FMM CMSC 878R/AMSC 698R

Lecture 2
The most common complexities are:

- $O(1)$ - not proportional to any variable number, i.e. a fixed/constant amount of time
- $O(N)$ - proportional to the size of N (this includes a loop to N and loops to constant multiples of N such as $0.5N$, $2N$, $2000N$ - no matter what that is, if you double N you expect (on average) the program to take twice as long)
- $O(N^2)$ - proportional to N squared (you double N, you expect it to take four times longer - usually two nested loops both dependent on N).
- $O(\log N)$ - this is trickier to show - usually the result of binary splitting.
- $O(N \log N)$ this is usually caused by doing $\log N$ splits but also doing N amount of work at each "layer" of splitting.
Theta

Same Order of Growth:

• $f(n) = \Theta(g(n))$

$f(n) = O(g(n))$ and $g(n) = O(f(n))$
Log complexity

- If you half data at each stage then number of stages until you have a single item is given (roughly) by $\log_2 N$. => binary search takes $\log_2 N$ time to find an item.
- All logs grow a constant amount apart (homework)
 - So we normally just say $\log N$ not $\log_2 N$.
- $\log N$ grows very slowly
Fourier Analysis

- Def.: mathematical techniques for breaking up a signal into its components (sinusoids)
- Jean Baptiste Joseph Fourier (1768-1830)
- can represent any continuous periodic signal as a sum of sinusoidal waves
Applications

• Digital Signal Processing: analyzing and manipulating real-world signals using a computer
 – Toys and consumer electronics
 – Speech recognition
 – Audio/video compression
 – Medical imaging
 – Communications
 – Radar
Fourier Transform

- Fourier transform of a function \(h(t) \) is given by \(H(f) \) where \(f \) is the frequency

\[
H(f) = \int_{-\infty}^{\infty} h(t) e^{2\pi if t} \, dt
\]

\[
h(t) = \int_{-\infty}^{\infty} H(f) e^{-2\pi if t} \, df
\]

- Discrete Fourier Transform: if the function is sampled at discrete times

\[
h_k \equiv h(t_k), \quad t_k \equiv k\Delta, \quad k = 0, 1, 2, \ldots, N - 1
\]

\[
H(f_n) = \int_{-\infty}^{\infty} h(t) e^{2\pi i f_n t} \, dt \approx \sum_{k=0}^{N-1} h_k \ e^{2\pi i f_n t_k} \Delta = \Delta \sum_{k=0}^{N-1} h_k \ e^{2\pi i k \Delta n / N}
\]
Discrete Fourier Transform

- All notion of time has disappeared
- Multiplication of sampled data by a matrix
 \[H_n \equiv \sum_{k=0}^{N-1} h_k e^{2\pi i kn/N} \]

- This matrix is called the Fourier Matrix
- As discussed earlier it is a structured matrix
A Fourier matrix of order n is defined as the following
\[
\begin{bmatrix}
1 & 1 & 1 & \cdots & 1 \\
1 & W & W^2 & \cdots & W^{n-1} \\
1 & W^2 & W^4 & \cdots & W^{2(n-1)} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
1 & W^{n-1} & W^{2(n-1)} & \cdots & W^{(n-1)(n-1)}
\end{bmatrix},
\]
where
\[W = e^{\frac{2\pi i}{n}},\]
is an nth root of unity.
Fourier Transform Algorithm

For k=0 to N/2 {
 For i=0 to N-1 {
 Real_X[k] += x[i] * cos(2π * k * i / N)
 Imag_X[k] -= x[i] * sin(2π * k * i / N)
 }
}

Fast Fourier Transform

• Presented by Cooley and Tukey in 1965, but invented several times, including by Gauss (1809) and Danielson & Lanczos (1948)

• Danielson Lanczos lemma

\[
F_k = \sum_{j=0}^{N-1} e^{2\pi i jk / N} f_j
\]

\[
= \sum_{j=0}^{N/2-1} e^{2\pi i k(2j)/N} f_{2j} + \sum_{j=0}^{N/2-1} e^{2\pi i k(2j+1)/N} f_{2j+1}
\]

\[
= \sum_{j=0}^{N/2-1} e^{2\pi i k j / (N/2)} f_{2j} + W^k \sum_{j=0}^{N/2-1} e^{2\pi i k j / (N/2)} f_{2j+1}
\]

\[
= F_k^e + W^k F_k^o
\]
FFT

- So DFT of order N can be expressed as sum of two DFTs of order $N/2$
- Does this improve the complexity?
- Yes $\left(\frac{N}{2} \right)^2 + \left(\frac{N}{2} \right)^2 = \frac{N^2}{2} < N^2$
- But we are not done …
- Can apply the lemma recursively

$$F_k^e = F_k^{ee} + W^k F_k^{eo}, \quad F_k^o = F_k^{oe} + W^k F_k^{oo},$$

- Finally we have a set of one point transforms
Fast Fourier Transform Algorithm

- J.W. Cooley and J.W. Tukey, 1965
- Karl Friedrich Gauss (1777-1855)
- 1: Break N-point signal into N 1-point signals
- 2: Calculate N frequency spectra
- 3: Combine the spectra into one spectrum
Illustration

- Step 1: 16-point signal \rightarrow 16 1-point signals

 $[x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}]$

 $[x_0, x_2, x_4, x_6, x_8, x_{10}, x_{12}, x_{14}][x_1, x_3, x_5, x_7, x_9, x_{11}, x_{13}, x_{15}]$

 $[x_0, x_4, x_8, x_{12}][x_2, x_6, x_{10}, x_{14}][x_1, x_5, x_9, x_{13}][x_3, x_7, x_{11}, x_{15}]$

 $[x_0, x_8][x_4, x_{12}][x_2, x_{10}][x_6, x_{14}][x_1, x_9][x_5, x_{13}][x_3, x_{11}][x_7, x_{15}]$

 $[x_0][x_8][x_4][x_{12}][x_2][x_{10}][x_6][x_{14}][x_1][x_9][x_5][x_{13}][x_3][x_{11}][x_7][x_{15}]$

- Step 2: Spectrum of 1-point signal = signal
- Step 3: Combine spectra in bottom-up fashion
Comparison

- **Discrete Fourier Transform**
 - 2 nested loops, N points each
 - $T_{DFT}(N) = \Theta(N^2)$. Execution time = $k_{DFT}N^2$.

- **Fast Fourier Transform**
 - $\log N$ stages, $N/2$ butterfly computations each
 - $T_{FFT}(N) = \Theta(N \log N)$. Execution time = $k_{FFT}N \log N$.

- **E.g. 1024-point FT on 100MHz Pentium**
 - DFT: $k_{DFT}=25$ microseconds; E.T.=25 seconds.
 - FFT: $k_{FFT}=10$ microseconds; E.T.=70 milliseconds
FFT

• So DFT of order N can be expressed as sum of two DFTs of order $N/2$

• Does this improve the complexity?

• Yes, $(N/2)^2 + (N/2)^2 = N^2/2 < N^2$

• But we are not done

• Can apply the lemma recursively

\[F_k^e = F_k^{ee} + W^k F_k^{eo}, \quad F_k^o = F_k^{oe} + W^k F_k^{oo}, \]

• Finally we have a set of one point transforms

\[F_{k^{eeoeoo...oe}} = f_n \]
Complexity

- Each F_k is a sum of $\log_2 N$ transforms and (factors)
- There are N F_k's
- So the algorithm is $O(N \log_2 N)$
FFT and bit-shifts

• Set o to 1 and e to 0
• Then the sequence $ooeoeo...$ can be interpreted as a binary number
• Reversing the pattern the binary value of n
Conclusion

• FFT is a divide-and-conquer algorithm
 – Divide: bit reversal sort
 – Conquer: calculate frequency spectra
 – Combine: recombine frequency spectra using butterfly computation
• $N \lg N$ time complexity
• Also implemented in hardware
• Makes many DSP applications practical
Outline

• Factorization – One of key parts of the FMM.
 – Extensions of our trick for fast summation
• Fields (Potentials)
 – Singular and Regular Fields
 – Far Field and Near Field
• Local Expansions (R-expansions)
 – Local Expansions of Regular and Singular Potentials
 – Power Series
 – Taylor Series
Matrix-Vector Multiplication

Compute matrix vector product

\[\mathbf{v} = \Phi \mathbf{u} \]

or

\[v_j = \sum_{i=1}^{N} \Phi_{ji} u_i, \quad j = 1, \ldots, M, \]

where

\[\Phi_{ji} = \Phi(y_j, x_i), \quad j = 1, \ldots, M, \quad i = 1, \ldots, N, \]

or

\[
\Phi = \begin{pmatrix}
\Phi_{11} & \Phi_{12} & \cdots & \Phi_{1N} \\
\Phi_{21} & \Phi_{22} & \cdots & \Phi_{2N} \\
\vdots & \vdots & \ddots & \vdots \\
\Phi_{M1} & \Phi_{M2} & \cdots & \Phi_{MN}
\end{pmatrix} = \begin{pmatrix}
\Phi(y_1, x_1) & \Phi(y_1, x_2) & \cdots & \Phi(y_1, x_N) \\
\Phi(y_2, x_1) & \Phi(y_2, x_2) & \cdots & \Phi(y_2, x_N) \\
\vdots & \vdots & \ddots & \vdots \\
\Phi(y_M, x_1) & \Phi(y_M, x_2) & \cdots & \Phi(y_M, x_N)
\end{pmatrix}.
\]

Generally we have two sets of points in \(d\)-dimensions:

Sources: \(\mathbf{X} = \{ \mathbf{x}_1, \ldots, \mathbf{x}_N \} \), \(\mathbf{x}_i \in \mathbb{R}^d, \quad i = 1, \ldots, N \),

Receivers: \(\mathbf{Y} = \{ \mathbf{y}_1, \ldots, \mathbf{y}_M \} \), \(\mathbf{y}_j \in \mathbb{R}^d, \quad j = 1, \ldots, M \),

The receivers also can be called “targets” or “evaluation points”.
Why \mathbb{R}^d?

- $d = 1$
 - Scalar functions, interpolation, etc.
- $d = 2, 3$
 - Physical problems in 2 and 3 dimensional space
- $d = 4$
 - 3D Space + time, 3D grayscale images
- $d = 5$
 - Color 2D images, Motion of 3D grayscale images
- $d = 6$
 - Color 3D images
- $d = 7$
 - Motion of 3D color images
- $d = \text{arbitrary}$
 - d-parametric spaces, statistics, database search procedures
Fields (Potentials)

Field (Potential) of a single (ith) unit source

Field (Potential) of the set of sources of intensities \(\{u_i\} \)

Fields are continuous!
(Almost everywhere)

\[
\nu(y) = \sum_{i=1}^{N} u_i \Phi(y, x_i), \quad y \in \mathbb{R}^d,
\]

\[
v_j = \nu(y_j), \quad j = 1, \ldots, M.
\]
Examples of Fields

- There can be vector or scalar fields (we focus mostly on scalar fields)
- Fields can be \textit{regular} or \textit{singular}

Scalar Fields:
- Gravity
 \[\Phi(y, x_i) = \frac{1}{|y - x_i|} \]
- Monochromatic Wave (k is the wavenumber)
 \[\Phi(y, x_i) = \frac{\exp\{ik|y - x_i|\}}{|y - x_i|} \]
- Gaussian
 \[\Phi(y, x_i) = \exp\{-|y - x_i|^2/\sigma\} \]

Vector Field:
- 3D Velocity field:
 \[\Phi(y, x_i) = \nabla_y \frac{1}{|y - x_i|} = i_1 \frac{\partial}{\partial y_1} \frac{1}{|y - x_i|} + i_2 \frac{\partial}{\partial y_2} \frac{1}{|y - x_i|} + i_3 \frac{\partial}{\partial y_3} \frac{1}{|y - x_i|}, \]
 \[y = (y_1, y_2, y_3) \in \mathbb{R}^3. \]
Straightforward Computational Complexity:

\[O(MN) \quad \text{Error: 0 ("machine" precision)} \]

The Fast Multipole Methods look for computation of the same problem with complexity \(o(MN) \) and error < prescribed error.

In the case when the error of the FMM does not exceed the machine precision error (for given number of bits) there is no difference between the “exact” and “approximate” solution.
Factorization
“Middleman Method”
Global Factorization

\[\forall x_i, y_j \in \Omega \subseteq \mathbb{R}^d : \]

\[\Phi(y_j, x_i) = \sum_{m=0}^{\infty} a_m(x_i - x_*) f_m(y_j - x_*) = \sum_{m=0}^{p-1} a_m(x_i - x_*) f_m(y_j - x_*) + \text{Error}(p, x_i, y_j) \]
Factorization Trick

\[v_j = \sum_{i=1}^{N} \Phi(y_j, x_i) u_i \]

\[= \sum_{i=1}^{N} \left[\sum_{p=0}^{p-1} a_m(x_i - x_*) f_m(y_j - x_*) + \text{Error}(p; x_i, y_j) \right] u_i \]

\[= \sum_{p=0}^{p-1} f_m(y_j - x_*) \sum_{i=1}^{N} a_m(x_i - x_*) u_i + \sum_{i=1}^{N} \text{Error}(p; x_i, y_j) u_i \]

\[= \sum_{p=0}^{p-1} c_m f_m(y_j - x_*) + \text{Error}(N; p), \]

where

\[c_m = \sum_{i=1}^{N} a_m(x_i - x_*) u_i. \]
Reduction of Complexity

Straightforward (nested loops):

\[
\begin{align*}
\text{for } j = 1, \ldots, M \\
v_j &= 0; \\
\text{for } i = 1, \ldots, N \\
v_j &= v_j + \Phi(y_j, x_i)u_i; \\
\text{end;} \\
\text{end;}
\end{align*}
\]

Complexity: \(O(MN) \)

Factored:

\[
\begin{align*}
\text{for } m = 0, \ldots, p - 1 \\
c_m &= 0; \\
\text{for } i = 1, \ldots, N \\
c_m &= c_m + a_m(x_i - x_*)u_i; \\
\text{end;} \\
\text{end;}
\end{align*}
\]

\[
\begin{align*}
\text{for } j = 1, \ldots, M \\
v_j &= 0; \\
\text{for } m = 0, \ldots, p - 1 \\
v_j &= v_j + c_m f_m(y_j - x_*); \\
\text{end;} \\
\text{end;}
\end{align*}
\]

Complexity: \(O(pN + pM) \)

If \(p \ll \min(M, N) \) then complexity reduces!
Middleman Scheme

Complexity: $O(pN + pM)$

Set of coefficients $\{c_m\}$
Far Field and Near Field

Near Field of the ith source:
$|y - x_i| < r_c$.

Far Field of the ith source:
$|y - x_i| > R_c$.

What are these r_c and R_c? depends on the potential + some conventions for the terminology.
Local (Regular) Expansion

Do not confuse with the Near Field!

Let

We call expansion

local (regular) inside a sphere

if the series converges for $\forall y, |y - x_*| < r_*$.

We also call this R-expansion, since basis functions R_m should be regular
Local Expansion of a Regular Potential

Can be like this:

\[|y - x*| < r* < |x_i - x*| \]

\[r* > |y - x*| > |x_i - x*| \]

...or like this:

\[|y - x*| < r* < |x_i - x*| \]

\[r* > |y - x*| > |x_i - x*| \]
Local Expansion of a Regular Potential (Example)

Valid for any $r_* < \infty$, and x_i.

Looking for factorization:

$$\Phi(y, x_i) = \sum_{m=0}^{\infty} a_m(x_i - x_*) R_m(y - x_*) \quad x, y \in \mathbb{R}^1.$$

We have

$$e^{-(y-x_*)^2} = e^{-(y-x_*)^2 - (x_i-x_*)^2} e^{-(x_i-x_*)^2} e^{2(y-x_*)^2} e^{2(y-x_*)^2}$$

$$= e^{-(y-x_*)^2} e^{-(x_i-x_*)^2} \sum_{m=0}^{\infty} \frac{2^m (x_i - x_*)^m (y - x_*)^m}{m!}.$$

Choose

$$a_m(x_i - x_*) = e^{-(x_i-x_*)^2} \sqrt{\frac{2^m}{m!}} (x_i - x_*)^m, \quad m = 0, 1, \ldots,$$

$$R_m(y-x_*) = e^{-(y-x_*)^2} \sqrt{\frac{2^m}{m!}} (y - x_*)^m, \quad m = 0, 1, \ldots.$$
Local Expansion of a Singular Potential

Can be like this:

\[|y - x_*| < r* \leq |x_i - x_*| \]

Like this only!

\[r* > |y - x_*| > |x_i - x_*| \]

Never ever!

Because \(x_i \) is a singular point!
Local Expansion of a Singular Potential (Example)

Valid for any \(|x_i - x_*| > |y - x_*|\)

\[
\Phi(y, x_i) = \frac{1}{y - x_i}.
\]

Looking for factorization:

\[
\Phi(y, x_i) = \sum_{m=0}^{\infty} a_m(x_i - x_*) R_m(y - x_*).
\]

We have

\[
\frac{1}{y - x_i} = \frac{1}{y - x_* - (x_i - x_*)} = \frac{1}{(x_i - x_*)[1 - \frac{y - x_*}{x_i - x_*}]} = -\frac{1}{(x_i - x_*)}\left[1 - \frac{y - x_*}{x_i - x_*}\right]^{-1}.
\]

Geometric progression:

\[
(1 - \alpha)^{-1} = 1 + \alpha + \alpha^2 + \cdots = \sum_{m=0}^{\infty} \alpha^m, \quad |\alpha| < 1.
\]

\[
\left[1 - \frac{y - x_*}{x_i - x_*}\right]^{-1} = \sum_{m=0}^{\infty} \frac{(y - x_*)^m}{(x_i - x_*)^m}, \quad |y - x_*| < |x_i - x_*|.
\]

Choose

\[
a_m(x_i - x_*) = \frac{1}{(x_i - x_*)^{m+1}}, \quad m = 0, 1,\ldots
\]

\[
R_m(y - x_*) = (y - x_*)^m, \quad m = 0, 1,\ldots
\]

\(x, y \in \mathbb{R}^1\).