Computational Methods
CMSC/AMSC/MAPL 460

Fourier transform

Ramani Duraiswami,
Dept. of Computer Science
Fourier Methods

• Last class
 – Introduced the Fourier basis
 – Showed why it might be useful
 – Introduced the notion of a Fourier Matrix
 – Introduced the Danielson Lanczos Lemma
 – Introduced the FFT algorithm

• This class
 – Detailed consideration of the FFT algorithm
 – Inverse FFT
 – Application to polynomial multiplication
Complex Notation

For f, periodic with period p

Fourier transform $f(t) \rightarrow F[k]$

$$F[k] = \frac{1}{p} \int_{0}^{p} f(t) e^{-2\pi i \frac{k}{p} t} \, dt$$

$$= \frac{1}{p} \int_{0}^{p} f(t) \cos(2\pi \frac{k}{p} t) \, dt$$

$$- \frac{i}{p} \int_{0}^{p} f(t) \sin(2\pi \frac{k}{p} t) \, dt$$

Inverse Fourier transform $F[k] \rightarrow f(t)$

$$f(t) = \sum_{k \in \mathbb{Z}} F[k] e^{2\pi i \frac{k}{p} t}$$
Sampling

Fourier representations work just fine with sampled data.

Simple connection to Fourier of the continuous function it came from.

Familiar example: Digital Audio
DFT

\[\int_{0}^{p} f(t) \, e^{-2\pi i k t/p} \, dt \] \rightarrow \sum_{n=0}^{N-1} \phi[n] \, e^{-2\pi i k nh/p} \]

\[f(t) \rightarrow \phi[n] = f(n \, h) \]
DFT and its inverse for periodic discrete data

\[\Phi[k] = \sum_{n=0}^{N-1} \phi[n] \, e^{-2\pi ikn/p} \quad p = Nh \]

\[= \sum_{n=0}^{N-1} \phi[n] \, e^{-2\pi ikn/N} \]

This is automatically periodic in \(k \) with period \(N \).

Inverse is like Fourier series, but with only \(p \) terms.
Discrete time Numerical Fourier Analysis

DFT is really just a matrix multiplication!

\[
F[m] = \frac{1}{N} \sum_{k=0}^{N-1} e^{-2\pi i \frac{m}{N} k} f[k]
\]

\[
\begin{pmatrix}
F[0] \\
F[1] \\
F[2] \\
\vdots \\
F[N-1]
\end{pmatrix} =
\begin{pmatrix}
\frac{1}{N} \\
\frac{1}{N} \\
\frac{1}{N} \\
\vdots \\
\frac{1}{N}
\end{pmatrix}
\begin{pmatrix}
e^{-2\pi i \frac{0}{N} k} f[0] \\
e^{-2\pi i \frac{1}{N} k} f[1] \\
e^{-2\pi i \frac{2}{N} k} f[2] \\
\vdots \\
e^{-2\pi i \frac{N-1}{N} k} f[N-1]
\end{pmatrix}
\]
Fourier Matrices

A Fourier matrix of order n is defined as the following

$$F_n = \begin{bmatrix}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega_n & \omega_n^2 & \cdots & \omega_n^{n-1} \\
1 & \omega_n^2 & \omega_n^4 & \cdots & \omega_n^{2(n-1)} \\
& \ddots & \ddots & \ddots & \vdots \\
1 & \omega_n^{n-1} & \omega_n^{2(n-1)} & \cdots & \omega_n^{(n-1)(n-1)} \\
\end{bmatrix},$$

where

$$\omega_n = e^{-\frac{2\pi i}{n}},$$

is an nth root of unity.
i = \sqrt{-1}

Primitive Roots of Unity

A number \(\omega \) is a *primitive n-th root of unity*, for \(n > 1 \), if
\[
\omega^n = 1
\]
The numbers 1, \(\omega \), \(\omega^2 \), ..., \(\omega^{n-1} \) are all distinct

- Example: The complex number \(e^{2\pi i/n} \) is a primitive n-th root of unity, where

Check: if properties are satisfied

1. \(\omega^1 = e^{\frac{2\pi i}{n}} \neq 1 \)
2. \(\omega^n = \left(e^{\frac{2\pi i}{n}} \right)^n = e^{2\pi i} = \cos 2\pi + i \sin 2\pi = 1 \)
3. \(S=\sum_{p=0}^{n-1} \omega^p = \omega^0 + \omega^1 + \omega^2 + \omega^3 + \ldots + \omega^{(n-1)} = 0 \)

\(n \) complex roots of unity equally spaced around the circle of unit radius centered at the origin of the complex plane.
Roots of Unity: Properties

• Property 1: Let \(\omega \) be the principal \(n^{th} \) root of unity. If \(n > 0 \), then \(\omega^{n/2} = -1 \).

 – Proof: \(\omega = e^{\frac{2\pi i}{n}} \Rightarrow \omega^{n/2} = e^{\frac{\pi i}{2}} = -1 \). (Euler's formula)

 – Reflective Property:

 – Corollary: \(\omega^{k+n/2} = -\omega^k \).

• Property 2: Let \(n > 0 \) be even, and let \(\omega \) and \(\nu \) be the principal \(n^{th} \) and \((n/2)^{th} \) roots of unity. Then \((\omega^k)^2 = \nu^k \).

 – Proof: \((\omega^k)^2 = e^{(2k)\frac{2\pi i}{n}} = e^{(k)\frac{2\pi i}{(n/2)}} = \nu^k \).

 – Reduction Property: If \(\omega \) is a primitive \((2n)\)-th root of unity, then \(\omega^2 \) is a primitive \(n\)-th root of unity.
• L3: Let $n > 0$ be even. Then, the squares of the n complex n^{th} roots of unity are the $n/2$ complex $(n/2)^{th}$ roots of unity.

 – Proof: If we square all of the n^{th} roots of unity, then each $(n/2)^{th}$ root is obtained exactly twice since:

 • L1 $\Rightarrow \omega^{k+n/2} = -\omega^k$
 • thus, $(\omega^{k+n/2})^2 = (\omega^k)^2$
 • L2 \Rightarrow both of these $= \nu^k$
 • $\omega^{k+n/2}$ and ω^k have the same square

• **Inverse Property:** If ω is a primitive root of unity, then $\omega^{-1} = \omega^{n-1}$

 – Proof: $\omega \omega^{n-1} = \omega^n = 1$
Fast Fourier Transform

- Presented by Cooley and Tukey in 1965, but invented several times, including by Gauss (1809) and Danielson & Lanczos (1948)
- Danielson Lanczos lemma

\[
F_k = \sum_{j=0}^{N-1} e^{2\pi i j k/N} f_j
\]

\[
= \sum_{j=0}^{N/2-1} e^{2\pi i k(2j)/N} f_{2j} + \sum_{j=0}^{N/2-1} e^{2\pi i k(2j+1)/N} f_{2j+1}
\]

\[
= \sum_{j=0}^{N/2-1} e^{2\pi i k j/(N/2)} f_{2j} + W^k \sum_{j=0}^{N/2-1} e^{2\pi i k j/(N/2)} f_{2j+1}
\]

\[
= F_k^e + W^k F_k^o
\]
• So far we have seen what happens on the right hand side
• How about the left hand side?
• When we split the sums in two we have two sets of sums with \(N/2 \) quantities for \(N \) points.
• So the complexity is \(N^2/2 + N^2/2 = N^2 \)
• So there is no improvement
• Need to reduce the sums on the right hand side as well
 – We need to reduce the number of sums computed from \(2N \) to a lower number
 – Notice that the values corresponding to \(k \) and \(k+N/2 \) will be the same.
 – The transforms \(F_e^k \) and \(F_o^k \) are periodic in \(k \) with length \(N/2 \).
 – So we need only compute half of them!
FFT

- So DFT of order N can be expressed as sum of two DFTs of order $N/2$ evaluated at $N/2$ points.
- Does this improve the complexity?
- Yes \((N/2)^2+(N/2)^2 = \frac{N^2}{2} < N^2\)
- But we are not done ….
- Can apply the lemma recursively
 \[F_k^e = F_k^{ee} + W_k^e F_k^{eo}, \quad F_k^o = F_k^{oe} + W_k^o F_k^{oo}, \]
- Finally we have a set of one point transforms
- One point transform is identity
 \[F_k^{eeoeoeoeoeoeoeoe} = f_n \]
FFT Algorithm

FFT \((n, a_0, a_1, a_2, \ldots, a_{n-1}) \)

if \(n == 1 \) // \(n \) is a power of 2
 return \(a_0 \)

\(\omega \leftarrow e^{2\pi i / n} \)

\((e_0, e_1, e_2, \ldots, e_{n/2-1}) \leftarrow \text{FFT}(n/2, a_0, a_2, a_4, \ldots, a_{n-2}) \)

\((d_0, d_1, d_2, \ldots, d_{n/2-1}) \leftarrow \text{FFT}(n/2, a_1, a_3, a_5, \ldots, a_{n-1}) \)

for \(k = 0 \) to \(n/2 - 1 \)
 \(y_k \leftarrow e_k + \omega^k d_k \)
 \(y_{k+n/2} \leftarrow e_k - \omega^k d_k \)

return \((y_0, y_1, y_2, \ldots, y_{n-1})\)

\(T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n) \)
Complexity

- Each F_k is a sum of $\log_2 N$ transforms and (factors)
- There are N F_k's
- So the algorithm is $O(N \log_2 N)$
- This is a recursive algorithm
Scrambled Output of the FFT

"bit-reversed" order
function y = ffttx(x)
%FFTTX Textbook Fast Finite
Fourier Transform.
% FFTTX(X) computes the same
finite Fourier transform as FFT(X).
% The code uses a recursive divide
and conquer algorithm for
% even order and matrix-vector
multiplication for odd order.
% If length(X) is m*p where m is
odd and p is a power of 2, the
% computational complexity of this
approach is O(m^2)*O(p*log2(p)).

x = x(:);
n = length(x);
omega = exp(-2*pi*i/n);

if rem(n,2) == 0
 % Recursive divide and conquer
 k = (0:n/2-1)';
 w = omega .^ k;
 u = ffttx(x(1:2:n-1));
 v = w.*ffttx(x(2:2:n));
 y = [u+v; u-v];
else
 % The Fourier matrix.
 j = 0:n-1;
 k = j';
 F = omega .^ (k*j);
 y = F*x;
end