Transaural Rendering

CMSC 828D / Spring 2006
Lecture 19
Recap (1)

- Acoustic source produces a sound
- This sound arrives at the ear
- Sound is modified because of scattering:
 - Environmental reflections (room acoustics)
 - Anatomical reflections (HRTFs)
- So sound at the eardrum is not the same as sound produced by the source
Recap (2)

- HRTF defines how sound is modified by anatomical scattering
 - Source is at \((r,\theta,\varphi)\)
 - \(H_L(\omega,r,\theta,\varphi) = \Phi_L(\omega,r,\theta,\varphi)/\Phi(\omega)\)
 - \(H_R(\omega,r,\theta,\varphi) = \Phi_R(\omega,r,\theta,\varphi)/\Phi(\omega)\)
 - \(\Phi_L(\omega,r,\theta,\varphi)\) is the potential at the left eardrum
 - \(\Phi(\omega)\) is the potential at the center of the head as if the head were absent
Recap (3)

- HRTF describes how spectrum is modified for sources at various directions
- Spectrum changes are picked by the brain to evoke perception of direction
- So we can “trick” the brain
- Identical stimuli cause identical perceptions
 - Present some waveforms to the eardrums
 - User gets a corresponding perception
Recap (4)

• Present to the ears the sound filtered with HRTF for direction (θ, φ)
• Listener *should* perceive the sound as coming from that direction
• But… various difficulties arise
Individualization
Recap (5)

• Problems complicating such an easy solution:
 – Individualization
 – Environment
 – Dynamics
• All these can be taken care of properly
• When this is done, signals $x_L(t)$ and $x_R(t)$ to be delivered to eardrums are produced…
Binaural Delivery

• We’re given signals to be delivered to the left and right ears
• Put headphones on person
• Possibly compensate for
 – Ear canal response
 – Headphone response
 – Headphone-to-head coupling
Transaural Delivery

• Use loudspeakers
• “Natural” solution for desktop computers
 – Monitor and two speakers on the sides
• More challenging case
 – Crosstalk
 – User positioning ("sweet spot")
Illustration

Binaural presentation

Transaural presentation
Transaural Setup

- Assume that signals $\hat{x}_L(t)$ and $\hat{x}_R(t)$ are played via loudspeakers
- Assume symmetric listening case
- $H_{LL}=H_{RR}=H_i$, $H_{LR}=H_{RL}=H_c$
- Then,
 - $Y_L(\omega)=\hat{X}_L(\omega)H_i(\omega)+\hat{X}_R(\omega)H_c(\omega)$
 - $Y_R(\omega)=\hat{X}_L(\omega)H_c(\omega)+\hat{X}_R(\omega)H_i(\omega)$
Matrix Form

- In matrix form, \(Y = H \hat{X} \), where

\[
Y = \begin{bmatrix} Y_L \\ Y_R \end{bmatrix}, \quad H = \begin{bmatrix} H_i & H_c \\ H_c & H_i \end{bmatrix}, \quad \hat{X} = \begin{bmatrix} \hat{X}_L \\ \hat{X}_R \end{bmatrix}
\]

- We need to choose \(\hat{X} \) so that \(Y = X \)
Crosstalk Cancellation Filter

- Filter X to generate such \(\hat{X} \) that \(H\hat{X} = X \)
- Crosstalk can be represented as filter
- Knowing crosstalk filter, design a \emph{crosstalk-canceling} filter G for X, \(\hat{X} = GX \)
 - So that the crosstalk, when occurs later in the delivery path, undoes the effect of G
- We need simply \(G=H^{-1} \)
- Then \(Y=H\hat{X}=HGX=HH^{-1}X=X \)
Crosstalk Cancellation

\[
H^{-1} = \frac{1}{H_i^2 - H_c^2} \begin{bmatrix}
H_i & -H_c \\
-H_c & H_i
\end{bmatrix}
\]

- Can also do expression for non-symmetric setup
- Slightly more complicated
Structural Chart

Figure 4: General transaural filter, where \(G = \frac{1}{(H_{LL}H_{RR} - H_{LR}H_{RL})} \).

(from Gardner 1995)
Shuffler Implementation

- Can be easier to implement
- More elegant solution

Shuffler matrix $D = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$

- Note that $D^{-1} = D$ and $D^{-1}H^{-1}D = \begin{bmatrix} (H_i + H_c)^{-1} & 0 \\ 0 & (H_i + H_c)^{-1} \end{bmatrix}$
- Denote $Q = D^{-1}H^{-1}D$
Shuffler Implementation

- Can then write $\hat{X}=H^{-1}X = DD^{-1}H^{-1}DD^{-1}X = D(D^{-1}H^{-1}D)D^{-1}X = DQD^{-1}X = DQDX$
- Easier implementation
- (from Gardner 1995)
Applications

- Now we can render transaurally *any* signal that was prepared for binaural delivery
 - Just process it with filter and output via speakers
- Transaural rendering is targeted mainly at desktop applications
 - Typical placement of speakers is at ±30 degrees
 - User is stationary, is centered, and is facing the monitor
Limitations

- High-quality audio scene is achieved only at "sweet spot"
- Scene breaks down completely with 30 cm left or right motion or 30 degree rotation
- Reasonably tolerant to front-back motion
- Head tracking can be done to adapt filters in real time
HRTF Approximation

- Personalized HRTF is often not available
- Use approximate models of HRTF
 - E.g., use sphere HRTF
 - Valid only for low frequencies
 - But at high frequencies, crosstalk is low anyway in typical setup
 - Head shadows left ear from right loudspeaker, and vice versa
Signal Processing Issues

• Need to divide by HRTF
 – Division by a “non-minimum-phase” filter lead to instability
 – Either convert HRTF to min-phase format
 – In this case some information is lost but it is believed to be perceptually unimportant
 – Or use iterative methods to devise cross-cancellation filter
 – So implementation is somewhat complicated
 – See literature for some pointers
Existing Applications

• Technology is used in cell phones for surround sound

• Motorola E398 and ROKR-E1 cell phones
 – Non-individualized HRTF
 – Two loudspeakers on the sides

• Desktop applications as well
Brief Literature List

Web Pointers

- www.sonaptic.com
Multi-speaker Presentation

• Another way to deliver spatial content
• Place a user in the room
• Place many speakers around him/her
• Play sound from necessary direction
 – No HRTF filtering at all
 – Sound just comes from the correct place
Simplest Case: Stereo

- Based heavily on the way human brain processes the sound
 - Combination of two sources is perceived as “phantom image”
 - Located between true sources
Stereo Setup

- Place two speakers at ±30 degrees
- Same loudness in both speakers: perceived source is in the middle
- Increase loudness in one speaker, or
- Delay one speaker w.r.t. another one:
 - The perceived position shifts towards the louder or the earlier speaker
- Also suffers from “sweet spot” problem
Multi-speaker Setup

• Stereo setup can be extended
• Have many speakers covering whole space
• Vector-Based Amplitude Panning (VBAP)
• To render sound at direction D:
 – Find three speakers at directions D_i closest to D
 – Compute gains G_i so that $\sum G_i D_i = D$
 – Play sound from these speakers with gains G_i
VBAP

- Good for rendering “far” virtual sources
- Impossible for the virtual source to enter reproduction region
 - I.e. to be closer to the listener than the actual loudspeaker
- Also, implementation problems often arise
 - An array of 128 loudspeakers was built once
 - It very effectively focused all noise in the room to the room center
5.1 and Similar Setups

- Consumer-level surround sound systems
- All speakers are in the same plane
 - Unable to reproduce elevation
- Large angles between speakers
 - Hard to create stable phantom images
- So these setups are more for “enveloping” the user rather than for accurate spatial presentation
5.1 Setup

- Two frontal speakers are at ±30 degrees
 - Compatibility with stereo setup
- Center channel is in front
 - These three form “conventional” stereo setup
- Two “surround” speakers are at ±110 deg
 - So they are placed on the sides
 - Intention is to generate supporting ambience, effects, or “room impression”
- No intention to do full 360 deg spatial audio
Wave-field Synthesis

• Kirchoff principle:
 – Any point on a waveform acts as a secondary source

• One can reconstruct the wave field *exactly* within a region
 – Model or measure the wave on the boundary
 – Place many sources at the region boundary
 – Make them emit the same wave into the region
Wave-field Synthesis

• Advantages:
 – Excellent quality
 – Exact reconstruction everywhere in the region
 – No more sweet spot problem!

• Disadvantages:
 – Many speakers necessary
 – Heavy setup and heavy processing
 – Still can’t simulate source(s) within the region

• … A separate lecture on WFS will follow
Conclusion

- Binaural rendering
- Transaural rendering
- Multi-speaker rendering (VBAP)
- Wave-field synthesis
 - Important to understand advantages and limitations of each of these approaches
- Next lecture: Room Acoustics!