STORAGE OF C ARRAYS

Consider the C array declared by

dooble A[5][4];

Since memory is linear, the array must be unpacked in some systematic way.

C does it in row-major order.

\[
\begin{array}{cccccc}
 a & a + 8 & a + 16 & a + 24 \\
 a + 32 & a + 40 & a + 48 & a + 56 \\
 a + 64 & a + 72 & a + 80 & a + 88 \\
 a + 96 & a + 104 & a + 112 & a + 120 \\
 a + 128 & a + 136 & a + 144 & a + 152 \\
\end{array}
\]
Locality Example

Claim: Being able to look at code and get a qualitative sense of its locality is a key skill for a professional programmer.

Question: Does this function have good locality?

```c
int sumarrayrows(int a[M][N])
{
    int i, j, sum = 0;

    for (i = 0; i < M; i++)
        for (j = 0; j < N; j++)
            sum += a[i][j];

    return sum
}
```
Locality Example

Question: Does this function have good locality?

```c
int sumarraycols(int a[M][N])
{
    int i, j, sum = 0;

    for (j = 0; j < N; j++)
        for (i = 0; i < M; i++)
            sum += a[i][j];
    return sum
}
```
STORAGE OF FORTRAN ARRAYS

Consider the Fortran array

- **double precision** \(A(4,5) \)

It is stored in **column-major order**.

<table>
<thead>
<tr>
<th>(a)</th>
<th>(a + 40)</th>
<th>(a + 80)</th>
<th>(a + 120)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A(1,1))</td>
<td>(A(1,2))</td>
<td>(A(1,3))</td>
<td>(A(1,4))</td>
</tr>
<tr>
<td>(a + 8)</td>
<td>(a + 48)</td>
<td>(a + 88)</td>
<td>(a + 128)</td>
</tr>
<tr>
<td>(A(2,1))</td>
<td>(A(2,2))</td>
<td>(A(2,3))</td>
<td>(A(2,4))</td>
</tr>
<tr>
<td>(a + 16)</td>
<td>(a + 56)</td>
<td>(a + 96)</td>
<td>(a + 136)</td>
</tr>
<tr>
<td>(A(3,1))</td>
<td>(A(3,2))</td>
<td>(A(3,3))</td>
<td>(A(3,4))</td>
</tr>
<tr>
<td>(a + 24)</td>
<td>(a + 64)</td>
<td>(a + 104)</td>
<td>(a + 144)</td>
</tr>
<tr>
<td>(A(4,1))</td>
<td>(A(4,2))</td>
<td>(A(4,3))</td>
<td>(A(4,4))</td>
</tr>
<tr>
<td>(a + 32)</td>
<td>(a + 72)</td>
<td>(a + 112)</td>
<td>(a + 152)</td>
</tr>
<tr>
<td>(A(5,1))</td>
<td>(A(5,2))</td>
<td>(A(5,3))</td>
<td>(A(5,4))</td>
</tr>
</tbody>
</table>
ACCESSING ARRAYS FOR CACHE EFFICIENCY

If we have to access all the elements of an array, we should access them with unit stride. Thus in C we should access the array by rows:

\[
A[0][0] \ A[0][1] \ A[0][2] \ A[0][3] \ A[1][0] \ A[1][1] \ldots
\]

In Fortran we should access the array by rows.

\[
A(1,1) \ A(2,1) \ A(3,1) \ A(4,1) \ A(5,1) \ A(1,2) \ A(2,2) \ldots
\]

This means that we must code algorithms differently in C and Fortran.
Writing Cache Friendly Code

Repeated references to variables are good (temporal locality)

Stride-1 reference patterns are good (spatial locality)

Examples:

- cold cache, 4-byte words, 4-word cache blocks

```c
int sumarrayrows(int a[M][N]) {
    int i, j, sum = 0;
    for (i = 0; i < M; i++)
        for (j = 0; j < N; j++)
            sum += a[i][j];
    return sum;
}
```

```c
int sumarraycols(int a[M][N]) {
    int i, j, sum = 0;
    for (j = 0; j < N; j++)
        for (i = 0; i < M; i++)
            sum += a[i][j];
    return sum;
}
```

Miss rate = 1/4 = 25%

Miss rate = 100%
The Memory Mountain

Read throughput (read bandwidth)
- Number of bytes read from memory per second (MB/s)

Memory mountain
- Measured read throughput as a function of spatial and temporal locality.
- Compact way to characterize memory system performance.
/* The test function */
void test(int elems, int stride) {
 int i, result = 0;
 volatile int sink;

 for (i = 0; i < elems; i += stride)
 result += data[i];
 sink = result; /* So compiler doesn't optimize away the loop */
}

/* Run test(elems, stride) and return read throughput (MB/s) */
double run(int size, int stride, double Mhz)
{
 double cycles;
 int elems = size / sizeof(int);

 test(elems, stride); /* warm up the cache */
 cycles = fcyc2(test, elems, stride, 0); /* call test(elems,stride) */
 return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */
}
Memory Mountain Main Routine

```c
/* mountain.c - Generate the memory mountain. */
#define MINBYTES (1 << 10)  /* Working set size ranges from 1 KB */
#define MAXBYTES (1 << 23)  /* ... up to 8 MB */
#define MAXSTRIDE 16        /* Strides range from 1 to 16 */
#define MAXELEMS MAXBYTES/sizeof(int)

int data[MAXELEMS];         /* The array we'll be traversing */

int main()
{
    int size;        /* Working set size (in bytes) */
    int stride;      /* Stride (in array elements) */
    double Mhz;      /* Clock frequency */

    init_data(data, MAXELEMS); /* Initialize each element in data to 1 */
    Mhz = mhz(0);              /* Estimate the clock frequency */
    for (size = MAXBYTES; size >= MINBYTES; size >>= 1) {
        for (stride = 1; stride <= MAXSTRIDE; stride++)
            printf("%.1f\t", run(size, stride, Mhz));
        printf("\n");
    }
    exit(0);
}
```
Ridges of Temporal Locality

Slice through the memory mountain with stride=1
- illuminates read throughputs of different caches and memory

![Bar chart showing read throughputs for different working set sizes in various memory regions: main memory region, L2 cache region, and L1 cache region. The x-axis represents working set size in bytes (8m, 4m, 2m, 1024k, 512k, 256k, 128k, 64k, 32k, 16k, 8k, 4k, 2k, 1k) and the y-axis represents read throughput in MB/s (0 to 1200 MB/s).]
A Slope of Spatial Locality

Slice through memory mountain with size=256KB

- shows cache block size.

![Bar graph showing read throughput (MB/s) vs stride (words) with one access per cache line.](image-url)
MATRICES-VECTOR MULTIPLICATION (COLUMN ORIENTED)

Consider the problem of computing Ax, where A is $n \times n$.

Partition A by columns:

$$
\begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{pmatrix}
= x_1 a_1 + x_2 a_2 + \cdots + a_n x_n.
$$

This gives the algorithm (in Matlab)

```matlab
y = 0;
for j = 1:n
    y = y + x(j)*A(:,j);  \% This is an AXPY.
end
```

In scalar form

```matlab
for i=1:n
    y(i) = 0;
end
for j=1:n
    for i=1:n
        y(i) = y(i) + x(j)*A(i,j);
    end
end
```

MATRICES – VECTOR MULTIPLICATION (ROW ORIENTED)

Partition A in the form

$$
\begin{pmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_n \\
\end{pmatrix}
=
\begin{pmatrix}
 a_1^T \\
 a_2^T \\
 \vdots \\
 a_n^T \\
\end{pmatrix}
\begin{pmatrix}
 x \\
\end{pmatrix}
=
\begin{pmatrix}
 a_1^T x \\
 a_2^T x \\
 \vdots \\
 a_n^T x \\
\end{pmatrix}
$$

This gives the program

```
for i=1:n
    y(i) = A(i,:)*x;  % This is a DOT.
end
```

In scalar form

```
for i=1:n
    y(i) = 0;
    for j=1:n
        y(i) = y(i) + A(i,j)*x(j);
    end
end
```
MATRIX-MATRIX MULTIPLICATION (COLUMN ORIENTED)

Consider the product $C = AB$ and partition C and B by columns.

$$(c_1 \ c_2 \ \cdots \ c_n) = A(b_1 \ b_2 \ \cdots \ b_n) = (Ab_1 \ Ab_2 \ \cdots \ Ab_n).$$

We can then use AXPY’s to compute the products Ab_k.

```matlab
for k=1:n
    C(:,k) = 0;
    for j=1:n
        for i=1:n
            C(i,k) = C(i,k) + A(i,j)*B(j,k);
        end
    end
end
```
SPATIAL AND TEMPORAL LOCALITY OF REFERENCE

for k=1:n
 C(:,k) = 0;
 for j=1:n
 for i=1:n
 C(i,k) = C(i,k) + A(i,j)*B(j,k);
 end
 end
end

Locality of reference comes in two types.

Spatial locality means that when a memory reference to an address is made, it is surrounded by references to nearby addresses.

The above algorithm has good spatial locality (in a column oriented language) because it references its arrays by columns.

Temporal locality means that when a memory reference to an address is made, the address is reused frequently before it must be swapped out.

The above algorithm does not have good temporal locality because it makes n passes over the array A.
Matrix Multiplication Example

Major Cache Effects to Consider

- Total cache size
 - Exploit temporal locality and keep the working set small (e.g., by using blocking)
- Block size
 - Exploit spatial locality

Description:

- Multiply N x N matrices
- O(N^3) total operations
- Accesses
 - N reads per source element
 - N values summed per destination
 - but may be able to hold in register

```
/* ijk */
for (i=0; i<n; i++) {
    for (j=0; j<n; j++) {
        sum = 0.0;
        for (k=0; k<n; k++)
            sum += a[i][k] * b[k][j];
        c[i][j] = sum;
    }
}
```
Miss Rate Analysis for Matrix Multiply

Assume:

- Line size = 32B (big enough for 4 64-bit words)
- Matrix dimension (N) is very large
 - Approximate 1/N as 0.0
- Cache is not even big enough to hold multiple rows

Analysis Method:

- Look at access pattern of inner loop
Layout of C Arrays in Memory (review)

C arrays allocated in row-major order
- each row in contiguous memory locations

Stepping through columns in one row:
- for (i = 0; i < N; i++)
 \[\text{sum} += a[0][i]; \]
- accesses successive elements
- if block size (B) > 4 bytes, exploit spatial locality
 - compulsory miss rate = \(4 \text{ bytes} / B\)

Stepping through rows in one column:
- for (i = 0; i < n; i++)
 \[\text{sum} += a[i][0]; \]
- accesses distant elements
- no spatial locality!
 - compulsory miss rate = 1 (i.e. 100%)
Matrix Multiplication (ijk)

```c
/* ijk */
for (i=0; i<n; i++)  {
    for (j=0; j<n; j++) {
        sum = 0.0;
        for (k=0; k<n; k++)
            sum += a[i][k] * b[k][j];
        c[i][j] = sum;
    }
}
```

Misses per Inner Loop Iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.25</td>
<td>1.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Matrix Multiplication (jik)

```c
/* jik */
for (j=0; j<n; j++) {
    for (i=0; i<n; i++) {
        sum = 0.0;
        for (k=0; k<n; k++)
            sum += a[i][k] * b[k][j];
        c[i][j] = sum
    }
}
```

Misses per Inner Loop Iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.25</td>
<td>1.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Matrix Multiplication (kij)

/* kij */
for (k=0; k<n; k++) {
 for (i=0; i<n; i++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}

Misses per Inner Loop Iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Misses</td>
<td>0.0</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Matrix Multiplication (ikj)

/* ikj */
for (i=0; i<n; i++) {
 for (k=0; k<n; k++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}

Inner loop:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Misses per Inner Loop Iteration:
Matrix Multiplication (jki)

```c
/* jki */
for (j=0; j<n; j++) {
    for (k=0; k<n; k++) {
        r = b[k][j];
        for (i=0; i<n; i++)
            c[i][j] += a[i][k] * r;
    }
}
```

Misses per Inner Loop Iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Inner loop:

- Column-wise
- Fixed
- Column-wise
Matrix Multiplication (kji)

```c
/* kji */
for (k=0; k<n; k++) {
    for (j=0; j<n; j++) {
        r = b[k][j];
        for (i=0; i<n; i++)
            c[i][j] += a[i][k] * r;
    }
}
```

Misses per Inner Loop Iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Misses</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Summary of Matrix Multiplication

ijk (& jik):
- 2 loads, 0 stores
- misses/iter = 1.25

```c
for (i=0; i<n; i++) {
    for (j=0; j<n; j++) {
        sum = 0.0;
        for (k=0; k<n; k++)
            sum += a[i][k] * b[k][j];
        c[i][j] = sum;
    }
}
```

kij (& ikj):
- 2 loads, 1 store
- misses/iter = 0.5

```c
for (k=0; k<n; k++) {
    for (i=0; i<n; i++) {
        r = a[i][k];
        for (j=0; j<n; j++)
            c[i][j] += r * b[k][j];
    }
}
```

jki (& kji):
- 2 loads, 1 store
- misses/iter = 2.0

```c
for (j=0; j<n; j++) {
    for (k=0; k<n; k++) {
        r = b[k][j];
        for (i=0; i<n; i++)
            c[i][j] += a[i][k] * r;
    }
}
```
Miss rates are helpful but not perfect predictors.

- Code scheduling matters, too.
Improving Temporal Locality by Blocking

Example: Blocked matrix multiplication

- “block” (in this context) does not mean “cache block”.
- Instead, it mean a sub-block within the matrix.
- Example: \(N = 8 \); sub-block size = 4

\[
\begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix}
\times
\begin{pmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{pmatrix}
=
\begin{pmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{pmatrix}
\]

Key idea: Sub-blocks (i.e., \(A_{xy} \)) can be treated just like scalars.

\[
C_{11} = A_{11}B_{11} + A_{12}B_{21} \\
C_{12} = A_{11}B_{12} + A_{12}B_{22} \\
C_{21} = A_{21}B_{11} + A_{22}B_{21} \\
C_{22} = A_{21}B_{12} + A_{22}B_{22}
\]
We can increase temporal locality by blocking. Partition $C = AB$ in the form

$$
\begin{pmatrix}
C_{11} & C_{12} & \cdots & C_{1\ell} \\
C_{21} & C_{22} & \cdots & C_{2\ell} \\
\vdots & \vdots & \ddots & \vdots \\
C_{\ell 1} & C_{\ell 2} & \cdots & C_{\ell\ell}
\end{pmatrix}
= \begin{pmatrix}
A_{11} & A_{12} & \cdots & A_{1\ell} \\
A_{21} & A_{22} & \cdots & A_{2\ell} \\
\vdots & \vdots & \ddots & \vdots \\
A_{\ell 1} & A_{\ell 2} & \cdots & A_{\ell\ell}
\end{pmatrix}
\begin{pmatrix}
B_{11} & B_{12} & \cdots & B_{1\ell} \\
B_{21} & B_{22} & \cdots & B_{2\ell} \\
\vdots & \vdots & \ddots & \vdots \\
B_{\ell 1} & B_{\ell 2} & \cdots & B_{\ell\ell}
\end{pmatrix},
$$

where all the blocks are $m \times m$.

The our blocked algorithm is

1. for $k=1:m:n$
2. $kk = k+m-1$;
3. $C(:,k:kk) = 0$;
4. for $j=1:m:n$
5. $jj = j+m-1$;
6. for $i=1:m:n$
7. $ii = i+m-1$;
9. end
10. end
11. end
1. for k=1:m:n
2. kk = k+m-1;
3. C(:,k:kk) = 0;
4. for j=1:m:n
5. jj = j+m-1;
6. for i=1:m:n
7. ii = i+m-1;
8. C(i:ii,k:kk) = C(i:ii,k:kk) + A(i:ii,j:jj)*B(j:jj,k:kk);
9. end
10. end
11. end

If the blocks A(i:ii,j:jj), B(j:jj,k:kk), an C(i:ii,k:kk) all fit into cache, then it does not matter how they are multiplied.

We now make only n/m passes over A.
Blocked Matrix Multiply (bijk)

```c
for (jj=0; jj<n; jj+=bsize) {
    for (i=0; i<n; i++)
        for (j=jj; j < min(jj+bsize,n); j++)
            c[i][j] = 0.0;
    for (kk=0; kk<n; kk+=bsize) {
        for (i=0; i<n; i++) {
            for (j=jj; j < min(jj+bsize,n); j++) {
                sum = 0.0
                for (k=kk; k < min(kk+bsize,n); k++) {
                    sum += a[i][k] * b[k][j];
                }
                c[i][j] += sum;
            }
        }
    }
}
```
Block Matrix Multiply Analysis

- Innermost loop pair multiplies a $1 \times bsize$ sliver of A by a $bsize \times bsize$ block of B and accumulates into $1 \times bsize$ sliver of C

- Loop over i steps through n row slivers of A & C, using same B

```c
for (i=0; i<n; i++) {
    for (j=jj; j < min(jj+bsize,n); j++) {
        sum = 0.0
        for (k=kk; k < min(kk+bsize,n); k++) {
            sum += a[i][k] * b[k][j];
        }
        c[i][j] += sum;
    }
}
```

- i and j are row slivers accessed $bsize$ times
- k is the block reused n times in succession
- Update successive elements of sliver
Blocking (bijk and bikj) improves performance by a factor of two over unblocked versions (ijk and jik)

- relatively insensitive to array size.
Concluding Observations

Programmer can optimize for cache performance

- How data structures are organized
- How data are accessed
 - Nested loop structure
 - Blocking is a general technique

All systems favor “cache friendly code”

- Getting absolute optimum performance is very platform specific
 - Cache sizes, line sizes, associativities, etc.
- Can get most of the advantage with generic code
 - Keep working set reasonably small (temporal locality)
 - Use small strides (spatial locality)