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Euclidean versus Projective Geometry
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m Euclidean geometry describes shapes “as they are”

— Properties of objects that are unchanged by rigid
motions
» Lengths
» Angles

» Parallelism

m Projective geometry describes objects “as they appear”

— Lengths, angles, parallelism become “distorted” when
we look at objects

— Mathematical model for how images of the 3D world
are formed.
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Overview
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Tools of algebraic geometry

Informal description of projective geometry in a plane
Descriptions of lines and points

Points at infinity and line at infinity

Projective transformations, projectivity matrix
Example of application

Specia projectivities affine transforms, similarities,
Euclidean transforms

m Cross-ratio invariance for points, lines, planes
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Tools of Algebraic Geometry 1
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m Plane passing through origin and perpendicular to vector N = (&, b, C)
islocus of points X = (X, X,, X;) suchtha n-Xx=0

=> ax +bx,+cx, =0
= Planethrough origin is completely defined by (a,b, C)

A
X3

X = (X, %o, %

n=(a,b,c)
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Tools of Algebraic Geometry 2
! | 3 |l I I

m A vector parallel to intersection of 2 planes (@,b,c) and (a',b',C")
IS obtained by cross-product

(a',b",c")=(a,b,c)” (a',b',c')

(a",b",c")

(a,b.c) (@,b',c')
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Tools of Algebraic Geometry 3
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m Plane passing through two points x and X’ is defined by

(a,b,c) =x" X
X1 %o X5)

':()(1',)(',)(3')

(a,b,c)
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Projective Geometry in 2D
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m Wearein aplane P and want to describe lines and pointsin P

m  We consider athird dimension to make things easier when dealing with infinity
— Origin O out of the plane, at adistance equal to 1 from plane

m To each point mof the plane P we can associate asingleray X = (X, X,, X3)

m Toeachlinel of the plane P we can associate asingle plane (@, b, C)
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Projective Geometry in 2D
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m Therays X = (X, X,,%;) andX = (1 X,| X,,] X;) arethesameand
are mapped to the same point m of the plane P

— X isthe coordinate vector of m, (X, X,, X;) are its homogeneous coordinates

s Theplanes (a,b,c) and(l a,l b,| c) arethe same and are mapped to the
same linel of the plane P

— L isthe coordinate vector of |, (@,b,C) areits homogeneous coordinates
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Properties
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m Point X belongstolineL if L. X =0
m Equation of line L in projective geometry is ax, +bX, +cX, =0
= \We obtain homogeneous equations

L =(a)b,c) X (X, %5, %3)

Nl

(a b,C)
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From Projective Plane to Euclidean Plane
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m How dowe“land” back from the projective world to the 2D world of the plane?
— For point, consider intersectionof ray X = (I x,,1 X,,1 X;)
withplane X, =1 =>| =1/X,, m=(X/X;, X, /X,)
= Forline intersection of plane ax, +b X, +cx, =0
withplane X; =1 islinel: ax, +bx, +c=0
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L 1nes and Points
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m TwolinesL =(a,b,c)andL’ =(a’,b’,c’) intersect inthe point
x=L L'
m Thelinethrough 2 pointsxandx’ is L =X X'

m Duality principle: To any theorem of 2D projective geometry, there corresponds a
dual theorem, which may be derived by interchanging the roles of points and lines

in the original theorem X’ /\ —
Ao XK % %)

=

(a,b,c)

(a',b',c')
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|deal Points and Line at Infinity
| | ¢ B 0 | I o

m Thepoints x = (X;, X,, 0) do not correspond to finite pointsin the
plane. They are points at infinity, also called ideal points

m ThelineL =(0,0,1) passesthrough all points at infinity, sinceL .x=0

m Twopardld lines L =(a,b,c)andL’ =(a, b, ¢') intersect at the
point X=L L' =(c-c)b, -a 0),i.e (b, -a 0)

m Anyline(a, b, ¢) intersectstheline at infinity at (b, -a, 0). Sotheline
at infinity isthe set of all points at infinfty

X3
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|deal Points and Line at Infinity
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m With projective geometry, two lines always meet
In asingle point, and two points alwayslie on a
single line.

m Thisisnot true of Euclidean geometry, where
parallel linesform a special case.
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Projective Transformations in a Plane
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m Projectivity
— Mapping from points in plane to points in plane
— 3 aligned points are mapped to 3 aligned points
m Also called

— Collineation
— Homography m 1 Q
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Projectivity Theorem
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m A mapping isaprojectivity if and only if the mapping
consists of alinear transformation of homogeneous
coordinates X =HX

with H non singular
m Proof:

— If X4, X5, and X3 are 3 pointsthat lieonalinel, and
X1 =H Xq, €tc, then X’ 1, X’», and X’ 3 lieon aline L’
— LT =0,LTH1H x =0, sopointsH x; lieonline
H-TL
m Converseis hard to prove, namely if al collinear sets of
points are mapped to collinear sets of points, then thereisa
single linear mapping between corresponding pointsin
homogeneous coordinates
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Projectivity Matrix
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66(1 O ehu h, hsiex ug '
ehzl hy, hy UQX X = H X
X3 g §h31 h, hs; Uexs g

m Thematrix H can be multiplied by an arbitrary non-zero number
without altering the projective transformation

m Matrix H iscaled a“homogeneous matrix” (only ratios of terms are
Important)

m There are 8 independent ratios. It follows that projectivity has 8
degrees of freedom

m A projectivity issimply alinear transformation of the rays
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Examples of Projective Transformations
! | 3 |l I I

= Centra projection maps planar A ©
scene pointsto image plane by a /‘
projectivity
— True because al pointson a
scene line are mapped to points
on itsimage line
m  Theimage of the same planar scene
from a second camera can be
obtained from the image from the
first camera by aprojectivity
— True because
Xi=H x;, X" =H" X;

O1

soX';=H" H-1x ,
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Computing Projective Transformation
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m  Since matrix of projectivity has 8 degrees of freedom, the mapping
between 2 images can be computed if we have the coordinates of
4 points on one image, and know where they are mapped in the other
Image
— Each point provides 2 independent equations

X' = X'y _ hyX+h,y+h, _ h'y X+h', y+his

X3 hyX+h,y+hg h'y X+h', y+1

y'=X2 = hyX+hy,y+hy Ny X+ y+h'y
Xy hyX+hyy+h, o by x+hip,y+1

— Equations are linear in the 8 unknowns N’ i :hij/ N3,
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Example of Application
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m Robot going down the road
m Large squares painted on the road to make it easier
m Find road shape without perspective distortion from image

— Use corners of squares: coordinates of 4 points allow usto
compute matrix H

— Then use matrix H to compute 3D road shape
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Projectivity gnhll
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Special Projectivities
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| nvariants

Collinearity,
Cross-ratios

Paraldism,
Ratios of areas,
Length ratios

Angles,
Length ratios

Angles,
Lengths,
Areas

—
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Projective Space P,
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m A point in aprojective space P,, is represented by a vector of n+1
coordinates X = (X, X,, "+, X ,1)

At least one coordinate is non zero.

Coordinates are called homogeneous or projective coordinates

Vector x Is caled a coordinate vector

Two vectors X = ()(1,_X2_,m,xn+1) and 'y :_(yl, Yor s Your)

represent the same point if and only if there existsa scalar | such that
X =1y,

The correspondence between points and coordinate vectors is not one

to one.
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Projective Geometry in 1D
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Points malong aline

Add up one dimension, consider origin at distance 1 from line
Represent m asaray from the origin (0, 0): X = (X, X,)

X =(1,0) ispoint at infinity

Points can be written X = (a, 1), wherea is abscissa aong the line

X = (X, %,)
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Projectivity in 1D
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m A projective transformation of alineis represented by a 2x2 matrix
g?(llg:éh hlzl;m(lg Xl: H X
X0 3121 h22 X0

m  Transformation has 3 degrees of freedom corresponding to the 4
elements of the matrix, minus one for overall scaling

m Projectivity matrix can be determined from 3 corresponding points

X = (X, %,)
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Cross-Ratio Invariance in 1D
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m Crossratio of 4 pointsA, B, C, D on alineisdefined as

_ B [CB ith AB = da & e
‘AD CD‘ gXAZ X2l
m Cross-ratio is not dependent on which particular homogeneous
representation of the pointsis selected: scales cancel between
numerator and denominator. For A =(a, 1), B = (b, 1), etc, we get

Cross( A,B,C,D)

5

Cros ABCD)=2" P &P
a-d c-d
m Cross-ratio isinvariant under any projectivity X = (X1’ Xz)
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Cross-Ratio Invariance in 1D
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m For the 4 sets of collinear pointsin the figure, the cross-ratio for
corresponding points has the same value
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Cross-Ratio | nvariance between Lines
R el aEn

m Thecross-ratio between 4 linesforming a penci | isinvariant when
the point of intersection C is moved

m Itisequal to the cross-ratio of the 4 points

S~
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Projective Geometry in 3D
! | 3 |l I I

Space P; is called projective space
A point in 3D space is defined by 4 numbers (X, X, , X5, X,)
A planeis aso defined by 4 numbers (u,, U,, U, U,)
Equation of planeis 4

aux=0
The plane at infinity is'the plane (0,0,0,1). Its equation is x,=0
m Thepoints (X, X,, X5, 0) belong to that plane in the direction
(X4, X, , X3) of Euclidean space

m A lineisdefined as the set of pointsthat are alinear
combination of two points P, and P, /

m Thecrossratio of 4 planesisequal to the cross-ratio of the
lines of intersection with afifth plane
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Central Projection
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If world and image points are represented by homogeneous
vectors, central projection is alinear mapping between P, and P,:

X = f é o EX.u
7 eun éf O O Ous
S e u_§é l]éysl] =u/ - =V/
vid=% f o0 oY X =ulw, y,=v/iw
é'u é Uaz (] !
avg 0 0 1 Oga’
yI = f £ eVt € 9313 | mage plane Scene point
Z, (Xs: ¥sr Z)
LY
center of
projection
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