Projective Geometry

Euclidean versus Projective Geometry

- Euclidean geometry describes shapes "as they are"
 - Properties of objects that are unchanged by rigid

motions

- » Lengths
- » Angles
- » Parallelism

- Projective geometry describes objects "as they appear"
 - Lengths, angles, parallelism become "distorted" when we look at objects
 - Mathematical model for how images of the 3D world are formed.

Overview

- Tools of algebraic geometry
- Informal description of projective geometry in a plane
- Descriptions of lines and points
- Points at infinity and line at infinity
- Projective transformations, projectivity matrix
- Example of application
- Special projectivities: affine transforms, similarities,
 Euclidean transforms
- Cross-ratio invariance for points, lines, planes

Tools of Algebraic Geometry 1

Plane *passing through origin* and perpendicular to vector $\mathbf{n} = (a, b, c)$ is locus of points $\mathbf{x} = (x_1, x_2, x_3)$ such that $\mathbf{n} \bullet \mathbf{x} = 0$

$$\Rightarrow a x_1 + b x_2 + c x_3 = 0$$

Plane through origin is completely defined by (a,b,c)

Tools of Algebraic Geometry 2

A vector parallel to intersection of 2 planes (a,b,c) and (a',b',c') is obtained by cross-product $(a'',b'',c'') = (a,b,c) \times (a',b',c')$

Tools of Algebraic Geometry 3

 \blacksquare Plane passing through two points **x** and **x'** is defined by

$$(a,b,c) = \mathbf{x} \times \mathbf{x'}$$

Projective Geometry in 2D

- We are in a plane **P** and want to describe lines and points in **P**
- We consider a third dimension to make things easier when dealing with infinity
 - Origin O out of the plane, at a distance equal to 1 from plane
- To each point m of the plane P we can associate a single ray $\mathbf{X} = (x_1, x_2, x_3)$
- To each line l of the plane P we can associate a single plane (a,b,c)

Projective Geometry in 2D

- The rays $\mathbf{x} = (x_1, x_2, x_3)$ and $\mathbf{x} = (\boldsymbol{l} \ x_1, \boldsymbol{l} \ x_2, \boldsymbol{l} \ x_3)$ are the same and are mapped to the same point \boldsymbol{m} of the plane \boldsymbol{P}
 - X is the coordinate vector of m, (x_1, x_2, x_3) are its homogeneous coordinates
- The planes (a,b,c) and $(\boldsymbol{l} \ a,\boldsymbol{l} \ b,\boldsymbol{l} \ c)$ are the same and are mapped to the same line \boldsymbol{l} of the plane \boldsymbol{P}
 - L is the coordinate vector of l, (a,b,c) are its homogeneous coordinates

Properties

- Point **X** belongs to line **L** if $L \cdot X = 0$
- Equation of line **L** in projective geometry is $a x_1 + b x_2 + c x_3 = 0$
- We obtain homogeneous equations

From Projective Plane to Euclidean Plane

- How do we "land" back from the projective world to the 2D world of the plane?
 - For point, consider intersection of ray $\mathbf{x} = (\boldsymbol{l} \ x_1, \boldsymbol{l} \ x_2, \boldsymbol{l} \ x_3)$ with plane $x_3 = 1 \Rightarrow \boldsymbol{l} = 1/x_3$, $\mathbf{m} = (x_1/x_3, x_2/x_3)$
- For line, intersection of plane $a x_1 + b x_2 + c x_3 = 0$ with plane $x_3 = 1$ is line l: $a x_1 + b x_2 + c = 0$

Lines and Points

- Two lines $\mathbf{L} = (a, b, c)$ and $\mathbf{L'} = (a',b',c')$ intersect in the point $\mathbf{x} = \mathbf{L} \times \mathbf{L'}$
- The line through 2 points \mathbf{x} and \mathbf{x} ' is $\mathbf{L} = \mathbf{x} \times \mathbf{x}$ '
- Duality principle: To any theorem of 2D projective geometry, there corresponds a dual theorem, which may be derived by interchanging the roles of points and lines in the original theorem \mathbf{x}^{*}

 $\mathbf{x} = (x_1, x_2, x_3)$ \mathbf{L} \mathbf{L} (a, b, c) (a', b', c')

Ideal Points and Line at Infinity

- The points $\mathbf{x} = (\mathbf{x_1}, \mathbf{x_2}, 0)$ do not correspond to finite points in the plane. They are points at infinity, also called *ideal points*
- The line L = (0,0,1) passes through all points at infinity, since $L \cdot x = 0$
- Two parallel lines $\mathbf{L} = (a, b, c)$ and $\mathbf{L'} = (a, b, c')$ intersect at the point $\mathbf{x} = \mathbf{L} \times \mathbf{L'} = (c' c)(b, -a, 0)$, i.e. (b, -a, 0)
- Any line (a, b, c) intersects the line at infinity at (b, -a, 0). So the line at infinity is the set of all points at infinity

Ideal Points and Line at Infinity

- With projective geometry, two lines always meet in a single point, and two points always lie on a single line.
- This is not true of Euclidean geometry, where parallel lines form a special case.

Projective Transformations in a Plane

Projectivity

- Mapping from points in plane to points in plane
- 3 aligned points are mapped to 3 aligned points
- Also called
 - Collineation
 - Homography

Projectivity Theorem

■ A mapping is a *projectivity* if and only if the mapping consists of a linear transformation of homogeneous coordinates $\mathbf{x'} = H\mathbf{x}$

with **H** non singular

Proof:

- If \mathbf{x}_1 , \mathbf{x}_2 , and \mathbf{x}_3 are 3 points that lie on a line \mathbf{L} , and $\mathbf{x'}_1 = \mathbf{H} \mathbf{x}_1$, etc, then $\mathbf{x'}_1$, $\mathbf{x'}_2$, and $\mathbf{x'}_3$ lie on a line $\mathbf{L'}$
- $\mathbf{L}^{\mathbf{T}} \mathbf{x}_i = 0$, $\mathbf{L}^{\mathbf{T}} \mathbf{H}^{-1} \mathbf{H} \mathbf{x}_i = 0$, so points $\mathbf{H} \mathbf{x}_i$ lie on line $\mathbf{H}^{-\mathbf{T}} \mathbf{L}$
- Converse is hard to prove, namely if all collinear sets of points are mapped to collinear sets of points, then there is a single linear mapping between corresponding points in homogeneous coordinates

Projectivity Matrix

$$\begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \qquad \mathbf{X'} = \mathbf{H} \mathbf{X}$$

- The matrix **H** can be multiplied by an arbitrary non-zero number without altering the projective transformation
- Matrix H is called a "homogeneous matrix" (only ratios of terms are important)
- There are 8 independent ratios. It follows that projectivity has 8 degrees of freedom
- A projectivity is simply a linear transformation of the rays

Examples of Projective Transformations

- Central projection maps planar
 scene points to image plane by a projectivity
 - True because all points on a scene line are mapped to points on its image line
- The image of the same planar scene from a second camera can be obtained from the image from the first camera by a projectivity
 - True because $\mathbf{x'}_i = \mathbf{H'} \mathbf{x}_i, \mathbf{x''}_i = \mathbf{H''} \mathbf{x}_i$ so $\mathbf{x''}_i = \mathbf{H''} \mathbf{H'}^{-1} \mathbf{x'}_i$

Computing Projective Transformation

- Since matrix of projectivity has 8 degrees of freedom, the mapping between 2 images can be computed if we have the coordinates of 4 points on one image, and know where they are mapped in the other image
 - Each point provides 2 independent equations

$$x' = \frac{x'_1}{x'_3} = \frac{h_{11}x + h_{12}y + h_{13}}{h_{31}x + h_{32}y + h_{33}} = \frac{h'_{11}x + h'_{12}y + h'_{13}}{h'_{31}x + h'_{32}y + 1}$$

$$y' = \frac{x'_2}{x'_3} = \frac{h_{21}x + h_{22}y + h_{23}}{h_{31}x + h_{32}y + h_{33}} = \frac{h'_{21}x + h'_{22}y + h'_{23}}{h'_{31}x + h'_{32}y + 1}$$

- Equations are linear in the 8 unknowns $h'_{ij} = h_{ij}/h_{33}$

Example of Application

- Robot going down the road
- Large squares painted on the road to make it easier
- Find road shape without perspective distortion from image
 - Use corners of squares: coordinates of 4 points allow us to compute matrix H
 - Then use matrix **H** to compute 3D road shape

Special Projectivities

Projectivity 8 dof
$$\begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$$

Invariants

Collinearity, **Cross-ratios**

Affine transform 6 dof

$$\begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_x \\ 0 & 0 & 1 \end{bmatrix}$$

Parallelism, Ratios of areas, Length ratios

Similarity
$$\begin{bmatrix} s \, r_{11} & s \, r_{12} & t_x \\ s \, r_{21} & s \, r_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

Angles, Length ratios

Euclidean transform 3 dof

$$\begin{bmatrix} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

Projective Space P_n

- A point in a projective space P_n is represented by a vector of n+1 coordinates $\mathbf{x} = (x_1, x_2, \dots, x_{n+1})$
- At least one coordinate is non zero.
- Coordinates are called homogeneous or projective coordinates
- Vector x is called a coordinate vector
- Two vectors $\mathbf{x} = (x_1, x_2, \dots, x_{n+1})$ and $\mathbf{y} = (y_1, y_2, \dots, y_{n+1})$ represent the same point if and only if there exists a scalar l such that

$$x_i = I y_i$$

The correspondence between points and coordinate vectors is not one to one.

Projective Geometry in 1D

- Points *m* along a line
- Add up one dimension, consider origin at distance 1 from line
- Represent **m** as a ray from the origin (0, 0): $\mathbf{x} = (x_1, x_2)$
- X = (1,0) is point at infinity
- Points can be written X = (a, 1), where a is abscissa along the line

Projectivity in 1D

$$\begin{pmatrix} x'_1 \\ x'_2 \end{pmatrix} = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \qquad \mathbf{x'} = \mathbf{H} \mathbf{x}$$

- Transformation has 3 degrees of freedom corresponding to the 4 elements of the matrix, minus one for overall scaling
- Projectivity matrix can be determined from 3 corresponding points

Cross-Ratio Invariance in 1D

Cross-ratio of 4 points A, B, C, D on a line is defined as

$$\operatorname{Cross}(A,B,C,D) = \frac{|AB|}{|AD|} \div \frac{|CB|}{|CD|} \text{ with } |AB| = \det \begin{bmatrix} x_{A1} & x_{B1} \\ x_{A2} & x_{B2} \end{bmatrix}$$

Cross-ratio is not dependent on which particular homogeneous representation of the points is selected: scales cancel between numerator and denominator. For A = (a, 1), B = (b, 1), etc, we get

$$\operatorname{Cross}(A,B,C,D) = \frac{a-b}{a-d} \div \frac{c-b}{c-d}$$

Cross-ratio is invariant under any projectivity

Cross-Ratio Invariance in 1D

For the 4 sets of collinear points in the figure, the cross-ratio for corresponding points has the same value

Cross-Ratio Invariance between Lines

- The cross-ratio between 4 lines forming a *pencil* is invariant when the point of intersection *C* is moved
- It is equal to the cross-ratio of the 4 points

Projective Geometry in 3D

- Space P_3 is called projective space
- A point in 3D space is defined by 4 numbers (x_1, x_2, x_3, x_4)
- A plane is also defined by 4 numbers (u_1, u_2, u_3, u_4)
- Equation of plane is $\sum_{i=0}^{4} u_i x_i = 0$
- The plane at infinity is *i*the plane (0,0,0,1). Its equation is $x_4=0$
- The points $(x_1, x_2, x_3, 0)$ belong to that plane in the direction (x_1, x_2, x_3) of Euclidean space
- A line is defined as the set of points that are a linear combination of two points P_1 and P_2
- The cross-ratio of 4 planes is equal to the cross-ratio of the lines of intersection with a fifth plane

Central Projection

If world and image points are represented by homogeneous vectors, central projection is a linear mapping between P_3 and P_2 :

$$x_i = f \frac{x_s}{z_s}$$

$$y_i = f \frac{y_s}{z_s}$$

$$x_{i} = f \frac{x_{s}}{z_{s}}$$

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_{s} \\ y_{s} \\ z_{s} \\ 1 \end{bmatrix}$$

$$x_{i} = u/w, \quad y_{i} = v/w$$

$$x_{i} = u/w$$

$$x_i = u / w$$
, $y_i = v / w$

References

- Multiple View Geometry in Computer Vision, R. Hartley and A. Zisserman, Cambridge University Press, 2000
- Three-Dimensional Computer Vision: A Geometric Approach, O. Faugeras, MIT Press, 1996