
Camera Calibration



What is Camera Calibration?

• Primarily, finding the quantities internal to 
the camera that affect the imaging process
§ Position of image center in the image

• It is typically not at (width/2, height/2) of image

§ Focal length
§ Different scaling factors for row pixels 

and column pixels
§ Skew factor
§ Lens distortion (pin-cushion effect)



Motivation
• Good calibration is important when we need 

to 
§ Reconstruct a world model: Virtual L.A. project
§ Interact with the world

• Robot, hand-eye coordination

Image plane

We see a square of 
known size

Evaluation of position of a square for 2 focal 
lengths (red and blue projection geometry)



Scaling of Rows and Columns 
in Image

• Camera pixels are not necessarily square
• Camera output may be analog (NTSC)
• Image may be obtained by digitizing card
§ A/D converter samples NTSC signal

Camera NTSC signal Digitizing
Monitor 
display

CCD/
CMOS



Compound Lens Imaging

• Inexpensive single lens systems distort image at 
its periphery

• Compound lenses may be used to reduce 
chromatic effects and pin-cushion effects

C

Camera
Image plane

Image plane for equivalent 
pinhole camera is 
not camera image plane

Principal planes

Center of Projection

Nodal Point

f

f



Variety of Techniques

• VERY large literature on the subject
• Work of Roger Tsai influential
• Linear algebra method described here
§ Can be used as initialization for iterative non 

linear methods.

• Some interesting methods use vanishing 
points



Camera and Calibration Target



Calibration Procedure

• Calibration target: 2 planes at right angle with 
checkerboard patterns (Tsai grid)
§ We know positions of pattern corners only with 

respect to a coordinate system of the target
§ We position camera in front of target and find 

images of corners
§ We obtain equations that describe imaging and 

contain internal parameters of camera
• As a side benefit, we find position and orientation of 

camera with respect to target (camera pose)



Image Processing of 
Image of Target

• Canny edge detection
• Straight line fitting to detected linked edges
• Intersecting the lines to obtain the image 

corners
• Matching image corners and 3D target 

checkerboard corners 
§ By counting if whole target is visible in image

• We get pairs (image point)--(world point)
),,(),( iiiii ZYXyx →



Central Projection
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If world and image points are represented by homogeneous 
vectors, central projection is a linear transformation:



Transformation From Lengths to Pixels
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Transformation uses: 

• image center (x0, y0)

• scaling factors kx and ky



Internal Camera Parameters
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• αx and αy “focal lengths” in pixels 

• x0 and y0 coordinates of image center in pixels

•Added parameter s is skew parameter 

• K is called calibration matrix. Five degrees of freedom.

•K is a 3x3 upper triangular matrix
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From Camera Coordinates
to World Coordinates

(Xs , Ys , Zs )

Image point
(xi , yi , f)
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From Camera Coordinates
to World Coordinates 2

(Xs , Ys , Zs ) in world cordinate system
(xs , ys , zs ) in image cordinate system
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Homogeneous Coordinates
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From Camera Coordinates
to World Coordinates 3
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• Here we use          instead of T

Homogeneous Coordinates 2
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Linear Transformation from 
World Coordinates to Pixels
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• Combine camera projection and coordinate 
transformation matrices into a single matrix P



• P has 11 degrees of freedom:
• 5 from triangular calibration matrix K,  3 from R and 3 from

• P is a fairly general 3 x 4 matrix 
•left 3x3 submatrix KR is non-singular

Properties of Matrix P
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Calibration

• 1. Estimate matrix P using scene points and 
their images

• 2. Estimate the interior parameters and the 
exterior parameters

§ Left 3x3 submatrix of P is product of upper-
triangular matrix and orthogonal matrix
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Finding Camera Translation
• Find homogeneous coordinates of C in the 

scene 
• C is the null vector of matrix P
§ P C = 0:

• Find null vector C of P using SVD
§ C is the unit singular vector of P corresponding to the 

smallest singular value (the last column of V, where P 
= U D VT is the SVD of P)
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Finding Camera Orientation and
Internal Parameters

• Left 3x3 submatrix M of P is of form M=K R
§ K is an upper triangular matrix
§ R is an orthogonal matrix

• Any non-singular square matrix M can be 
decomposed into the product of an upper-
triangular matrix K and an orthogonal matrix R
using the RQ factorization
§ Similar to QR factorization but order of 2 matrices is 

reversed



RQ Factorization of M

• Compute 

• Multiply M by Rx. The resulting term at (3,2) is zero 
because of the values selected for c and s

• Multiply the resulting matrix by Ry, after selecting c’ and 
s’ so that the resulting term at position (3,1) is set to zero

• Multiply the resulting matrix by Rz, after selecting c’’ and 
s’’ so that the resulting term at position (2,1) is set to zero
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Computing Matrix P

• Use corresponding image and scene points
§ 3D points Xi in world coordinate system
§ Images xi of Xi in image

• Write xi = P Xi for all i
• Similar problem to finding projectivity 

matrix H (i.e. homography) in homework



Improved Computation of P

• xi = P Xi involves homogeneous 
coordinates, thus xi and P Xi just have to be 
proportional:

• Let p1
T, p2

T, p3
T be the 3 row vectors of P
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Improved Computation of P, 
cont’d

• Third row can be obtained from sum of u’i
times first row - v’i times second row

• So we get 2 independent equations in 11 
unknowns (ignoring scale)

• With 6 point correspondences, we get 
enough equations to compute matrix P
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Solving A p = 0

• Linear system A p = 0
• When possible, have at least 5 times as 

many equations as unknowns (28 points) 
• Minimize || A p || with the constraint 

|| p || = 1
§ P is the unit singular vector of A corresponding 

to the smallest singular value (the last column 
of V, where A = U D VT is the SVD of A)

• Called Direct Linear Transformation (DLT)



Improving P Solution with 
Nonlinear Minimization

• Find p using DLT
• Use as initialization for nonlinear 

minimization of 
§ Use Levenberg-Marquardt iterative minimization
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Radial Distortion

• We have assumed that lines are imaged as 
lines

• Not quite true for real lenses
§ Significant error for cheap optics and for short 

focal lengths

Scene Image Corrected image



Radial Distortion Modeling
• In pixel cordinates the correction is written

• Minimize  
using lines known to  be straight
(x’,y’) is radial projection of (x,y) on straight line

...1)(

)()(

)()(
)()(

2
21

2
0

2
0

2

00

00

+++=

−+−=

−=−
−=−

rrrL

yyxxr

yyrLyy
xxrLxx

c

c

κκ

with(x0, y0)

(x, y)
(xc, yc)

∑ −+−=
i

22
21 )'()'(),( ciicii yyxxf κκ

(x, y)

(x’, y’)

Distorted line
And ideal line:



References

• Multiple View Geometry in Computer Vision, R. 
Hartley and A. Zisserman, Cambridge University 
Press, 2000, pp. 138-183

• Three-Dimensional Computer Vision: A 
Geometric Approach, O. Faugeras, MIT Press, 
1996, pp. 33-68

• “A Versatile Camera Calibration Technique for 
3D Machine Vision”, R. Y. Tsai, IEEE J. Robotics 
& Automation, RA-3, No. 4, August 1987, pp. 
323-344


