Filters
Filters

• So far:
 – Sound signals, connection to Fourier Series, Introduction to Fourier Series and Transforms, Introduction to the FFT
 – Today Filters

• Filters:
 – Keep part of the signal we are interested in

• More generally:
 – Operate on a digital signal and transform it to have some desired property

• Wrap up signal processing
Define a mathematical operation on discrete-time signals called \textit{convolution}, represented by \ast.

Given two discrete-time signals x_1, x_2,

$$
\forall \ n \ , \ \ (x_1 \ast x_2)(n) = \sum_{k=-\infty}^{\infty} x_1(k)x_2(n-k)
$$

We can also define convolutions for continuous-time signals.

Given two continuous-time signals x_1, x_2,

$$
\forall \ t \ , \ \ (x_1 \ast x_2)(t) = \int_{\tau=-\infty}^{\infty} x_1(\tau)x_2(t-\tau)d\tau
$$
Properties of Convolution

Convolution is commutative: \(x_1 * x_2 = x_2 * x_1 \).
Convolution is associative: \((x_1 * x_2) * x_3 = x_1 * (x_2 * x_3) \).
Convolution also has the following properties:
\[
x_1 * (x_2 + x_3) = x_1 * x_2 + x_1 * x_3
\]
for scalars \(a \),
\[
x_1 * (ax_2) = a(x_1 * x_2)
\]

These stem from the fact that integration and summation have additivity and homogeneity properties.
Defining LTI Systems Using Convolution

When a system is excited it responds to the signal and the observed signal is a combination of the forcing signal and the system.
Linear time invariant systems are linear, and their response does not change with time.

A Linear Time Invariant system can be defined using convolution. Take any discrete-time function \(g \).

The convolution

\[
S(x)(n) = (g \ast x)(n) = \sum_{k=-\infty}^{\infty} g(k)x(n-k)
\]

defines an LTI system \(S \). The output for any input is obtained through convolution.

The properties of convolution ensure that \(S \) is LTI.

When we define a system this way, we call the defining function \(g \) the convolution \textbf{kernel}.

This method may be used to define continuous-time systems too.
Example

Consider the system defined by the kernel

\[g(t) = \begin{cases}
1/3 & \text{if } t \in [0, 3] \\
0 & \text{otherwise}
\end{cases} \]

The output of this system for any input \(x \) is

\[y(t) = \int_{-\infty}^{\infty} g(\tau)x(t - \tau)d\tau \]

The output is the average value of \(x \) over the last 3 time units.
Impulse Response as Kernel

The output for a discrete-time Single Input Single Output LTI system can be given by the convolution of the input and the impulse response h:

$$y(n) = (h \ast x)(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k)$$

The impulse response is the particular system output obtained when the input is the Kronecker delta function

$$\forall \, n \, , \quad \delta(n) = \begin{cases}
1 & \text{if } n = 0 \\
0 & \text{if } n \neq 0
\end{cases}$$
Dirac Delta Function

We define the impulse response h for a continuous-time system as the output for a particular input called the Dirac delta function.

The Dirac delta function is not really a function. We define the Dirac delta function $\delta: \text{Reals} \rightarrow \text{Reals}$ to have the following properties:

\[
\forall \ t \in \text{Reals} \setminus \{0\}, \quad \delta(t) = 0
\]

\[
\forall \ \varepsilon \in \text{Reals} \text{ with } \varepsilon > 0, \quad \int_{\varepsilon}^{\varepsilon} \delta(t)\,dt = 1
\]
Dirac Delta Function

So the Dirac delta function $\delta(t)$ has infinite value at $t=0$, and is zero everywhere else.

Yet, the area under the function is equal to 1.

If we scale the function by a, the function $a\delta(t)$ will still be zero for all nonzero t and infinite at $t = 0$.

But, the area under the function will now equal a.

We draw the Dirac delta function as an arrow pointing up at $t=0$ indicating its infinite value there.

The height of the arrow represents the weight, the area under the function.
Sifting Property
Both the Kronecker and Dirac delta functions have the following property: When a signal is convolved with a delta function, it remains unchanged. This is called the **sifting** property.

For the discrete-time case, \[\sum_{k=-\infty}^{\infty} x(k) \delta(n - k) = x(n) \]
we see that the delta function is zero for all \(k \) except \(k = n \).

So there is only one term in the sum, \(x(n) \delta(n-n) = x(n) \).

For the continuous time case, \(\delta(t-\tau) \) will be nonzero only for \(\tau=t \).
So it doesn't matter what \(\delta(t-\tau) \) multiplies for \(\tau \neq t \):
\[\int_{\tau=-\infty}^{\infty} x(\tau) \delta(t-\tau) \, d\tau = \delta(t-t) \]
Impulse Response for Continuous-Time

The sifting property expresses x as a “sum of shifted and scaled delta functions”.

$$x(t) = \int_{-\infty}^{\infty} x(\tau) \delta(t - \tau) d\tau$$

If we apply an LTI system S to a sum of shifted and scaled delta functions, we can distribute over the sum (integral) and pull out scaling factors:

$$S(x)(t) = \int_{-\infty}^{\infty} x(\tau) S(\delta)(t - \tau) d\tau$$

$S(\delta)$ is the impulse response; the output of the system when the input is the Dirac delta function. We rename $S(\delta)$ as h, and see that the output $S(x) = x * h$, just like in discrete-time:

$$S(x)(t) = y(t) = \int_{-\infty}^{\infty} x(\tau) h(t - \tau) d\tau$$
Impulse Response for Cascade

Suppose we connect two systems with impulse responses h_1 and h_2 in cascade.

What is the impulse response of the composite system?

\[y = h_2 \ast (h_1 \ast x) \]

\[y = (h_2 \ast h_1) \ast x \]

The impulse response of the composite system is $h_2 \ast h_1$.
Relationship to Frequency Domain

- It was much easier to find the frequency response for a cascade system, rather than the impulse response.
- Given two systems in cascade with frequency responses H_1 and H_2, the overall frequency response of the system was $H_1 H_2$.
- Sometimes it is easier to draw conclusions using the frequency response system description, and sometimes it is better to use the impulse response description.
- It turns out that the impulse response and frequency response are quite related, and we can find one from the other.
- We can transfer from the time domain, using the impulse response description, to the frequency domain, using the frequency response description.
Example

Find the frequency response of the system with impulse response

\[h(t) = \begin{cases}
 1/3 & \text{if } t \in [0, 3] \\
 0 & \text{otherwise}
\end{cases} \]

\[
H(\omega) = \int_{-\infty}^{\infty} h(\tau)e^{-i\omega \tau} d\tau
\]

\[
H(\omega) = \frac{i}{3\omega} \left(e^{-i 3\omega} - 1 \right)
\]
Convolution with Impulse Response

For both continuous and discrete-time LTI systems, we define the **impulse response** as the special output that occurs when the input is an impulse function (Dirac delta for continuous-time systems, Kronecker Delta for discrete-time systems).

This impulse response, called h, gives us the output for any input via convolution:

For x given,

\[y(t) = (h \ast x)(t) = \int_{-\infty}^{\infty} h(\tau) x(t - \tau) \, d\tau \]

For x,

\[y(n) = (h \ast x)(n) = \sum_{k=-\infty}^{\infty} h(k) x(n - k) \]

Recall that the roles of h and x in the above may be reversed.
From Impulse Response to Frequency Response

Consider the case when the input to a continuous-time LTI system, \(x \), is an eigenfunction given by \(x(t) = e^{i\omega t} \).

We can find the output \(y \) using convolution with the impulse response \(h \):

\[
\forall t \in \text{Reals}, \quad y(t) = \int_{-\infty}^{\infty} h(\tau) e^{i\omega(t-\tau)} \, d\tau = e^{i\omega t} \int_{-\infty}^{\infty} h(\tau) e^{-i\omega \tau} \, d\tau
\]

Recall that an LTI system scales an eigenfunction \(x(t) = e^{i\omega t} \) by a factor \(H(\omega) \). From above, we see this scaling factor is

\[
H(\omega) = \int_{-\infty}^{\infty} h(\tau) e^{-i\omega \tau} \, d\tau
\]

The frequency response is the Fourier transform of the impulse response.
From Impulse Response to Frequency Response

For the discrete-time case, with \(x(t) = e^{i\omega n} \) for \(n \in \text{Integers} \), We can find the output \(y \) using convolution with the impulse response \(h \):

\[
\forall \ n \in \text{Integers}, \quad y(n) = \sum_{k=-\infty}^{\infty} h(k) e^{i\omega(n-k)} = e^{i\omega n} \sum_{k=-\infty}^{\infty} h(k) e^{-i\omega k}
\]

From above, we see the scaling factor on the eigenfunction is

\[
H(\omega) = \sum_{k=-\infty}^{\infty} h(k) e^{-i\omega k}
\]

The frequency response is the \textbf{discrete-time Fourier transform} (DTFT) of the impulse response.
Importance of H and h

We want to design systems with a particular frequency response H for many possible applications:

- **Audio signal correction**: getting rid of noise, compensating for an imperfect audio channel
- **The equalizer on your stereo** lets you modify your stereo’s H
- **Blurring and edge detection in images**: an abrupt change in color in an image indicates high frequency, blocks of constant color are low frequencies
- **AM radio reception**: we want to keep a signal at one particular carrier frequency, and **filter** out neighboring carrier frequencies

Practical implementation of H, at least in digital systems, is easily accomplished by convolution with the corresponding h.
Designing FIR Discrete-Time Systems

We want to be able to specify a desired frequency response, $H(\omega)$ for all ω in Reals, and come up with the corresponding impulse response $h(n)$ for all n in Integers.

Our life will be easiest if $h(n)$ is nonzero only for a finite set of samples $n \in \{0, 1, \ldots, L-1\}$. Then the length of the impulse response will be L, and the convolution sum will be finite:

$$y(n) = (h \ast x)(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k) = \sum_{k=0}^{L-1} h(k)x(n-k)$$

So we would like to come up with an FIR implementation of our desired frequency response function $H(\omega)$. MATLAB can help.
Designing FIR Filters Using MATLAB

The remez() function in MATLAB implements an algorithm called the Parks-McClellan algorithm based on the Remez algorithm. It comes up with an impulse response of desired length L that implements a **bandpass** filter minimizing gain in the **stopband**. You specify the **passband**, the frequencies your filter should amplify, the **stopband**, the frequencies it should zero out, and the **transition band**, the “don’t care” area of transition between 0 and 1.
Designing IIR Discrete-Time Systems

Notice that when we were designing our FIR system, with

\[y(n) = \sum_{k=0}^{L-1} h(k)x(n-k) \]

we were really picking the coefficients of a difference equation. We can implement a wider variety of systems with the more general difference equation that involves feedback:

\[y(n) = \sum_{k=0}^{L-1} b(k)x(n-k) + \sum_{k=1}^{M-1} a(k)y(n-k) \]

These systems may have impulse responses of infinite duration (IIR), and the convolution sum would have infinite terms.

So, we design them by selecting the coefficients a and b and implement them using feedback as above.
Using MATLAB to Design IIR Filters

MATLAB has several functions that come up with the difference equation coefficients a and b to implement a system with a desired frequency response $H(\omega)$ for all ω in Reals. Using

- `butter()` Butterworth filter
- `cheby1()` Chebyshev 1 filter
- `cheby2()` Chebyshev 2 filter
- `elliptic` Elliptic filter

you can specify the passband, stopband, and order (number of terms in the difference equation) of your desired H.

MATLAB will return the corresponding coefficients in the difference equation.