Transaural Rendering

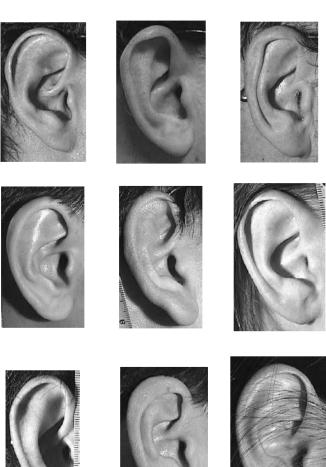
CMSC 828D / Spring 2006 Lecture 19

Recap (1)

- Acoustic source produces a sound
- This sound arrives at the ear
- Sound is modified because of scattering:
 - Environmental reflections (room acoustics)
 - Anatomical reflections (HRTFs)
- So sound at the eardrum is not the same as sound produced by the source

Recap (2)

- HRTF defines how sound is modified by anatomical scattering
 - Source is at (r,θ,ϕ)
 - $H_{L}(\omega, r, \theta, \varphi) = \Phi_{L}(\omega, r, \theta, \varphi) / \Phi(\omega)$
 - $H_{R}(\omega, r, \theta, \varphi) = \Phi_{R}(\omega, r, \theta, \varphi) / \Phi(\omega)$
 - $-\Phi_{\rm L}(\omega,r,\theta,\phi)$ is the potential at the left eardrum
 - $-\Phi(\omega)$ is the potential at the center of the head as if the head were absent


Recap (3)

- HRTF describes how spectrum is modified for sources at various directions
- Spectrum changes are picked by the brain to evoke perception of direction
- So we can "trick" the brain
- Identical stimuli cause identical perceptions
 - Present some waveforms to the eardrums
 - User gets a corresponding perception

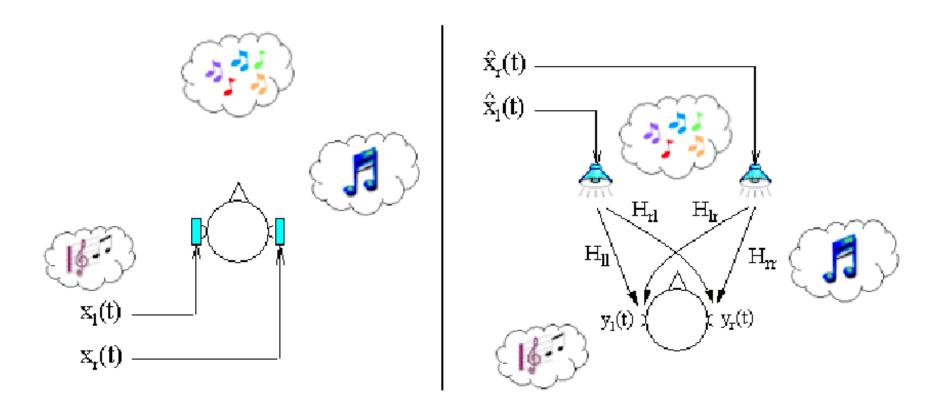
Recap (4)

- Present to the ears the sound filtered with HRTF for direction (θ, φ)
- Listener *should* perceive the sound as coming from that direction
- But... various difficulties arise

Individualization

Recap (5)

- Problems complicating such an easy solution:
 - Individualization
 - Environment
 - Dynamics
- All these can be taken care of properly
- When this is done, signals $x_L(t)$ and $x_R(t)$ to be delivered to eardrums are produced...


Binaural Delivery

- We're given signals to be delivered to the left and right ears
- Put headphones on person
- Possibly compensate for
 - Ear canal response
 - Headphone response
 - Headphone-to-head coupling

Transaural Delivery

- Use loudspeakers
- "Natural" solution for desktop computers
 - Monitor and two speakers on the sides
- More challenging case
 - Crosstalk
 - User positioning ("sweet spot")

Illustration

Binaural presentation

Transaural presentation

Transaural Setup

- Assume that signals $\hat{x}_L(t)$ and $\hat{x}_R(t)$ are played via loudspeakers
- Assume symmetric listening case
- $H_{LL}=H_{RR}=H_i$, $H_{LR}=H_{RL}=H_c$
- Then,
 - $-Y_{L}(\omega) = \hat{X}_{L}(\omega)H_{i}(\omega) + \hat{X}_{R}(\omega)H_{c}(\omega)$
 - $-Y_{R}(\omega) = \hat{X}_{L}(\omega)H_{c}(\omega) + \hat{X}_{R}(\omega)H_{i}(\omega)$

Matrix Form

• In matrix form, Y=HX, where

•
$$Y = \begin{bmatrix} Y_L \\ Y_R \end{bmatrix}$$
, $H = \begin{bmatrix} H_i & H_c \\ H_c & H_i \end{bmatrix}$, $\hat{X} = \begin{bmatrix} \hat{X}_L \\ \hat{X}_R \end{bmatrix}$

• We need to choose \hat{X} so that Y = X

Crosstalk Cancellation Filter

- Filter X to generate such \hat{X} that $\hat{HX} = X$
- Crosstalk can be represented as filter
- Knowing crosstalk filter, design a *crosstalk-canceling* filter G for X, $\hat{X} = GX$
 - So that the crosstalk, when occurs later in the delivery path, undoes the effect of G
- We need simply G=H⁻¹
- Then $Y=H\hat{X}=HGX=HH^{-1}X=X$

Crosstalk Cancellation

•
$$H^{-1} = \frac{1}{H_i^2 - H_c^2} \begin{bmatrix} H_i & -H_c \\ -H_c & H_i \end{bmatrix}$$

- Can also do expression for non-symmetric setup
- Slightly more complicated

Structural Chart

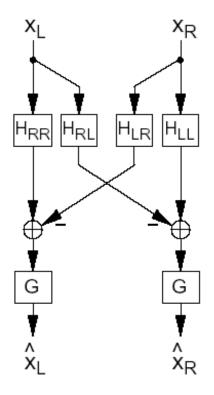
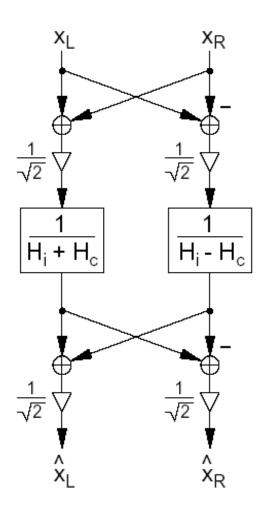


Figure 4: General transaural filter, where $G = 1/(H_{LL}H_{RR} - H_{LR}H_{RL})$.

(from Gardner 1995)

Shuffler Implementation

- Can be easier to implement
- More elegant solution


• Shuffler matrix
$$D = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

• Note that D⁻¹=D and D⁻¹H⁻¹D=
$$\begin{bmatrix} (H_i+H_c)^{-1} & 0 \\ 0 & (H_i+H_c)^{-1} \end{bmatrix}$$

• Denote $Q = D^{-1}H^{-1}D$

Shuffler Implementation

- Can then write $\hat{X}=H^{-1}X=DD^{-1}H^{-1}DD^{-1}X=D(D^{-1}H^{-1}D)D^{-1}X=DQD^{-1}X=DQDX$
- Easier implementation
- (from Gardner 1995)

Applications

- Now we can render transaurally *any* signal that was prepared for binaural delivery
 - Just process it with filter and output via speakers
- Transaural rendering is targeted mainly at desktop applications
 - Typical placement of speakers is at ±30 degrees
 - User is stationary, is centered, and is facing the monitor

Limitations

- High-quality audio scene is achieved only at "sweet spot"
- Scene breaks down completely with 30 cm left or right motion or 30 degree rotation
- Reasonably tolerant to front-back motion
- Head tracking can be done to adapt filters in real time

HRTF Approximation

- Personalized HRTF is often not available
- Use approximate models of HRTF
 - E.g., use sphere HRTF
 - Valid only for low frequencies
 - But at high frequencies, crosstalk is low anyway in typical setup
 - Head shadows left ear from right loudspeaker,
 and vice versa

Signal Processing Issues

- Need to divide by HRTF
 - Division by a "non-minimum-phase" filter lead to instability
 - Either convert HRTF to min-phase format
 - In this case some information is lost but it is believed to be perceptually unimportant
 - Or use iterative methods to devise crosscancellation filter
 - So implementation is somewhat complicated
 - See literature for some pointers

Existing Applications

- Technology is used in cell phones for surround sound
- Motorola E398 and ROKR-E1 cell phones
 - Non-individualized HRTF
 - Two loudspeakers on the sides
- Desktop applications as well

Brief Literature List

- W. G. Gardner, "Transaural 3-D Audio", M.I.T. Media Lab Technical Report #342, 1995.
- C. Kyriakakis, P. Tsakalides, and T. Holman, "Surrounded by sound", IEEE Signal Processing Magazine, January 1999.
- T. Funkhouser, J.-M. Jot, and N. Tsingos, "Sounds good to me!", SIGGRAPH 2002 Course Notes.
- A. Mouchartis, P. Reveliotis, and C. Kyriakakis, "Inverse filter design for immersive audio rendering over loudspeakers", IEEE Transactions on Multimedia, vol. 2(2), June 2000.

Web Pointers

- http://www.sonicspot.com/guide/3daudio.html
- http://www.sensaura.com/whitepapers/ pdfs/dev009.pdf
- www.sonaptic.com

Multi-speaker Presentation

- Another way to deliver spatial content
- Place a user in the room
- Place many speakers around him/her
- Play sound from necessary direction
 - No HRTF filtering at all
 - Sound just comes from the correct place

Simplest Case: Stereo

- Based heavily on the way human brain processes the sound
 - Combination of two sources is perceived as "phantom image"
 - Located between true sources

Stereo Setup

- Place two speakers at +30 degrees
- Same loudness in both speakers: perceived source is in the middle
- Increase loudness in one speaker, or
- Delay one speaker w.r.t. another one:
 - The perceived position shifts towards the louder or the earlier speaker
- Also suffers from "sweet spot" problem

Multi-speaker Setup

- Stereo setup can be extended
- Have many speakers covering whole space
- Vector-Based Amplitude Panning (VBAP)
- To render sound at direction D:
 - Find three speakers at directions D_i closest to D
 - Compute gains G_i so that $\Sigma G_i D_i = D$
 - Play sound from these speakers with gains G_i

VBAP

- Good for rendering "far" virtual sources
- Impossible for the virtual source to enter reproduction region
 - I.e. to be closer to the listener than the actual loudspeaker
- Also, implementation problems often arise
 - An array of 128 loudspeakers was built once
 - It very effectively focused all noise in the room to the room center

5.1 and Similar Setups

- Consumer-level surround sound systems
- All speakers are in the same plane
 - Unable to reproduce elevation
- Large angles between speakers
 - Hard to create stable phantom images
- So these setups are more for "enveloping" the user rather than for accurate spatial presentation

5.1 Setup

- Two frontal speakers are at ± 30 degrees
 - Compatibility with stereo setup
- Center channel is in front
 - These three form "conventional" stereo setup
- Two "surround" speakers are at ±110 deg
 - So they are placed on the sides
 - Intention is to generate supporting ambience, effects, or "room impression"
- No intention to do full 360 deg spatial audio

Wave-field Synthesis

- Kirchoff principle:
 - Any point on a waveform acts as a secondary source
- One can reconstruct the wave field *exactly* within a region
 - Model or measure the wave on the boundary
 - Place many sources at the region boundary
 - Make them emit the same wave into the region

Wave-field Synthesis

- Advantages:
 - Excellent quality
 - Exact reconstruction everywhere in the region
 - No more sweet spot problem!
- Disadvantages:
 - Many speakers necessary
 - Heavy setup and heavy processing
 - Still can't simulate source(s) within the region
- ... A separate lecture on WFS will follow

Conclusion

- Binaural rendering
- Transaural rendering
- Multi-speaker rendering (VBAP)
- Wave-field synthesis
 - Important to understand advantages and limitations of each of these approaches
- Next lecture: Room Acoustics!