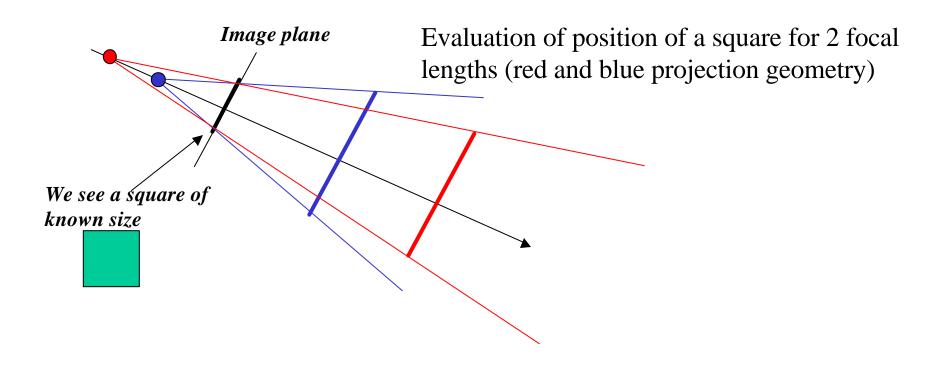
Camera Calibration

What is Camera Calibration?

- Primarily, finding the quantities internal to the camera that affect the imaging process
 - Position of image center in the image
 - It is typically not at (width/2, height/2) of image
 - Focal length
 - Different scaling factors for row pixels and column pixels
 - Skew factor
 - Lens distortion (pin-cushion effect)

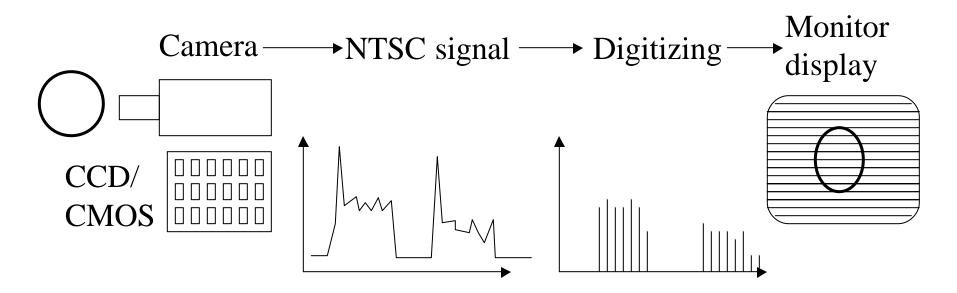
Motivation

- Good calibration is important when we need to
 - Reconstruct a world model: Virtual L.A. project
 - Interact with the world
 - Robot, hand-eye coordination



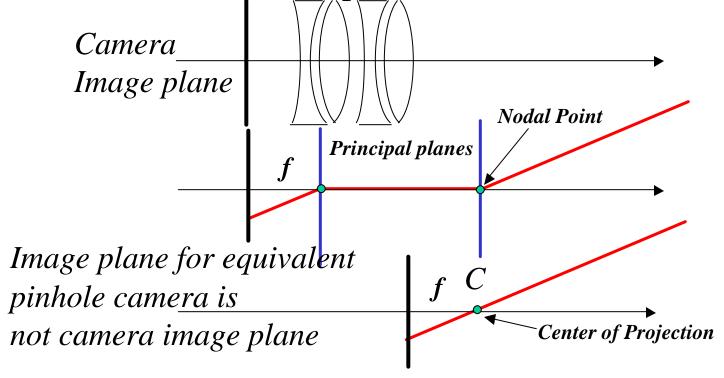
Scaling of Rows and Columns in Image

- Camera pixels are not necessarily square
- Camera output may be analog (NTSC)
- Image may be obtained by digitizing card
 - A/D converter samples NTSC signal



Compound Lens Imaging

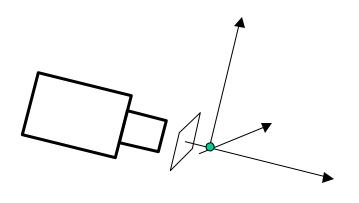
- Inexpensive single lens systems distort image at its periphery
- Compound lenses may be used to reduce chromatic effects and pin-cushion effects

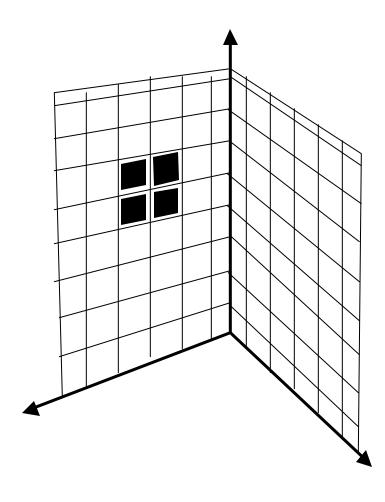


Variety of Techniques

- VERY large literature on the subject
- Work of Roger Tsai influential
- Linear algebra method described here
 - Can be used as initialization for iterative non linear methods.
- Some interesting methods use vanishing points

Camera and Calibration Target





Calibration Procedure

- Calibration target: 2 planes at right angle with checkerboard patterns (Tsai grid)
 - We know positions of pattern corners only with respect to a coordinate system of the target
 - We position camera in front of target and find images of corners
 - We obtain equations that describe imaging and contain internal parameters of camera
 - As a side benefit, we find position and orientation of camera with respect to target (camera *pose*)

Image Processing of Image of Target

- Canny edge detection
- Straight line fitting to detected linked edges
- Intersecting the lines to obtain the image corners
- Matching image corners and 3D target checkerboard corners
 - By counting if whole target is visible in image
- We get pairs (image point)--(world point)

$$(x_i, y_i) \rightarrow (X_i, Y_i, Z_i)$$

Central Projection

If world and image points are represented by homogeneous vectors, central projection is a linear transformation:

$$x_i = f \frac{x_s}{z_s}$$

$$y_i = f \frac{y_s}{z_s}$$

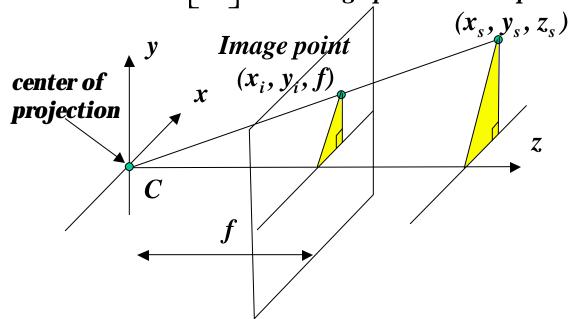
$$x_{i} = f \frac{x_{s}}{z_{s}}$$

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_{s} \\ y_{s} \\ z_{s} \\ 1 \end{bmatrix}$$

$$x_{i} = u/w, \quad y_{i} = v/w$$

$$x_{i} = u/w$$

$$x_i = u / w$$
, $y_i = v / w$



Transformation From Lengths to Pixels

Transformation uses:

- image center (x_0, y_0)
- scaling factors k_x and k_y

$$x_i = f \, \frac{x_s}{z_s}$$

$$y_i = f \frac{y_s}{z_s}$$

uses:
$$x_{0}, y_{0}$$

$$k_{x} \text{ and } k_{y}$$

$$y_{0}$$

$$x_{0}, y_{0}$$

$$y_{0}$$

$$x_{0}$$

$$y_{0}$$

$$x_{0}$$

$$y_{0}$$

$$x_{0}$$

$$x$$

$$y_{i} = f \frac{y_{s}}{z_{s}}$$
 $y_{pix} = k_{y}y_{i} + y_{0} = f k_{y} \frac{y_{s} + z_{s}y_{0}}{z_{s}}$

$$\begin{bmatrix} u' \\ v' \\ w' \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{x} & 0 & x_{0} & 0 \\ 0 & \mathbf{a}_{y} & y_{0} & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_{s} \\ y_{s} \\ z_{s} \\ 1 \end{bmatrix} \text{ with } \mathbf{a}_{x} = f k_{x}$$
 then
$$x_{pix} = u' / w'$$

$$y_{pix} = v' / w'$$

$$\mathbf{a}_{x} = f k_{x}$$
 $x_{pix} = u' k_{y}$

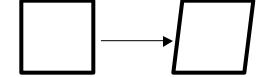
$$\mathbf{a}_{y} = f k_{y}$$
 then $y_{pix} = v' k_{y}$

Internal Camera Parameters

$$\begin{bmatrix} u' \\ v' \\ w' \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{x} & s & x_{0} & 0 \\ 0 & \mathbf{a}_{y} & y_{0} & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_{s} \\ y_{s} \\ z_{s} \\ 1 \end{bmatrix} \text{ with } \mathbf{a}_{x} = f k_{x} \qquad x_{pix} = u' / w' \\ \mathbf{a}_{y} = -f k_{y} \qquad y_{pix} = v' / w'$$

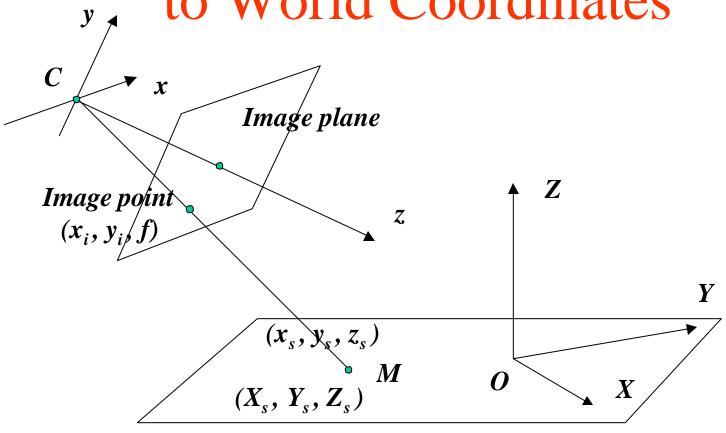
$$\begin{bmatrix} \mathbf{a}_{x} & s & x_{0} & 0 \\ 0 & \mathbf{a}_{y} & y_{0} & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{x} & s & x_{0} \\ 0 & \mathbf{a}_{y} & y_{0} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \mathbf{K} \begin{bmatrix} \mathbf{I}_{3} & | & \mathbf{0}_{3} \end{bmatrix}$$

- a_x and a_y "focal lengths" in pixels
- x_0 and y_0 coordinates of image center in pixels
- •Added parameter *S* is skew parameter

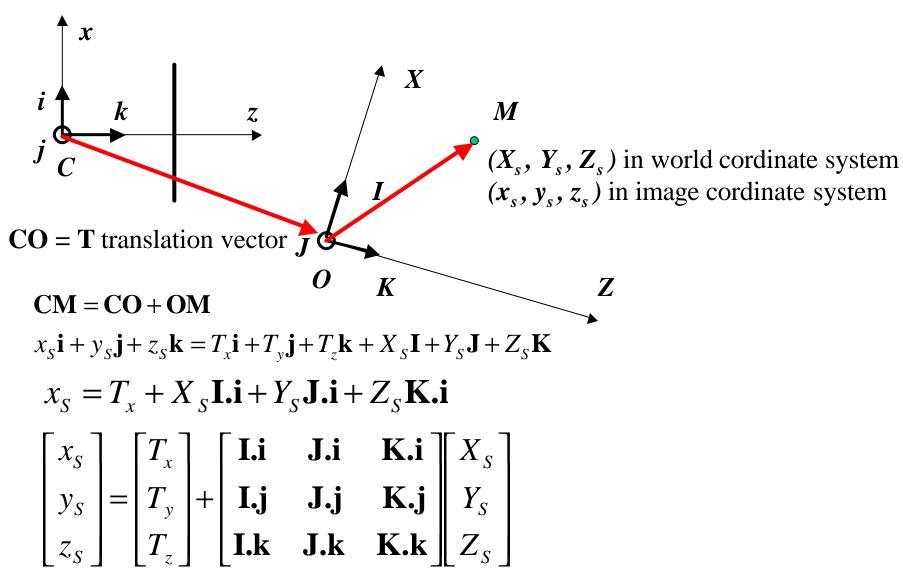


- K is called calibration matrix. Five degrees of freedom.
 - •**K** is a 3x3 upper triangular matrix

From Camera Coordinates to World Coordinates



From Camera Coordinates to World Coordinates 2



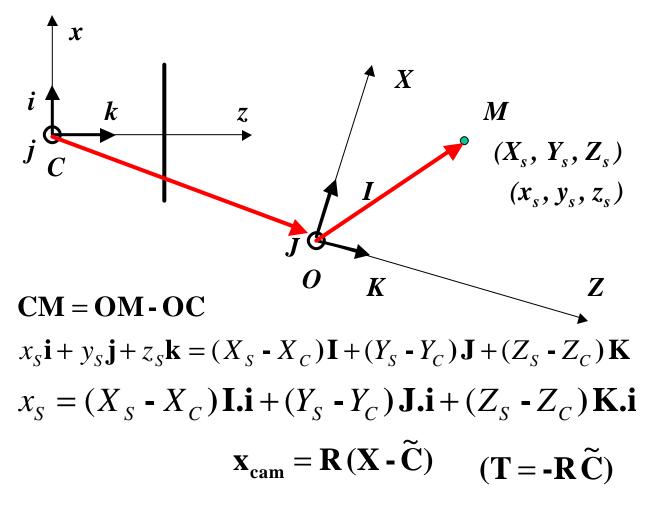
Homogeneous Coordinates

$$\begin{bmatrix} x_S \\ y_S \\ z_S \end{bmatrix} = \begin{bmatrix} T_x \\ T_y \\ T_z \end{bmatrix} + \begin{bmatrix} \mathbf{I.i} & \mathbf{J.i} & \mathbf{K.i} \\ \mathbf{I.j} & \mathbf{J.j} & \mathbf{K.j} \\ \mathbf{I.k} & \mathbf{J.k} & \mathbf{K.k} \end{bmatrix} \begin{bmatrix} X_S \\ Y_S \\ Z_S \end{bmatrix}$$

$$\begin{bmatrix} x_S \\ y_S \\ z_S \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{I.i} & \mathbf{J.i} & \mathbf{K.i} & T_x \\ \mathbf{I.j} & \mathbf{J.j} & \mathbf{K.j} & T_y \\ \mathbf{I.k} & \mathbf{J.k} & \mathbf{K.k} & T_z \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} X_S \\ Y_S \\ Z_S \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R} & \mathbf{T} \\ \mathbf{0_3^T} & 1 \end{bmatrix} \begin{bmatrix} X_S \\ Y_S \\ Z_S \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x_S \\ y_S \\ z_S \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R} & \mathbf{T} \\ \mathbf{0_3^T} & 1 \end{bmatrix} \begin{bmatrix} X_S \\ Y_S \\ Z_S \\ 1 \end{bmatrix}$$

From Camera Coordinates to World Coordinates 3



 \tilde{C} is vector OC expressed in world coordinate system

Homogeneous Coordinates 2

• Here we use - R C instead of T

$$\begin{bmatrix} x_S \\ y_S \\ z_S \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R} & -\mathbf{R} \, \widetilde{\mathbf{C}} \\ \mathbf{0_3^T} & 1 \end{bmatrix} \begin{bmatrix} X_S \\ Y_S \\ Z_S \\ 1 \end{bmatrix}$$

Linear Transformation from World Coordinates to Pixels

 Combine camera projection and coordinate transformation matrices into a single matrix P

$$\begin{bmatrix} u' \\ v' \\ w' \end{bmatrix} = \mathbf{K} \begin{bmatrix} \mathbf{I}_3 \\ \mathbf{I}_3 \end{bmatrix} + \mathbf{0}_3 \begin{bmatrix} x_s \\ y_s \\ z_s \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x_s \\ y_s \\ z_s \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R} & -\mathbf{R} \tilde{\mathbf{C}} \\ \mathbf{0}_3^{\mathrm{T}} & 1 \end{bmatrix} \begin{bmatrix} X_s \\ Y_s \\ Z_s \\ 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} u' \\ v' \\ w' \end{bmatrix} = \mathbf{K} \begin{bmatrix} \mathbf{I}_3 \\ \mathbf{I}_3 \end{bmatrix} + \mathbf{0}_3 \begin{bmatrix} \mathbf{R} & -\mathbf{R} \tilde{\mathbf{C}} \\ \mathbf{0}_3^{\mathrm{T}} & 1 \end{bmatrix} \begin{bmatrix} X_s \\ Y_s \\ Z_s \\ 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} u' \\ v' \\ w' \end{bmatrix} = \mathbf{P} \begin{bmatrix} X_s \\ Y_s \\ Z_s \\ 1 \end{bmatrix}$$

$$\mathbf{x} = \mathbf{P} \mathbf{X}$$

Properties of Matrix P

• Further simplification of **P**:

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I}_{3} & | & \mathbf{0}_{3} \end{bmatrix} \begin{bmatrix} \mathbf{R} & -\mathbf{R} \widetilde{\mathbf{C}} \\ \mathbf{0}_{3}^{\mathrm{T}} & 1 \end{bmatrix} \mathbf{X}$$

$$\begin{bmatrix} \mathbf{I}_{3} & | & \mathbf{0}_{3} \end{bmatrix} \begin{bmatrix} \mathbf{R} & -\mathbf{R} \widetilde{\mathbf{C}} \\ \mathbf{0}_{3}^{\mathrm{T}} & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R} & -\mathbf{R} \widetilde{\mathbf{C}} \end{bmatrix} = \mathbf{R} \begin{bmatrix} \mathbf{I}_{3} & | & -\widetilde{\mathbf{C}} \end{bmatrix}$$

$$\mathbf{x} = \mathbf{K} \mathbf{R} \begin{bmatrix} \mathbf{I}_{3} & | & -\widetilde{\mathbf{C}} \end{bmatrix} \mathbf{X}$$

$$\mathbf{P} = \mathbf{K} \mathbf{R} \left[\mathbf{I}_3 \quad | \quad -\widetilde{\mathbf{C}} \right]$$

- **P** has 11 degrees of freedom:
 - 5 from triangular calibration matrix **K**, 3 from **R** and 3 from **C**
- P is a fairly general 3 x 4 matrix
 - •left 3x3 submatrix **KR** is non-singular

Calibration

- 1. Estimate matrix **P** using scene points and their images
- 2. Estimate the interior parameters and the exterior parameters

$$\mathbf{P} = \mathbf{K} \, \mathbf{R} \left[\mathbf{I}_3 \quad | \quad -\widetilde{\mathbf{C}} \right]$$

■ Left 3x3 submatrix of **P** is product of upper-triangular matrix and orthogonal matrix

Finding Camera Translation

- Find homogeneous coordinates of C in the scene
- C is the null vector of matrix P
 - **■ P C** = 0:

$$\begin{bmatrix} 1 & 0 & 0 & X_c \\ 0 & 1 & 0 & Y_c \\ 0 & 0 & 1 & Z_c \end{bmatrix} \begin{bmatrix} X_c \\ Y_c \\ Z_c \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

- Find null vector **C** of **P** using SVD
 - C is the unit singular vector of P corresponding to the smallest singular value (the last column of V, where P $= U D V^{T}$ is the SVD of P)

Finding Camera Orientation and Internal Parameters

- Left 3x3 submatrix **M** of **P** is of form **M=K R**
 - **K** is an upper triangular matrix
 - **R** is an orthogonal matrix
- Any non-singular square matrix M can be decomposed into the product of an uppertriangular matrix K and an orthogonal matrix R using the RQ factorization
 - Similar to QR factorization but order of 2 matrices is reversed

RQ Factorization of M

$$\mathbf{R}_{\mathbf{x}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c & -s \\ 0 & s & c \end{bmatrix}, \ \mathbf{R}_{\mathbf{y}} = \begin{bmatrix} c' & 0 & s' \\ 0 & 1 & 0 \\ -s' & 0 & c' \end{bmatrix}, \ \mathbf{R}_{\mathbf{z}} = \begin{bmatrix} c'' & -s'' & 0 \\ s'' & c'' & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• Compute
$$c = -\frac{m_{33}}{(m_{32}^2 + m_{33}^2)^{1/2}}$$
, $s = \frac{m_{32}}{(m_{32}^2 + m_{33}^2)^{1/2}}$

- Multiply M by \mathbf{R}_{x} . The resulting term at (3,2) is zero because of the values selected for c and s
- Multiply the resulting matrix by \mathbf{R}_y , after selecting c' and s' so that the resulting term at position (3,1) is set to zero
- Multiply the resulting matrix by \mathbf{R}_z , after selecting c' and s' so that the resulting term at position (2,1) is set to zero

$$\mathbf{M} \mathbf{R}_{\mathbf{x}} \mathbf{R}_{\mathbf{y}} \mathbf{R}_{\mathbf{z}} = \mathbf{K} \Rightarrow \mathbf{M} = \mathbf{K} \mathbf{R}_{\mathbf{z}}^{\mathsf{T}} \mathbf{R}_{\mathbf{y}}^{\mathsf{T}} \mathbf{R}_{\mathbf{x}}^{\mathsf{T}} = \mathbf{K} \mathbf{R}$$

Computing Matrix P

- Use corresponding image and scene points
 - 3D points X_i in world coordinate system
 - Images $\mathbf{x_i}$ of $\mathbf{X_i}$ in image
- Write $\mathbf{x_i} = \mathbf{P} \mathbf{X_i}$ for all i
- Similar problem to finding projectivity matrix **H** (i.e. homography) in homework

Improved Computation of P

- $\mathbf{x_i} = \mathbf{P} \mathbf{X_i}$ involves homogeneous coordinates, thus $\mathbf{x_i}$ and $\mathbf{P} \mathbf{X_i}$ just have to be proportional: $\mathbf{x_i} \times \mathbf{P} \mathbf{X_i} = 0$
- Let \mathbf{p}_1^T , \mathbf{p}_2^T , \mathbf{p}_3^T be the 3 row vectors of \mathbf{P}

$$\mathbf{P}\mathbf{X}_{i} = \begin{bmatrix} \mathbf{p}_{1}^{T}\mathbf{X}_{i} \\ \mathbf{p}_{2}^{T}\mathbf{X}_{i} \\ \mathbf{p}_{3}^{T}\mathbf{X}_{i} \end{bmatrix} \qquad \mathbf{x}_{i} \times \mathbf{P}\mathbf{X}_{i} = \begin{bmatrix} v'_{i} \mathbf{p}_{3}^{T}\mathbf{X}_{i} - w'_{i} \mathbf{p}_{2}^{T}\mathbf{X}_{i} \\ w'_{i} \mathbf{p}_{1}^{T}\mathbf{X}_{i} - u'_{i} \mathbf{p}_{3}^{T}\mathbf{X}_{i} \\ u'_{i} \mathbf{p}_{2}^{T}\mathbf{X}_{i} - v'_{i} \mathbf{p}_{1}^{T}\mathbf{X}_{i} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \mathbf{0}_{4}^{T} & -w'_{i} \mathbf{X}_{i}^{T} & v'_{i} \mathbf{X}_{i}^{T} \\ w'_{i} \mathbf{X}_{i}^{T} & \mathbf{0}_{4}^{T} & -u'_{i} \mathbf{X}_{i}^{T} \\ -v'_{i} \mathbf{X}_{i}^{T} & u'_{i} \mathbf{X}_{i}^{T} & \mathbf{0}_{4}^{T} \end{bmatrix} \begin{bmatrix} \mathbf{p}_{1} \\ \mathbf{p}_{2} \\ \mathbf{p}_{3} \end{bmatrix} = 0 \qquad \begin{bmatrix} \mathbf{p}_{1} \\ \mathbf{p}_{2} \\ \mathbf{p}_{3} \end{bmatrix} \text{ is a } 12 \times 1 \text{ vector}$$

Improved Computation of P, cont'd

• Third row can be obtained from sum of u'_i times first row - v'_i times second row

$$\begin{bmatrix} \mathbf{0}_{4}^{\mathrm{T}} & -w'_{i} \mathbf{X}_{i}^{\mathrm{T}} & v'_{i} \mathbf{X}_{i}^{\mathrm{T}} \\ w'_{i} \mathbf{X}_{i}^{\mathrm{T}} & \mathbf{0}_{4}^{\mathrm{T}} & -u'_{i} \mathbf{X}_{i}^{\mathrm{T}} \\ -v'_{i} \mathbf{X}_{i}^{\mathrm{T}} & u'_{i} \mathbf{X}_{i}^{\mathrm{T}} & \mathbf{0}_{4}^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} \mathbf{p}_{1} \\ \mathbf{p}_{2} \\ \mathbf{p}_{3} \end{bmatrix} = 0$$

- So we get 2 independent equations in 11 unknowns (ignoring scale)
- With 6 point correspondences, we get enough equations to compute matrix **P**

$$\mathbf{A} \mathbf{p} = 0$$

Solving $\mathbf{A} \mathbf{p} = 0$

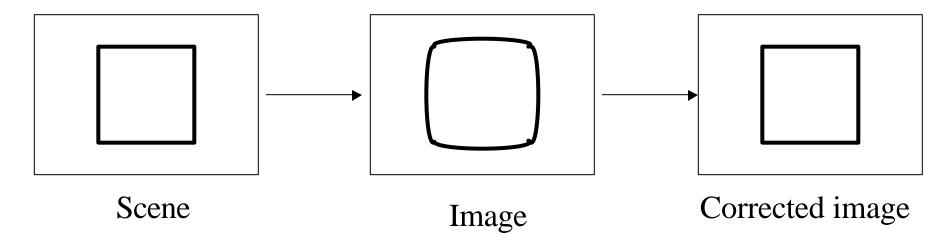
- Linear system $\mathbf{A} \mathbf{p} = 0$
- When possible, have at least 5 times as many equations as unknowns (28 points)
- Minimize $|| \mathbf{A} \mathbf{p} ||$ with the constraint $|| \mathbf{p} || = 1$
 - P is the unit singular vector of A corresponding to the smallest singular value (the last column of V, where $A = U D V^T$ is the SVD of A)
- Called Direct Linear Transformation (DLT)

Improving P Solution with Nonlinear Minimization

- Find **p** using DLT
- Use as initialization for nonlinear minimization of $\sum d(\mathbf{x_i}, \mathbf{PX_i})^2$
 - Use Levenberg-Marquardt iterative minimization

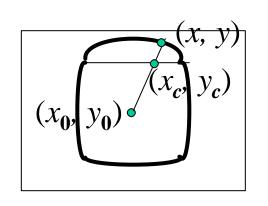
Radial Distortion

- We have assumed that lines are imaged as lines
- Not quite true for real lenses
 - Significant error for cheap optics and for short focal lengths



Radial Distortion Modeling

• In pixel cordinates the correction is written



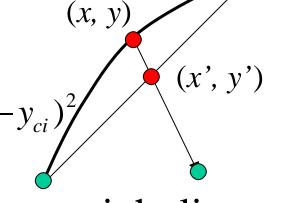
$$x_c - x_0 = L(r)(x - x_0)$$

 $y_c - y_0 = L(r)(y - y_0)$

with

$$r^{2} = (x - x_{0})^{2} + (y - y_{0})^{2}$$
$$L(r) = 1 + \mathbf{k}_{1} r + \mathbf{k}_{2} r^{2} + \dots$$

Distorted line And ideal line:



• Minimize $f(\mathbf{k}_1, \mathbf{k}_2) = \sum (x'_i - x_{ci})^2 + (y'_i - y_{ci})^2$ using lines known to be straight (x',y') is radial projection of (x,y) on straight line

References

- Multiple View Geometry in Computer Vision, R. Hartley and A. Zisserman, Cambridge University Press, 2000, pp. 138-183
- Three-Dimensional Computer Vision: A Geometric Approach, O. Faugeras, MIT Press, 1996, pp. 33-68
- "A Versatile Camera Calibration Technique for 3D Machine Vision", R. Y. Tsai, IEEE J. Robotics & Automation, RA-3, No. 4, August 1987, pp. 323-344