Computational Methods
CMSC/AMSC/MAPL 460

Fourier transform

Ramani Duraiswami,
Dept. of Computer Science

Several slides from Prof. Healy’s course at UMD
Fourier Methods

- Fourier analysis ("harmonic analysis") a key field of math
- Has many applications and has enabled many technologies.
- Basic idea: Use Fourier representation to represent functions
- Has fast algorithms to manipulate them (the fast Fourier Transform)
- Requires a complete course (Signal Processing in EE or Math 464 “Introduction to Fourier Analysis”
Basic idea

- Function spaces can have many different types of bases
- We have already met monomials and other polynomial basis functions
- Fourier introduced another set of basis functions: the Fourier series
- These basis functions are particularly good for describing things that repeat with time
Fourier’s Representation

\[F(t) = \frac{A_0}{2} + A_1 \cos(t) + A_2 \cos(2t) + A_3 \cos(3t) + \ldots + B_1 \sin(t) + B_2 \sin(2t) + B_3 \sin(3t) + \ldots \]

For coefficients that go to 0 fast enough these sums will converge at each value of \(t \).

This defines a new function, which must be a \textit{periodic function}. (Period 2\pi)

Fourier’s claim: \textit{ANY} periodic function \(f(t) \) can be written this way
Music

http://www.phy.ntnu.edu.tw/ntnujava/viewtopic.php?t=33
Mr. Fourier’s Representation

Represent $f(t) = t$ for $|t| < \pi$ and 2π periodic

$\sin(t) + \ldots$
Mr. Fourier’s Representation

\[1 \sin(t) + \ldots \]
Mr. Fourier’s Representation

\[\sin(t) - \frac{1}{2} \sin(2t) + \ldots \]
Mr. Fourier’s Representation

\[1 \sin(t) - \frac{1}{2} \sin(2t) + \ldots \]
Mr. Fourier’s Representation

1 \sin(t) - \frac{1}{2} \sin(2t) + \frac{1}{3} \sin(3t) + \ldots
Mr. Fourier’s Representation

\[1 \sin(t) - \frac{1}{2} \sin(2t) + \frac{1}{3} \sin(3t) + \ldots \]
Mr. Fourier’s Representation

20’th degree Fourier expansion
How do you get the Coefficients for a given f?

$$A_0/2 + A_1 \cos(t) + A_2 \cos(2t) + A_3 \cos(3t) + \ldots$$

$$+ B_1 \sin(t) + B_2 \sin(2t) + B_3 \sin(3t) + \ldots$$

Fourier’s claim:

• *ANY* periodic function $f(t)$ can be written this way (SYNTHESIS)

• The coefficients are uniquely determined by f: (ANALYSIS)

$$A_k = \frac{1}{2\pi} \int_0^{2\pi} f(t) \cos(kt) \, dt$$

$$B_k = \frac{1}{2\pi} \int_0^{2\pi} f(t) \sin(kt) \, dt$$
Computational Methods
CMSC/AMSC/MAPL 460

Fourier transform

Ramani Duraiswami,
Dept. of Computer Science
Fourier Methods

• Last class
 – Introduced the Fourier basis
 – Showed why it might be useful

• This class
 – Introduced the notion of a Fourier Matrix
 – Introduced the Danielson Lanczos Lemma
 – Introduced the FFT algorithm
 – Detailed consideration of the FFT algorithm
 – Inverse FFT
 – Application to polynomial multiplication
Fourier Analysis

- Def.: mathematical techniques for breaking up a signal into its components (sinusoids)
- Jean Baptiste Joseph Fourier (1768-1830)
- can represent any continuous periodic signal as a sum of sinusoidal waves
Fourier Analysis: match data with sinusoids

\[S[k] = \int s(t) \cos(kt) \, dt \]
Complex Notation

For f, periodic with period p

Fourier transform $f(t) \rightarrow F[k]$

$$F[k] = \frac{1}{p} \int_{0}^{p} f(t) e^{-2\pi i k t/p} \, dt$$

$$= \frac{1}{p} \int_{0}^{p} f(t) \cos(2\pi k t/p) \, dt$$

$$- i/p \int_{0}^{p} f(t) \sin(2\pi k t/p) \, dt$$

Inverse Fourier transform $F[k] \rightarrow f(t)$

$$f(t) = \sum_{k \text{ in } \mathbb{Z}} F[k] \, e^{2\pi i k t/p}$$
Sampling

Fourier representations work just fine with sampled data.

Simple connection to Fourier of the continuous function it came from.

Familiar example: Digital Audio.
Measuring and Discretizing Input field

Physical Field (continuum)
Sample

Physical Field
(continuum)

V_{FS}

analog waveform

time
Quantize

Physical Field (continuum)

discretized waveform

V_{FS}

$NP_0(rms) = \frac{Q}{\sqrt{12}}$

quantization error
Code and output

Physical Field (continuum)

PHYSICAL LAYER

Digital Representation

...3, 8, 10, 9, 3, 1, 2...

- Analog waveform
- Digitized waveform
- Quantization error
Sampling

Often must work with a discrete set of measurements of a continuous function
Sampling

Takes a function defined on \mathbb{R} and creates a function defined on \mathbb{Z}.

$$\phi[n] = f(n \cdot h)$$

S_h \quad f(t) \quad \rightarrow \quad \phi[n] = f(n \cdot h)$
In this case, it is a periodic function on \mathbb{Z},

(Assuming $p/h = N$)

$$\phi[n] = f(n h)$$

$$\phi[n+N] = \phi[n]$$
DFT

\[\int_{0}^{p} f(t) \ e^{-2 \pi i k t/p} \ dt \ \rightarrow \sum_{n=0}^{N-1} \phi[n] \ e^{-2 \pi i k nh/p} \]

\[f(t) \ \rightarrow \ \phi[n] = f(nh) \]
DFT and its inverse for periodic discrete data

\[\Phi[k] = \sum_{n=0}^{N-1} \phi[n] \, e^{-2 \pi i \frac{k n h}{p}} \]

\[p = N h \]

This is automatically periodic in \(k \) with period \(N \)

Inverse is like Fourier series, but with only \(p \) terms
DFT: Discrete time periodic version of Fourier

"time" domain

\[
\gamma[k] = \sum_{k=0}^{N-1} \frac{1}{N} \gamma[k] e^{-2\pi i k m/N} = \Gamma[m]
\]

\[\gamma[k], \text{ on } \mathcal{P}_N\]

i.e. on \(\mathbb{Z}\), Period N

"frequency" domain

\[
\gamma[k] = \sum_{m=0}^{N-1} \Gamma[k] e^{2\pi i m k/N}
\]

\[\Gamma[m], \text{ on } \mathcal{P}_N\]

i.e. on \(\mathbb{Z}\), Period N
Two PERIODIC time versions of Fourier

\[\int_{0}^{p} f(t) \ e^{-2 \pi i \frac{k}{p} t} \ dt \]

\[\sum_{k \in \mathbb{Z}} F[k] e^{2 \pi i \frac{k}{p} t} \]

\[\gamma[k], \ \text{on} \ \mathbb{P}_{N} \]

\[\sum_{k=0}^{N-1} \Gamma[k] e^{2 \pi i \frac{m}{N} k} \]

\[\Gamma[m], \ \text{on} \ \mathbb{P}_{N} \]

“time” domain

“frequency” domain
Discrete time Numerical Fourier Analysis

DFT is really just a matrix multiplication!

\[
\Gamma [m] = \frac{1}{N} \sum_{k=0}^{N-1} e^{-2\pi i k m/N} \gamma[k]
\]

\[
\begin{pmatrix}
\Gamma[0] \\
\Gamma[1] \\
\Gamma[2] \\
\vdots \\
\Gamma[N-1]
\end{pmatrix}
= F_N
\begin{pmatrix}
\gamma[0] \\
\gamma[1] \\
\gamma[2] \\
\vdots \\
\gamma[N-1]
\end{pmatrix}
\]
Numerical Harmonic Analysis

FFT: Symmetry Properties permits “Divide and Conquer”
Sparse Factorization

$$F_{mn} = (F_m \otimes I_n) \cdot T^{mn} \cdot (I_m \otimes F_n) \cdot L^{mn}$$

Graph showing the difference between Naive and FFT methods.
Structured matrices

- Fast algorithms have been found for many dense matrices
- Typically the matrices have some “structure”
- Definition:
 - A dense matrix of order $N \notin N$ is called structured if its entries depend on only $O(N)$ parameters.
- Most famous example – the fast Fourier transform
Fourier Matrices

A Fourier matrix of order n is defined as the following

$$F_n = \begin{bmatrix}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega_n & \omega_n^2 & \cdots & \omega_n^{n-1} \\
1 & \omega_n^2 & \omega_n^4 & \cdots & \omega_n^{2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega_n^{n-1} & \omega_n^{2(n-1)} & \cdots & \omega_n^{(n-1)(n-1)}
\end{bmatrix},$$

where

$$\omega_n = e^{-\frac{2\pi i}{n}},$$

is an nth root of unity.
A Fourier matrix of order n is defined as the following

\[
\begin{bmatrix}
1 & 1 & 1 & \cdots & 1 \\
1 & W & W^2 & \cdots & W^{n-1} \\
1 & W^2 & W^4 & \cdots & W^{2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & W^{n-1} & W^{2(n-1)} & \cdots & W^{(n-1)(n-1)}
\end{bmatrix},
\]

where

\[
W = e^{\frac{2\pi i}{n}},
\]

is an nth root of unity.
\(i = \sqrt{-1} \quad \text{Primitive Roots of Unity} \)

A number \(\omega \) is a \textit{primitive n-th root of unity}, for \(n > 1 \), if \(\omega^n = 1 \)

The numbers 1, \(\omega \), \(\omega^2 \), \ldots, \(\omega^{n-1} \) are all distinct

- Example: The complex number \(e^{2\pi i/n} \) is a primitive n-th root of unity, where

\[
\omega^1 = e^{\frac{2\pi i}{n}}
\]

\[
\omega^n = \left(e^{\frac{2\pi i}{n}}\right)^n = e^{2\pi i} = \cos 2\pi + i \sin 2\pi = 1
\]

3. \(S = \sum_{p=0}^{n-1} \omega^{jp} = \omega^0 + \omega^j + \omega^{2j} + \omega^{3j} + \ldots + \omega^{j(n-1)} = 0 \)

\(n \) complex roots of unity equally spaced around the circle of unit radius centered at the origin of the complex plane.
Roots of Unity: Properties

• Property 1: Let ω be the principal n^{th} root of unity. If $n > 0$, then $\omega^{n/2} = -1$.

 – Proof: $\omega = e^{2\pi i / n} \Rightarrow \omega^{n/2} = e^{\pi i} = -1$. (Euler's formula)

 – Reflective Property:

 – Corollary: $\omega^{k+n/2} = -\omega^k$.

• Property 2: Let $n > 0$ be even, and let ω and ν be the principal n^{th} and $(n/2)^{th}$ roots of unity. Then $(\omega^k)^2 = \nu^k$.

 – Proof: $(\omega^k)^2 = e^{(2k)2\pi i / n} = e^{(k)2\pi i / (n/2)} = \nu^k$.

 – Reduction Property: If ω is a primitive $(2n)$-th root of unity, then ω^2 is a primitive n-th root of unity.
L3: Let $n > 0$ be even. Then, the squares of the n complex n^{th} roots of unity are the $n/2$ complex $(n/2)^{th}$ roots of unity.

Proof: If we square all of the n^{th} roots of unity, then each $(n/2)^{th}$ root is obtained exactly twice since:

- L1 $\Rightarrow \omega^{k+\frac{n}{2}} = -\omega^k$
- thus, $(\omega^{k+\frac{n}{2}})^2 = (\omega^k)^2$
- L2 \Rightarrow both of these $= \nu^k$
- $\omega^{k+\frac{n}{2}}$ and ω^k have the same square

Inverse Property: If ω is a primitive root of unity, then $\omega^{-1} = \omega^{n-1}$

Proof: $\omega \cdot \omega^{n-1} = \omega^n = 1$
Fast Fourier Transform

• Presented by Cooley and Tukey in 1965, but invented several times, including by Gauss (1809) and Danielson & Lanczos (1948)

• Danielson Lanczos lemma

\[
F_k = \sum_{j=0}^{N-1} e^{2\pi i j k / N} f_j
\]

\[
= \sum_{j=0}^{N/2-1} e^{2\pi i k (2j) / N} f_{2j} + \sum_{j=0}^{N/2-1} e^{2\pi i k (2j+1) / N} f_{2j+1}
\]

\[
= \sum_{j=0}^{N/2-1} e^{2\pi i k j / (N/2)} f_{2j} + W^k \sum_{j=0}^{N/2-1} e^{2\pi i k j / (N/2)} f_{2j+1}
\]

\[
= F_k^e + W^k F_k^o
\]
• So far we have seen what happens on the right hand side
• How about the left hand side?
• When we split the sums in two we have two sets of sums with $N/2$ quantities for N points.
• So the complexity is $N^2/2 + N^2/2 = N^2$
• So there is no improvement
• Need to reduce the number of sums on the left hand side
 – We need to reduce the number of sums computed from $2N$ to a lower number
 – Notice that the values corresponding to k and $k+N/2$ will be the same.
 – The transforms F_e^k and F_o^k are periodic in k with length $N/2$.
 – So we need only compute half of them!
FFT

• So DFT of order N can be expressed as sum of two DFTs of order $N/2$ evaluated at $N/2$ points
• Does this improve the complexity?
• Yes $(N/2)^2 + (N/2)^2 = N^2/2 < N^2$
• But we are not done ….
• Can apply the lemma recursively
 \[F_k^{ee} = F_k^{ee} + W^k F_k^{eo}, \quad F_k^{oo} = F_k^{oo} + W^k F_k^{oo}, \]
• Finally we have a set of one point transforms
• One point transform is identity
 \[F_k^{eeoeoeoeoeoeoe} = f_n \]
FFT Algorithm

FFT *(n, a₀, a₁, a₂, ..., aₙ₋₁)*

1. If *(n == 1)* // n is a power of 2
 - Return *a₀*

2. \(\omega \leftarrow e^{\frac{2\pi i}{n}} \)
3. \((e₀, e₁, e₂, ..., e_{n/2-1}) \leftarrow \text{FFT}(n/2, a₀, a₂, a₄, ..., a_{n-2})\)
4. \((d₀, d₁, d₂, ..., d_{n/2-1}) \leftarrow \text{FFT}(n/2, a₁, a₃, a₅, ..., aₙ₋₁)\)

5. For \(k = 0 \) to \(n/2 - 1 \)
 - \(y_k \leftarrow e_k + \omega^k d_k \)
 - \(y_{k+n/2} \leftarrow e_k - \omega^k d_k \)

6. Return \((y₀, y₁, y₂, ..., y_{n-1})\)

\(T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n) \)
Complexity

- Each F_k is a sum of $\log_2 N$ transforms and (factors)
- There are N F_k s
- So the algorithm is $O(N \log_2 N)$
- *This is a recursive algorithm*
function y = ffttx(x)
%FFTTX Textbook Fast Finite Fourier Transform.
% FFTTX(X) computes the same finite Fourier transform as FFT(X).
% The code uses a recursive divide and conquer algorithm for
% even order and matrix-vector multiplication for odd order.
% If length(X) is m*p where m is odd and p is a power of 2, the
% computational complexity of this approach is O(m^2)*O(p*log2(p)).

x = x(:);
n = length(x);
omega = exp(-2*pi*i/n);

if rem(n,2) == 0
 % Recursive divide and conquer
 k = (0:n/2-1)';
 w = omega .^ k;
 u = ffttx(x(1:2:n-1));
 v = w.*ffttx(x(2:2:n));
 y = [u+v; u-v];
else
 % The Fourier matrix.
 j = 0:n-1;
 k = j';
 F = omega .^ (k*j);
 y = F*x;
end
Scrambled Output of the FFT

"bit-reversed" order
FFT and IFFT

The *discrete Fourier transform* of a vector x is the product $F_n x$.

The *inverse discrete Fourier transform* of a vector x is the product $F^*_n x$.

Both products can be done efficiently using the fast Fourier transform (FFT) and the inverse fast Fourier transform (IFFT) in $O(n \log n)$ time.

The FFT has revolutionized many applications by reducing the complexity by a factor of almost n.

Can relate many other matrices to the Fourier Matrix.
Circulant Matrices

\[C_n = C(x_1, \ldots, x_n) = \begin{bmatrix}
 x_1 & x_n & x_{n-1} & \cdots & x_2 \\
 x_2 & x_1 & x_n & \cdots & x_3 \\
 x_3 & x_2 & x_1 & \cdots & x_4 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 x_n & x_{n-1} & x_{n-2} & \cdots & x_1
\end{bmatrix} \]

Toeplitz Matrices

\[T_n = T(x_{-n+1}, \ldots, x_0, \ldots, x_{n-1}) = \begin{bmatrix}
 x_0 & x_1 & x_2 & \cdots & x_{n-1} \\
 x_{-1} & x_0 & x_1 & \cdots & x_{n-2} \\
 x_{-2} & x_{-1} & x_0 & \cdots & x_{n-3} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 x_{-n+1} & x_{-n+2} & x_{-n+3} & \cdots & x_0
\end{bmatrix} \]

Hankel Matrices

\[H_n = H(x_{-n+1}, \ldots, x_0, \ldots, x_{n-1}) = \begin{bmatrix}
 x_{-n+1} & x_{-n+2} & x_{-n+3} & \cdots & x_0 \\
 x_{-n+2} & x_{-n+3} & x_{-n+4} & \cdots & x_1 \\
 x_{-n+3} & x_{-n+4} & x_{-n+5} & \cdots & x_2 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 x_0 & x_1 & x_2 & \cdots & x_{n-1}
\end{bmatrix} \]

Vandermonde Matrices

\[V = V(x_0, x_1, \ldots, x_n) = \begin{bmatrix}
 1 & 1 & \cdots & 1 \\
 x_0 & x_1 & \cdots & x_{n-1} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_0^{n-1} & x_1^{n-1} & \cdots & x_{n-1}^{n-1}
\end{bmatrix} \]
• Modern signal processing very strongly based on the FFT
• One of the defining inventions of the 20th century