_j)
 \]
- Two problems
 - Determining \(\alpha_i \)
 - Knowing \(\alpha_i \) determine the product at many new points \(x_j \)
- Both can be solved via FMM (Cherrie et al, 2001)

Applications 2

- RBF interpolation
 ![Image](image1.png)
 Cherrie et al, 2001

Applications 2

- Sound scattering off rooms and bodies
 - Need to know the scattering properties of the head and body (our interest)
 \[
 \nabla^2 P + k^2 P = 0 \quad \frac{\partial P}{\partial n} + i\sigma P = g \quad \lim_{r \to \infty} \left(\frac{\partial P}{\partial r} - ikP \right) = 0
 \]
 \[
 C(x)p(x) = \int_{\Gamma} G(x, \gamma) \int_{\Gamma} \frac{\partial p(\gamma)}{\partial n} - \frac{\partial G(x, \gamma)}{\partial n} p(\gamma) \, d\gamma.
 \]
 \[
 G(x, y) = \frac{e^{-ik|x-y|}}{4\pi|x-y|}.
 \]

Applications: EM wave scattering

- Similar to acoustic scattering
- Send waves and measure scattered waves
- Attempt to figure out object from the measured waves
- Need to know “Radar cross-section”
- Many applications
 - Light scattering
 - Radar
 - Antenna design
 - ….

Molecular and stellar dynamics

- Many particles distributed in space
- Particles exert a force on each other
- Simplest case force obeys an inverse-square law (gravity, coulombic interaction)

\[
\frac{dx_i}{dt} = F_i, \quad F_i = \sum_{j=1}^{N} \frac{q_i q_j (x_j - x_i)}{|x_j - x_i|^3}
\]
• Incompressible Navier Stokes Equation
\[\nabla \cdot \mathbf{u} = 0 \quad u = \nabla \phi + \nabla \times \mathbf{A} \]
\[\rho \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) + \nabla p = \mu \nabla^2 \mathbf{u} \quad \omega = -\nabla^2 \mathbf{A} \]
• Laplace equation for potential and Poisson equation for vorticity
• Solved via particle methods …